SlideShare a Scribd company logo
By Zeba Mubarak
Twinikli International Senior High School
RECAP (FORCES)
FORCE Is defined based on what it can cause bodies to do, it may cause a
bodyโ€™s length to increase or decrease. IT CAN CAUSE A BODYโ€™S REST
POSITION TO CHANGE OR IF IN MOTION TO CHANGE IT DIRECTION
hence
FORCE is defined as a push or a pull that can change a bodies
state of rest or uniform motion in a straight line.
TYPES OF FORCES
โ€ขTHERE ARE TWO TYPES OF FORCES. THESE ARE
๏ถCONTACT FORCE / LOCAL FORCE
๏ถNON โ€“ CONTACT / NON โ€“ LOCAL / FORCE FIELDS
CONTACT FORCE
โ€ขThey are forces that are experienced by bodies when they
are in direct contact with the source of the force.
โ€ขEXAMPLES
๏ฑUpthrust
๏ฑFrictional force
๏ฑTension force
๏ฑSurface tension
๏ฑForces exerted on a ball when kicked
๏ฑViscous force (fluid resistance)
NON โ€“CONTACT FORCE
โ€ขThey are forces that are experienced by bodies that may or
may not be in direct contact with the source of the force.
โ€ขEXAMPLES
๏ฑMagnetic force
๏ฑGravitational force
๏ฑElectric Force
๏ฑNuclear force
NB: CONTACT FORCE ARE CALLED LOCAL FORCE BECAUSE THE SOURCE OF THE FORCE MUST BE IN THE
AREA(LOCALITY) OF THE OBJECT.
FRICTIONAL FORCEโ€ขIt is the tangential force that acts on surfaces in contact and which opposes
their relative motion. It is experienced by solid bodies in contact.
โ€ขUSES / ADVANTAGES OF FRICTIONAL FORCES
๏ƒ˜It makes body in motion to stop
๏ƒ˜It is use for sharpening cutlasses
๏ƒ˜It makes walking possible
๏ƒ˜It enables us light fire
๏ƒ˜It makes writing possible
๏ƒ˜It enables a screw or a nail to remain in place after being screwed into
position.
โ€ขDISADVANTAGES OF FRICTIONAL
๏ƒ˜ It makes the sole of shoes wear and tear
๏ƒ˜It produces heat when 2 solid bodies in contact makes relative motion
๏ƒ˜It reduces the efficiency of a machine
โ€ขHOW WE WILL REDUCE FRICTION
๏ƒ˜ Greasing solid surfaces in contact
๏ƒ˜Introducing impurities between surfaces reduces friction
๏ƒ˜By introducing spherical metallic balls in between two metals moving
over each other has in ball bearings or race reduces friction.
BALL RACE OR BEARING & LABELLING
Spherical body
Metal run
Metal
TWO TYPES OF FRICTION
โ€ขTHESE ARE:
1) STATIC โ€“ These opposes motion of bodies when they are stationary
2) DYNAMIC - These opposes motion of bodies already in motion
Static friction is always bigger than they the dynamic frictional force
NORMAL FORCE OR REACTION
It is the component of a supported force that is perpendicular to
the supporting surface.
HORIZONTAL SURFACE
โ€ขEXAMPLES
Determine the reaction exerted on a surface when a 20 kg body
is placed on the surface. Assume horizontal.
SOLUTION
Reaction = ๐‘š ร— ๐‘”
= 20 ร— 10
= 200 ๐‘
INCLINED SURFACE
๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ causes the body to remain on the surface
๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ causes the body to pulled down the surface
โ€ขEXAMPLES
A 10 kg mass rest on a surface at 10ยฐ to the horizontal. Calculate
i. The force that presses the body unto the plane
ii. The force that tries to pull the body down along the surface
iii. The reaction
1) ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 10 ร— 10 cos 10 = 98.48 ๐‘
2) ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ = 10 ร— 10 sin 10 = 17.36 ๐‘
3) ๐‘… = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 10 ร— 10 cos 10 = 98.48 ๐‘
LIMITING STATIC FRICTION
This is the minimum force required to move a body at rest. The
force is described as dynamic limiting frictional force when it is
the minimum force that must be applied on a moving body to make
the body move at a constant velocity.
โ€ขCoefficient of Static Friction
It is defined as the
๐ฅ๐ข๐ฆ๐ข๐ญ๐ข๐ง๐  ๐ฌ๐ญ๐š๐ญ๐ข๐œ ๐Ÿ๐ซ๐ข๐œ๐ญ๐ข๐จ๐ง๐š๐ฅ ๐Ÿ๐จ๐ซ๐œ๐ž
The normal force or reaction
.
๐œ‡ =
๐น๐‘ฅ
๐‘…
or ๐น๐‘ฅ = ๐œ‡ ร— ๐‘…
Example
A 15 kg body is on a horizontal surface which has a coefficient of
friction of 0.25. Calculate
i) The normal force
ii) The limiting static frictional force
โ€ข Solution
i. The normal force = ๐‘š ร— ๐‘” = 15 ร— 10 = 150 ๐‘
ii. The limiting static frictional force = ๐น๐‘ฅ = ๐œ‡๐‘… = 0.25 ร— 150 = 37.5 ๐‘
EXAMPLE
A 100 kg body is on a plane inclined 30 ยฐ to the horizontal, if the frictional force on
the body is 50.0 N, calculate the
i. The normal force
ii. The coefficient of friction
โ€ขSolution
i. The normal force = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 100 ร— 10 cos 30 = 866.03 ๐‘
ii. The coefficient of friction ๐œ‡ =
๐น๐‘ฅ
๐‘…
=
50 ๐‘
866.03
= 0.058 ๐‘
RESULTANT FORCE โ€“ This is the difference between the total force in the
direction of motion and the total force opposite the direction of motion
๐‘น ๐’‡ =Total force in the direction of motion โ€“ total force opposite the direction
of motion
Or it can also be determined by mass ร— acceleration = ๐’Ž ร— ๐’‚ = ๐’Ž๐’‚
EXAMPLE
A 20 kg body on a horizontal surfaces is pulled to the right with a force of
100N. Determine.
i. The frictional force
ii. The resultant force
iii. The acceleration ๐‘‡๐‘Ž๐‘˜๐‘’ ๐œ‡ = 0.2
โ€ข SOLUTION
โ€ข I. Frictional force , ๐น๐‘ฅ = ๐œ‡ ร— ๐‘… , ๐‘… = ๐‘š๐‘” = 20 ร— 10 = 200 ๐‘
๐น๐‘ฅ = 0.2 ร— 200 = 40.0 ๐‘
II. Resultant force , ๐‘…๐‘“ =Total force in the direction of motion โ€“ total force opposite the
direction of motion = 100 โˆ’ 40 = ๐Ÿ”๐ŸŽ ๐‘ต
III. Acceleration
๐‘น ๐’‡ = ๐’Ž๐’‚๐’”๐’” ร— ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’
60 = 20 ร— ๐‘Ž
โˆด ๐‘Ž =
60
20
= ๐Ÿ‘ ๐’Ž๐’”โˆ’๐Ÿ
Home work 1
A 100 kg toy car is pulled up a plane inclined 30 ยฐ to the horizontal with a force of
1000 N. Given that the ๐น๐‘ฅ coefficient of the force is 0.25,
Calculate
i. ๐น๐‘ฅ force ii. Total force down along the plane iii. The resultant force
iii. The acceleration of the body act along the plane
โ€ข SOLUTION
i. FRICTIONAL FORCE, ๐น๐‘ฅ = ๐œ‡ ร— ๐‘Ÿ , ๐‘Ÿ = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ
๐น๐‘ฅ = ๐œ‡ ร— ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 0.25 ร— 100 COS 30 = ๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ“ ๐‘ต
ii. TOTAL FORCE DOWN ALONG THE PLANE = ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ + ๐น๐‘ฅ = 100 ร— 10 ๐‘ ๐‘–๐‘›30 + 216.5
= 716.5 ๐‘
iii. RESULTANT FORCE, ๐‘…๐‘“ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› โˆ’
๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› = 1000 โˆ’ 716.5 = ๐Ÿ๐Ÿ–๐Ÿ‘. ๐Ÿ“๐‘ต
iv. ACCELERATION =
๐‘…๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
๐‘š๐‘Ž๐‘ ๐‘ 
=
283.5
100
= 2.835 ๐‘š๐‘ โˆ’2
Question
A 200 kg body rest on a surface inclined 25 ยฐ to the horizontal. If this body
is pulled down along the plane with a force of 100 N. Calculate
i. ๐น๐‘ฅ force ii. Total force in the direction of motion iii. The
resultant force iii. The acceleration of the body act along the plane
[Take ๐œ‡ ๐‘Ž๐‘  0.3]
โ€ข SOLUTION
i. FRICTIONAL FORCE, ๐น๐‘ฅ = 0.3 ร— ๐‘Ÿ , ๐‘Ÿ = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ
๐น๐‘ฅ = ๐œ‡ ร— ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 0.3 ร— 2000 COS 25 = ๐Ÿ“๐Ÿ’๐Ÿ‘. ๐Ÿ•๐Ÿ–๐‘ต
ii. TOTAL FORCE IN THE DIRECTION OF MOTION= ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ + ๐น๐‘‘ = 200 ร— 10 ๐‘ ๐‘–๐‘›25 + 100
= ๐Ÿ—๐Ÿ’๐Ÿ“. ๐Ÿ๐Ÿ’ ๐‘ต
iii. RESULTANT FORCE, ๐‘…๐‘“ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› โˆ’
๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› = 945. 24 โˆ’ 543.78 = ๐Ÿ’๐ŸŽ๐Ÿ. ๐Ÿ’๐Ÿ”๐‘ต
iv. ACCELERATION =
๐‘…๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
๐‘š๐‘Ž๐‘ ๐‘ 
=
401.46
200
= ๐Ÿ. ๐ŸŽ๐ŸŽ๐Ÿ• ๐’Ž๐’”โˆ’๐Ÿ
MEASUREMENT OF COEFFICIENT OF ๐น๐‘ฅ
The test body is placed on a horizontal table that has a pulley fixed to one end of a thread that
is passing over a pulley attached to a scale pan. Masses are gently placed on the scale pan
until the test body just begins to move.
Weigh the mass on the scale pan and record it as ๐‘€๐‘ . WEIGH THE TEST BODY AND RECORD THE MASS
AS ๐‘€
THEORY
WHEN THE BODY JUST BEGINS TO MOVE ๐‘€๐‘  ๐‘” = ๐‘‡
BUT ๐‘‡ = ๐‘“๐‘  HENCE ๐น๐‘ฅ = ๐‘š ๐‘  ๐‘” REACTION ๐‘… = ๐‘€๐‘”
โˆด COEFFICIENT OF FRICTION ๐œ‡ =
๐น๐‘ฅ
๐‘…
=
๐‘€๐‘  ๐‘”
๐‘€๐‘”
=
๐‘€๐‘ 
๐‘€
TO DETERMINE ๐œ‡ USING INCLINED PLANE
โ€ข The test body is placed on a plain. One end of the plane is gradually raised until the body
just begins to move.
โ€ข The angle of inclination ๐œƒ at this instant is measured with a protector. ๐› = ๐ญ๐š๐ง ๐›‰
When a body just begins to move ๐น๐‘ฅ =
๐‘š๐‘” sin ๐œƒ
But ๐น๐‘ฅ = ๐œ‡๐‘…
๐‘… = ๐‘š๐‘”๐‘๐‘œ๐‘ ๐œƒ
๐œ‡๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ
๐ =
๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ
๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ
=
sin ๐œƒ
cos ๐œƒ
= ๐ญ๐š๐ง ๐œฝ
ARCHIMEDES PRINCIPLE
โ€ข A body in a fluid apart from experiencing its own weight also experiences a vertically
directed upward force that tends to reduce the weight of the body.
โ€ข Hence, bodies in fluid weigh less. UPTHRUST OR BUOYANT FORCE is the vertically directed
force experienced by bodies in fluid.
โ€ข The volume of fluid displaced = the volume of the part of solid or body immerse in
fluid
โ€ข The weight of the fluid displaced = the volume of solid immersed ร— density of fluid ร—
gravity
โ€ข The weight of fluid displaced = UPTHRUST.
โ€ข The apparent loss in weight of bodies is the UPTHRUST
QUESTIONS
โ€ข A piece of wood has a mass of 200 g. When placed in ๐ป2 ๐‘‚ with 50 ๐‘๐‘š3 of the wood in
๐ป2 ๐‘‚ , there is a loss in mass. Calculate
โ€ข Volume of ๐ป2 ๐‘‚ displaced
โ€ข Mass of ๐ป2 ๐‘‚ displaced
โ€ข The upthrust on the wood
โ€ข Find the apparent loss in mass of the wood.
SOLUTION
1. Volume of ๐ป2 ๐‘‚ displaced = 50 ๐‘๐‘š3
2. Mass of ๐ป2 ๐‘‚ displaced = Density ร— Vol. of the ๐ป2 ๐‘‚ = 1 ร— 50 = 50 g
3. The upthrust on the wood =
50
1000
= 0.050 ร— 10 ๐‘š/๐‘  = 0.5 ๐‘
4. Apparent loss in mass of the wood = Mass in air โ€“ mass in fluid = 200 โˆ’ 50 = 150 ๐‘”
A 20 ๐‘๐‘š3
balloon is left in air of density 0.0014 ๐‘”/๐‘๐‘š3
. Calculate the mass of air displaced and hence, the
upthrust.
Answer
Density =
๐‘€๐‘Ž๐‘ ๐‘ 
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’
Mass = Density ร— Volume = 0.0014 ร— 20 = 0.028 g
Upthrust =
0.028๐‘”
1000
= 0.000028 ร— 10 = ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ– ๐‘ต
Archimedes Principle
When a body is fully or partially immersed in a fluid, it experiences an upthrust equal to the weight of fluid
displaced.
NB: The upthrust reduces the weight.
FLOATATION
โ€ขLaw of Floatation
A floating body displaces its own weight of fluid in the fluid in which its floates.
During Floatation
โ€ข The volume of fluid displaced = the volume of the body immersed.
โ€ข Mass of fluid displaced = Mass of the body
โ€ข Upthrust = weight of body
METHOD
โ€ข 1. Fill an overflow can with ๐ป2 ๐‘‚ upto the spout level
โ€ข 2. Weigh an empty beaker with an electric balance to record the mass ๐‘€1
โ€ข 3. Place the beaker below the spout
โ€ข 4. Place the test tube in the ๐ป2 ๐‘‚ and add lead shots to the tube for the tube to float upright.
โ€ข 5. Weight the beaker with the overflow ๐ป2 ๐‘‚ and record the mass ๐‘€2
โ€ข 6. Evaluate the mass of the overflow ๐ป2 ๐‘‚ AS ๐‘Š = ๐‘€2 โˆ’ ๐‘€1
โ€ข 7. Remove the test tube with the leadshots from the ๐ป2 ๐‘‚, weigh and record the mass as ๐‘€
OBSERVATION AND CONCLUSION
โ€ข It is found that ๐‘€ = ๐‘š๐‘” indicating that mass of the test tube/ body is equal to the mass of
overflow water
โ€ข Weight of body = ๐‘š๐‘”
โ€ข Upthrust = mass of fluid ร— g = ๐ดโ„Ž ๐œŒ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘”
โ€ข ๐ด = ๐ถ๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก , ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐ดโ„Ž = ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’
๐‘š๐‘” = ๐ดโ„Ž๐œŒ๐‘”
๐‘š = ๐ดโ„Ž๐œŒ(๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ)
๐‘š = ๐‘‰๐œŒ
QUESTIONS
โ€ข A test tube has a mass of 15 g, a cross sectional area of 1.5 ๐‘๐‘š2
. The test tube floats
in the liquid of ๐œŒ = 0.8 ๐‘”/๐‘๐‘š3. Calculate the depth of immersion of the test tube.
SOLUTION
๐‘€ = 15 ๐‘” ๐ด = 1.5 ๐‘๐‘š2 ๐œŒ = 0.8 ๐‘”/๐‘๐‘š3
๐‘€ = ๐ดโ„Ž๐œŒ
15 = 1.5 ร— โ„Ž ร— 0.8
โ„Ž =
15
1.2
= 12.5 ๐‘๐‘š
QUESTION
โ€ข A piece of wood floats in a liquid of relative density(RD) = 1.02 if the mass of the
wood is 25 kg and the volume of wood above the liquid is 0.0071 ๐‘š3. Calculate the
total volume of the wood
SOLUTION
๐‘…. ๐ท = 1.02 ๐œŒ = ๐‘…. ๐ท ร— ๐œŒ ๐‘ค = 1. 02 ร— 1000 = 1020 ๐‘˜๐‘”๐‘šโˆ’3
๐‘ฃ๐‘œ๐‘™ ๐‘œ๐‘“ ๐‘ค๐‘œ๐‘œ๐‘‘ ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ = 0.0017, ๐‘€ = 25 ๐‘˜๐‘”,
๐‘€ = ๐‘‰2 ๐œŒ
๐‘‰2 =
25
1020
= 0.0245 ๐‘š3
Volume of wood = ๐‘‰1 + ๐‘‰2 = 0.0071 + 0.0245 = 0.0316 ๐‘š3
QUESTIONS
โ€ข A 200g wood float in ๐ป2 ๐‘‚. If the top part of the wood is just above covered water. What
is the size length of the wood
SOLUTION
๐‘€ = ๐‘‰๐œŒ
200 = ๐‘‰ ร— 1
๐‘‰ = 200 ๐‘๐‘š3
But ๐ฟ3 = ๐‘‰
๐ฟ3 = 200
๐ฟ = 5.85 ๐‘๐‘š
HYDROMETER
โ€ข This is an instrument used to measure relative density or consist off a uniform glass tube
containing lead shots. In another form of the instrument a uniform stem is mounted on a
large bulb that has lead shots in it as shown in the diagram below
HYDROMETER
Calculations
When height increases the ๐œŒ reduces
๐‘€ = ๐œŒ๐ดโ„Ž
๐‘€
๐ดโ„Ž
= ๐œŒ . ๐œŒ =
1
โ„Ž
calibration is non linear
Calculation in stem glass
WEIGHTLESSNESS โ€“ MOTION IN A LIFT
When a lift accelerates downwards occupants feel lighter, however they feel heavier
when it accelerates upwards. These changes can be explained by considering the
resultant force, which acts on the occupants as a combination of two forces that are
acting. These are:
i. Force of gravity on weight
ii. The force needed to accelerate or decelerate the lift
WEIGHTLESSNESS โ€“ MOTION IN A LIFT
If the lift accelerates downwards with an acceleration of ๐‘Žmsโˆ’2
then ๐‘พ = ๐’Ž๐’ˆ โˆ’ ๐’Ž๐’‚. If
the lift accelerates upwards with acceleration of ๐‘Žmsโˆ’2
then ๐‘พ = ๐’Ž๐’ˆ + ๐’Ž๐’‚ which
implies that the weight appears to be increased and occupants appear to be decreased.
As the lift increases its downwards acceleration, the apparent weight will be less and
less until eventually becomes zero. If the acceleration of the lift increases beyond 10
๐‘š/๐‘ 2 then the person inside will fly. Spacemen experience weightlessness when the
acceleration of their spacecraft is greater than or equal to acceleration due to
gravity.
QUESTION
โ€ข Calculate the force with which the feet of a passenger passes downwards on the floor of an
elevator accelerating upwards of 4 ร— 10โˆ’3
๐‘š๐‘ โˆ’2
if the passengerโ€™s weight is 60 ๐‘.
SOLUTION
Weight of passenger = 60 N
But weight of passenger = ๐ฆ๐š๐ฌ๐ฌ ๐จ๐Ÿ ๐ฆ๐š๐ง ร— ๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ
Mass of passenger =
๐ฐ๐ž๐ข๐ ๐ก๐ญ ๐จ๐Ÿ ๐ฉ๐š๐ฌ๐ฌ๐ž๐ง๐ ๐ž๐ซ
๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ
I.E ๐’Ž =
๐‘พ
๐’ˆ
=
๐Ÿ”๐ŸŽ
๐Ÿ๐ŸŽ
= ๐Ÿ” ๐’Œ๐’ˆ.
Let ๐‘Š๐‘Ž be the apparent weight of the passenger
โ‡’ ๐‘Š๐‘Ž = ๐‘š๐‘” + ๐‘š๐‘Ž
โ‡’ ๐‘Š๐‘Ž = 6 ร— 10 + 6 ร— (4 ร— 10โˆ’3
)
โ‡’ ๐‘Š๐‘Ž = ๐Ÿ”๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ’ ๐‘
QUESTION
โ€ข A man of mass 70 kg is standing in a lift. What force does the floor of the lift exert on the man if
the lift is
i. moving with a uniform velocity?
ii. accelerating at 3 ๐‘š๐‘ โˆ’2 upwards?
iii. Accelerating at 3 ๐‘š๐‘ โˆ’2
downwards? (Take ๐‘” = 10 ๐‘š๐‘ โˆ’2
)
SOLUTION
R is the normal reaction from the floor on the man
i)
Since the lift is moving with a uniform velocity, the resultant force is zero: ๐‘… = ๐‘š๐‘” = 70 ร— 10 =
700 ๐‘
R
mg
a
Since the lift is accelerating upwards
Equation of motion: ๐‘… โˆ’ ๐‘š๐‘” = ๐‘š๐‘Ž
โ‡’ ๐‘… = ๐‘š๐‘” + ๐‘š๐‘Ž = ๐‘š ๐‘” + ๐‘Ž = 70 10 + 3 = 70 ร— 13 = ๐Ÿ—๐Ÿ๐ŸŽ ๐‘ต
ii)
Since the lift is accelerating downwards
Equation of motion: ๐‘š๐‘” โˆ’ ๐‘… = ๐‘š๐‘Ž
โ‡’ ๐‘… = ๐‘š๐‘” โˆ’ ๐‘š๐‘Ž = ๐‘š ๐‘” โˆ’ ๐‘Ž = 70 10 โˆ’ 3 = 70 ร— 7 = ๐Ÿ’๐Ÿ—๐ŸŽ ๐‘ต
CONNECTED BODIES
Two particles connected by a light inextensible string passing over a fixed light smooth
frictionless pulley are called connected bodies. The tension in the string is the same
throughout its length so the body is acted upon by the same tension. Problems concerned
with connected bodies usually involve finding the acceleration of the system and the
tension in the string.
BODIES ON HORIZONTAL SURFACES
๐’‡ ๐’™
๐‘“๐‘ฅ = ๐œ‡๐‘… = ๐œ‡๐‘š1 ๐‘”
For ๐’Ž ๐Ÿ
๐‘š1 ๐‘Ž = ๐‘‡ โˆ’ ๐‘“๐‘ฅ or ๐‘š1 ๐‘Ž = ๐‘‡ โˆ’ ๐œ‡๐‘š1 ๐‘”
For ๐’Ž ๐Ÿ
๐‘š2 ๐‘Ž = ๐‘š2 ๐‘” โˆ’ ๐‘‡
Eqn (1) + eqn(2)
๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š2 ๐‘” โˆ’ ๐œ‡๐‘š1 ๐‘”
๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š2 ๐‘” โˆ’ ๐œ‡๐‘š1 ๐‘”
๐’‚ =
๐’Ž ๐Ÿ ๐’ˆ
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
โˆ’
๐๐’Ž ๐Ÿ ๐’ˆ
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
BODIES ON INCLINED PLANES
๐‘“๐‘ฅ = ๐œ‡๐‘… = ๐œ‡๐‘š2 ๐‘” ๐‘๐‘œ๐‘ ๐œƒ
For ๐’Ž ๐Ÿ
๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡ โˆ’ (1)
For ๐’Ž ๐Ÿ
๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ [๐‘“๐‘ฅ + ๐‘š2 ๐‘” sin ๐œƒ ]
Eqn (1) + eqn(2)
๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ (๐‘“๐‘ฅ + ๐‘š2 ๐‘”๐‘ ๐‘–๐‘› ๐œƒ)
๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š1 ๐‘” โˆ’ (๐‘“๐‘ฅ + ๐‘š2 ๐‘”๐‘ ๐‘–๐‘› ๐œƒ)
๐’‚ =
๐’Ž ๐Ÿ ๐’ˆ
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
โˆ’
(๐’‡ ๐’™ + ๐’Ž ๐Ÿ ๐’ˆ๐’”๐’Š๐’ ๐œฝ)
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
BODIES ON INCLINED PLANES
๐‘“๐‘ฅ = ๐œ‡๐‘… = 0.2 ร— 2 ร— 10 cos 30 = 3.5
For ๐’Ž ๐Ÿ
๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡
๐Ÿ๐ŸŽ๐’‚ = ๐Ÿ๐ŸŽ๐ŸŽ โ€“ ๐‘ป __ (๐Ÿ)
For ๐’Ž ๐Ÿ
๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ [๐‘“๐‘ฅ + ๐‘š2 ๐‘” sin ๐œƒ ]
2๐’‚ = ๐‘ป โ€“ (๐Ÿ‘. ๐Ÿ“ + ๐Ÿ ร— ๐Ÿ๐ŸŽ๐’”๐’Š๐’ ๐Ÿ‘๐ŸŽ
2๐’‚ = ๐‘ป โˆ’ ๐Ÿ๐Ÿ‘. ๐Ÿ“ __ (๐Ÿ)
Eqn (1) + eqn(2)
12๐‘Ž = 100 โˆ’ 13.5
๐’‚ = ๐Ÿ•. ๐Ÿ๐Ÿ๐’Ž/๐’” ๐Ÿ
Substituting a = 7.21 into eqn 1
๐Ÿ๐ŸŽ ๐Ÿ•. ๐Ÿ๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽ โˆ’ ๐‘ป
๐‘ป = ๐Ÿ๐Ÿ•. ๐Ÿ—
= 10 kg
๐Ÿ‘๐ŸŽยฐ
= 2 kg
๐ = ๐ŸŽ. ๐Ÿ
PULLEY SYSTEM
Because the direction ๐‘š1 ๐‘” is greater than the ๐‘š2
๐‘š1 > ๐‘š2
For ๐’Ž ๐Ÿ
๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡ โˆ’ (1)
For ๐’Ž ๐Ÿ
๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ ๐‘š2 ๐‘” โˆ’ 2
Eqn (1) + eqn(2)
๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘š2 ๐‘”
๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š1 ๐‘” โˆ’ ๐‘š2 ๐‘”
๐’‚ =
๐’Ž ๐Ÿ ๐’ˆ
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
โˆ’
๐’Ž ๐Ÿ ๐’ˆ
๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
A thread is passed over a pulley. 10 kg mass and 8 kg mass are suspended at the ends of
the ropes. Draw the arrangement and indicate the body force diagram on the masses.
Evaluate
1. The acceleration of either masses
2. The tension in the tie
Solution
For ๐’Ž ๐Ÿ
10๐‘Ž = 100 โˆ’ ๐‘‡ โˆ’ (1)
For ๐’Ž ๐Ÿ
8๐‘Ž = ๐‘‡ โˆ’ 80 โˆ’ 2
Eqn (1) + eqn(2)
18๐‘Ž = 20
๐‘Ž =
20
18
=
10
9
= 1.11 ๐‘š/๐‘ 2
Substitute a into eqn 1
๐‘ป = ๐Ÿ–๐Ÿ–. ๐Ÿ— ๐‘ต

More Related Content

Similar to Forces(Frictional force)

Fluid
FluidFluid
Fluid
Ehab Hegazy
ย 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
Guerillateacher
ย 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
Combrink Lisa
ย 
Form 2 science chapter 7
Form 2 science chapter 7Form 2 science chapter 7
Form 2 science chapter 7
heianapjs
ย 
ENGINEERING MECHANICS.pptx
ENGINEERING MECHANICS.pptxENGINEERING MECHANICS.pptx
ENGINEERING MECHANICS.pptx
ssuser7315ec
ย 
P11.-WORK.ppt
P11.-WORK.pptP11.-WORK.ppt
P11.-WORK.ppt
Jasonbaloro
ย 
Force
ForceForce
Force
Bikash Deshar
ย 
PRESENTATION ON WORK, POWER, AND ENERGY
PRESENTATION ON WORK, POWER, AND  ENERGYPRESENTATION ON WORK, POWER, AND  ENERGY
PRESENTATION ON WORK, POWER, AND ENERGY
ChemistryOverload
ย 
Forces
ForcesForces
Forces
meenng
ย 
force and pressure
force and pressure force and pressure
force and pressure
Anam Khan
ย 
WORK, ENERGY AND POWER.pptx
WORK, ENERGY AND POWER.pptxWORK, ENERGY AND POWER.pptx
WORK, ENERGY AND POWER.pptx
Shivam Dave
ย 
Physics 1.5 - Forces 1 (1).pptx
Physics 1.5 - Forces 1 (1).pptxPhysics 1.5 - Forces 1 (1).pptx
Physics 1.5 - Forces 1 (1).pptx
ssuser5087b61
ย 
Physics 0625 1.5.1 -Effects of Forces.pptx
Physics 0625  1.5.1  -Effects of  Forces.pptxPhysics 0625  1.5.1  -Effects of  Forces.pptx
Physics 0625 1.5.1 -Effects of Forces.pptx
Hephzibah Jose Queen
ย 
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
strowe
ย 
Topic3_FluidMotion.pptx
Topic3_FluidMotion.pptxTopic3_FluidMotion.pptx
Topic3_FluidMotion.pptx
49MECHSHIVANANDYADAV
ย 
NA - Mass Weight Density - E-Learning
NA - Mass Weight Density - E-LearningNA - Mass Weight Density - E-Learning
NA - Mass Weight Density - E-Learning
harrywwh
ย 
force.pptx
force.pptxforce.pptx
force.pptx
SaravananSiva15
ย 
KMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.pptKMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.ppt
ShashidharRaoChavan
ย 
Kinetics.
Kinetics.Kinetics.
Kinetics.
Mansi Kotecha
ย 
Force- final.ppt
Force- final.pptForce- final.ppt
Force- final.ppt
Neeti Pal
ย 

Similar to Forces(Frictional force) (20)

Fluid
FluidFluid
Fluid
ย 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
ย 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
ย 
Form 2 science chapter 7
Form 2 science chapter 7Form 2 science chapter 7
Form 2 science chapter 7
ย 
ENGINEERING MECHANICS.pptx
ENGINEERING MECHANICS.pptxENGINEERING MECHANICS.pptx
ENGINEERING MECHANICS.pptx
ย 
P11.-WORK.ppt
P11.-WORK.pptP11.-WORK.ppt
P11.-WORK.ppt
ย 
Force
ForceForce
Force
ย 
PRESENTATION ON WORK, POWER, AND ENERGY
PRESENTATION ON WORK, POWER, AND  ENERGYPRESENTATION ON WORK, POWER, AND  ENERGY
PRESENTATION ON WORK, POWER, AND ENERGY
ย 
Forces
ForcesForces
Forces
ย 
force and pressure
force and pressure force and pressure
force and pressure
ย 
WORK, ENERGY AND POWER.pptx
WORK, ENERGY AND POWER.pptxWORK, ENERGY AND POWER.pptx
WORK, ENERGY AND POWER.pptx
ย 
Physics 1.5 - Forces 1 (1).pptx
Physics 1.5 - Forces 1 (1).pptxPhysics 1.5 - Forces 1 (1).pptx
Physics 1.5 - Forces 1 (1).pptx
ย 
Physics 0625 1.5.1 -Effects of Forces.pptx
Physics 0625  1.5.1  -Effects of  Forces.pptxPhysics 0625  1.5.1  -Effects of  Forces.pptx
Physics 0625 1.5.1 -Effects of Forces.pptx
ย 
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
Sehs 4.3โ€“ biomechanics ii (4.3.3, force, com)
ย 
Topic3_FluidMotion.pptx
Topic3_FluidMotion.pptxTopic3_FluidMotion.pptx
Topic3_FluidMotion.pptx
ย 
NA - Mass Weight Density - E-Learning
NA - Mass Weight Density - E-LearningNA - Mass Weight Density - E-Learning
NA - Mass Weight Density - E-Learning
ย 
force.pptx
force.pptxforce.pptx
force.pptx
ย 
KMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.pptKMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.ppt
ย 
Kinetics.
Kinetics.Kinetics.
Kinetics.
ย 
Force- final.ppt
Force- final.pptForce- final.ppt
Force- final.ppt
ย 

Recently uploaded

HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
ย 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
RamseyBerglund
ย 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
Mohammad Al-Dhahabi
ย 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
zuzanka
ย 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
zuzanka
ย 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
ย 
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
ย 
How to Predict Vendor Bill Product in Odoo 17
How to Predict Vendor Bill Product in Odoo 17How to Predict Vendor Bill Product in Odoo 17
How to Predict Vendor Bill Product in Odoo 17
Celine George
ย 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
ย 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
ย 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
National Information Standards Organization (NISO)
ย 
The basics of sentences session 7pptx.pptx
The basics of sentences session 7pptx.pptxThe basics of sentences session 7pptx.pptx
The basics of sentences session 7pptx.pptx
heathfieldcps1
ย 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
ย 
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
ImMuslim
ย 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
National Information Standards Organization (NISO)
ย 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
danielkiash986
ย 
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
Nguyen Thanh Tu Collection
ย 
Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10
nitinpv4ai
ย 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
ย 
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
EduSkills OECD
ย 

Recently uploaded (20)

HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
ย 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
ย 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
ย 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
ย 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
ย 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
ย 
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Prรฉsentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
ย 
How to Predict Vendor Bill Product in Odoo 17
How to Predict Vendor Bill Product in Odoo 17How to Predict Vendor Bill Product in Odoo 17
How to Predict Vendor Bill Product in Odoo 17
ย 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
ย 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
ย 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
ย 
The basics of sentences session 7pptx.pptx
The basics of sentences session 7pptx.pptxThe basics of sentences session 7pptx.pptx
The basics of sentences session 7pptx.pptx
ย 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
ย 
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
Geography as a Discipline Chapter 1 __ Class 11 Geography NCERT _ Class Notes...
ย 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
ย 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
ย 
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
Bร€I TแบฌP Dแบ Y THรŠM TIแบพNG ANH LแปšP 7 Cแบข Nฤ‚M FRIENDS PLUS SรCH CHร‚N TRแปœI SรNG Tแบ O ...
ย 
Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10
ย 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
ย 
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
Andreas Schleicher presents PISA 2022 Volume III - Creative Thinking - 18 Jun...
ย 

Forces(Frictional force)

  • 1. By Zeba Mubarak Twinikli International Senior High School
  • 2. RECAP (FORCES) FORCE Is defined based on what it can cause bodies to do, it may cause a bodyโ€™s length to increase or decrease. IT CAN CAUSE A BODYโ€™S REST POSITION TO CHANGE OR IF IN MOTION TO CHANGE IT DIRECTION hence FORCE is defined as a push or a pull that can change a bodies state of rest or uniform motion in a straight line.
  • 3. TYPES OF FORCES โ€ขTHERE ARE TWO TYPES OF FORCES. THESE ARE ๏ถCONTACT FORCE / LOCAL FORCE ๏ถNON โ€“ CONTACT / NON โ€“ LOCAL / FORCE FIELDS
  • 4. CONTACT FORCE โ€ขThey are forces that are experienced by bodies when they are in direct contact with the source of the force. โ€ขEXAMPLES ๏ฑUpthrust ๏ฑFrictional force ๏ฑTension force ๏ฑSurface tension ๏ฑForces exerted on a ball when kicked ๏ฑViscous force (fluid resistance)
  • 5. NON โ€“CONTACT FORCE โ€ขThey are forces that are experienced by bodies that may or may not be in direct contact with the source of the force. โ€ขEXAMPLES ๏ฑMagnetic force ๏ฑGravitational force ๏ฑElectric Force ๏ฑNuclear force NB: CONTACT FORCE ARE CALLED LOCAL FORCE BECAUSE THE SOURCE OF THE FORCE MUST BE IN THE AREA(LOCALITY) OF THE OBJECT.
  • 6. FRICTIONAL FORCEโ€ขIt is the tangential force that acts on surfaces in contact and which opposes their relative motion. It is experienced by solid bodies in contact. โ€ขUSES / ADVANTAGES OF FRICTIONAL FORCES ๏ƒ˜It makes body in motion to stop ๏ƒ˜It is use for sharpening cutlasses ๏ƒ˜It makes walking possible ๏ƒ˜It enables us light fire ๏ƒ˜It makes writing possible ๏ƒ˜It enables a screw or a nail to remain in place after being screwed into position.
  • 7. โ€ขDISADVANTAGES OF FRICTIONAL ๏ƒ˜ It makes the sole of shoes wear and tear ๏ƒ˜It produces heat when 2 solid bodies in contact makes relative motion ๏ƒ˜It reduces the efficiency of a machine โ€ขHOW WE WILL REDUCE FRICTION ๏ƒ˜ Greasing solid surfaces in contact ๏ƒ˜Introducing impurities between surfaces reduces friction ๏ƒ˜By introducing spherical metallic balls in between two metals moving over each other has in ball bearings or race reduces friction.
  • 8. BALL RACE OR BEARING & LABELLING Spherical body Metal run Metal
  • 9. TWO TYPES OF FRICTION โ€ขTHESE ARE: 1) STATIC โ€“ These opposes motion of bodies when they are stationary 2) DYNAMIC - These opposes motion of bodies already in motion Static friction is always bigger than they the dynamic frictional force
  • 10. NORMAL FORCE OR REACTION It is the component of a supported force that is perpendicular to the supporting surface. HORIZONTAL SURFACE
  • 11. โ€ขEXAMPLES Determine the reaction exerted on a surface when a 20 kg body is placed on the surface. Assume horizontal. SOLUTION Reaction = ๐‘š ร— ๐‘” = 20 ร— 10 = 200 ๐‘
  • 12. INCLINED SURFACE ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ causes the body to remain on the surface ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ causes the body to pulled down the surface
  • 13. โ€ขEXAMPLES A 10 kg mass rest on a surface at 10ยฐ to the horizontal. Calculate i. The force that presses the body unto the plane ii. The force that tries to pull the body down along the surface iii. The reaction
  • 14. 1) ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 10 ร— 10 cos 10 = 98.48 ๐‘ 2) ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ = 10 ร— 10 sin 10 = 17.36 ๐‘ 3) ๐‘… = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 10 ร— 10 cos 10 = 98.48 ๐‘ LIMITING STATIC FRICTION This is the minimum force required to move a body at rest. The force is described as dynamic limiting frictional force when it is the minimum force that must be applied on a moving body to make the body move at a constant velocity.
  • 15. โ€ขCoefficient of Static Friction It is defined as the ๐ฅ๐ข๐ฆ๐ข๐ญ๐ข๐ง๐  ๐ฌ๐ญ๐š๐ญ๐ข๐œ ๐Ÿ๐ซ๐ข๐œ๐ญ๐ข๐จ๐ง๐š๐ฅ ๐Ÿ๐จ๐ซ๐œ๐ž The normal force or reaction . ๐œ‡ = ๐น๐‘ฅ ๐‘… or ๐น๐‘ฅ = ๐œ‡ ร— ๐‘… Example A 15 kg body is on a horizontal surface which has a coefficient of friction of 0.25. Calculate i) The normal force ii) The limiting static frictional force
  • 16. โ€ข Solution i. The normal force = ๐‘š ร— ๐‘” = 15 ร— 10 = 150 ๐‘ ii. The limiting static frictional force = ๐น๐‘ฅ = ๐œ‡๐‘… = 0.25 ร— 150 = 37.5 ๐‘ EXAMPLE A 100 kg body is on a plane inclined 30 ยฐ to the horizontal, if the frictional force on the body is 50.0 N, calculate the i. The normal force ii. The coefficient of friction
  • 17. โ€ขSolution i. The normal force = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 100 ร— 10 cos 30 = 866.03 ๐‘ ii. The coefficient of friction ๐œ‡ = ๐น๐‘ฅ ๐‘… = 50 ๐‘ 866.03 = 0.058 ๐‘ RESULTANT FORCE โ€“ This is the difference between the total force in the direction of motion and the total force opposite the direction of motion ๐‘น ๐’‡ =Total force in the direction of motion โ€“ total force opposite the direction of motion Or it can also be determined by mass ร— acceleration = ๐’Ž ร— ๐’‚ = ๐’Ž๐’‚
  • 18. EXAMPLE A 20 kg body on a horizontal surfaces is pulled to the right with a force of 100N. Determine. i. The frictional force ii. The resultant force iii. The acceleration ๐‘‡๐‘Ž๐‘˜๐‘’ ๐œ‡ = 0.2
  • 19. โ€ข SOLUTION โ€ข I. Frictional force , ๐น๐‘ฅ = ๐œ‡ ร— ๐‘… , ๐‘… = ๐‘š๐‘” = 20 ร— 10 = 200 ๐‘ ๐น๐‘ฅ = 0.2 ร— 200 = 40.0 ๐‘ II. Resultant force , ๐‘…๐‘“ =Total force in the direction of motion โ€“ total force opposite the direction of motion = 100 โˆ’ 40 = ๐Ÿ”๐ŸŽ ๐‘ต
  • 20. III. Acceleration ๐‘น ๐’‡ = ๐’Ž๐’‚๐’”๐’” ร— ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ 60 = 20 ร— ๐‘Ž โˆด ๐‘Ž = 60 20 = ๐Ÿ‘ ๐’Ž๐’”โˆ’๐Ÿ Home work 1 A 100 kg toy car is pulled up a plane inclined 30 ยฐ to the horizontal with a force of 1000 N. Given that the ๐น๐‘ฅ coefficient of the force is 0.25, Calculate i. ๐น๐‘ฅ force ii. Total force down along the plane iii. The resultant force iii. The acceleration of the body act along the plane
  • 21.
  • 22. โ€ข SOLUTION i. FRICTIONAL FORCE, ๐น๐‘ฅ = ๐œ‡ ร— ๐‘Ÿ , ๐‘Ÿ = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ ๐น๐‘ฅ = ๐œ‡ ร— ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 0.25 ร— 100 COS 30 = ๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ“ ๐‘ต ii. TOTAL FORCE DOWN ALONG THE PLANE = ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ + ๐น๐‘ฅ = 100 ร— 10 ๐‘ ๐‘–๐‘›30 + 216.5 = 716.5 ๐‘ iii. RESULTANT FORCE, ๐‘…๐‘“ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› = 1000 โˆ’ 716.5 = ๐Ÿ๐Ÿ–๐Ÿ‘. ๐Ÿ“๐‘ต iv. ACCELERATION = ๐‘…๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘š๐‘Ž๐‘ ๐‘  = 283.5 100 = 2.835 ๐‘š๐‘ โˆ’2
  • 23. Question A 200 kg body rest on a surface inclined 25 ยฐ to the horizontal. If this body is pulled down along the plane with a force of 100 N. Calculate i. ๐น๐‘ฅ force ii. Total force in the direction of motion iii. The resultant force iii. The acceleration of the body act along the plane [Take ๐œ‡ ๐‘Ž๐‘  0.3]
  • 24.
  • 25. โ€ข SOLUTION i. FRICTIONAL FORCE, ๐น๐‘ฅ = 0.3 ร— ๐‘Ÿ , ๐‘Ÿ = ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ ๐น๐‘ฅ = ๐œ‡ ร— ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = 0.3 ร— 2000 COS 25 = ๐Ÿ“๐Ÿ’๐Ÿ‘. ๐Ÿ•๐Ÿ–๐‘ต ii. TOTAL FORCE IN THE DIRECTION OF MOTION= ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ + ๐น๐‘‘ = 200 ร— 10 ๐‘ ๐‘–๐‘›25 + 100 = ๐Ÿ—๐Ÿ’๐Ÿ“. ๐Ÿ๐Ÿ’ ๐‘ต iii. RESULTANT FORCE, ๐‘…๐‘“ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› โˆ’ ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› = 945. 24 โˆ’ 543.78 = ๐Ÿ’๐ŸŽ๐Ÿ. ๐Ÿ’๐Ÿ”๐‘ต iv. ACCELERATION = ๐‘…๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘š๐‘Ž๐‘ ๐‘  = 401.46 200 = ๐Ÿ. ๐ŸŽ๐ŸŽ๐Ÿ• ๐’Ž๐’”โˆ’๐Ÿ
  • 26. MEASUREMENT OF COEFFICIENT OF ๐น๐‘ฅ The test body is placed on a horizontal table that has a pulley fixed to one end of a thread that is passing over a pulley attached to a scale pan. Masses are gently placed on the scale pan until the test body just begins to move. Weigh the mass on the scale pan and record it as ๐‘€๐‘ . WEIGH THE TEST BODY AND RECORD THE MASS AS ๐‘€ THEORY WHEN THE BODY JUST BEGINS TO MOVE ๐‘€๐‘  ๐‘” = ๐‘‡ BUT ๐‘‡ = ๐‘“๐‘  HENCE ๐น๐‘ฅ = ๐‘š ๐‘  ๐‘” REACTION ๐‘… = ๐‘€๐‘” โˆด COEFFICIENT OF FRICTION ๐œ‡ = ๐น๐‘ฅ ๐‘… = ๐‘€๐‘  ๐‘” ๐‘€๐‘” = ๐‘€๐‘  ๐‘€
  • 27.
  • 28. TO DETERMINE ๐œ‡ USING INCLINED PLANE โ€ข The test body is placed on a plain. One end of the plane is gradually raised until the body just begins to move. โ€ข The angle of inclination ๐œƒ at this instant is measured with a protector. ๐› = ๐ญ๐š๐ง ๐›‰
  • 29. When a body just begins to move ๐น๐‘ฅ = ๐‘š๐‘” sin ๐œƒ But ๐น๐‘ฅ = ๐œ‡๐‘… ๐‘… = ๐‘š๐‘”๐‘๐‘œ๐‘ ๐œƒ ๐œ‡๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ ๐ = ๐‘š๐‘”๐‘ ๐‘–๐‘› ๐œƒ ๐‘š๐‘”๐‘๐‘œ๐‘  ๐œƒ = sin ๐œƒ cos ๐œƒ = ๐ญ๐š๐ง ๐œฝ
  • 30. ARCHIMEDES PRINCIPLE โ€ข A body in a fluid apart from experiencing its own weight also experiences a vertically directed upward force that tends to reduce the weight of the body. โ€ข Hence, bodies in fluid weigh less. UPTHRUST OR BUOYANT FORCE is the vertically directed force experienced by bodies in fluid. โ€ข The volume of fluid displaced = the volume of the part of solid or body immerse in fluid โ€ข The weight of the fluid displaced = the volume of solid immersed ร— density of fluid ร— gravity โ€ข The weight of fluid displaced = UPTHRUST. โ€ข The apparent loss in weight of bodies is the UPTHRUST
  • 31. QUESTIONS โ€ข A piece of wood has a mass of 200 g. When placed in ๐ป2 ๐‘‚ with 50 ๐‘๐‘š3 of the wood in ๐ป2 ๐‘‚ , there is a loss in mass. Calculate โ€ข Volume of ๐ป2 ๐‘‚ displaced โ€ข Mass of ๐ป2 ๐‘‚ displaced โ€ข The upthrust on the wood โ€ข Find the apparent loss in mass of the wood.
  • 32. SOLUTION 1. Volume of ๐ป2 ๐‘‚ displaced = 50 ๐‘๐‘š3 2. Mass of ๐ป2 ๐‘‚ displaced = Density ร— Vol. of the ๐ป2 ๐‘‚ = 1 ร— 50 = 50 g 3. The upthrust on the wood = 50 1000 = 0.050 ร— 10 ๐‘š/๐‘  = 0.5 ๐‘ 4. Apparent loss in mass of the wood = Mass in air โ€“ mass in fluid = 200 โˆ’ 50 = 150 ๐‘”
  • 33. A 20 ๐‘๐‘š3 balloon is left in air of density 0.0014 ๐‘”/๐‘๐‘š3 . Calculate the mass of air displaced and hence, the upthrust. Answer Density = ๐‘€๐‘Ž๐‘ ๐‘  ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ Mass = Density ร— Volume = 0.0014 ร— 20 = 0.028 g Upthrust = 0.028๐‘” 1000 = 0.000028 ร— 10 = ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ– ๐‘ต Archimedes Principle When a body is fully or partially immersed in a fluid, it experiences an upthrust equal to the weight of fluid displaced. NB: The upthrust reduces the weight.
  • 34. FLOATATION โ€ขLaw of Floatation A floating body displaces its own weight of fluid in the fluid in which its floates. During Floatation โ€ข The volume of fluid displaced = the volume of the body immersed. โ€ข Mass of fluid displaced = Mass of the body โ€ข Upthrust = weight of body
  • 35.
  • 36. METHOD โ€ข 1. Fill an overflow can with ๐ป2 ๐‘‚ upto the spout level โ€ข 2. Weigh an empty beaker with an electric balance to record the mass ๐‘€1 โ€ข 3. Place the beaker below the spout โ€ข 4. Place the test tube in the ๐ป2 ๐‘‚ and add lead shots to the tube for the tube to float upright. โ€ข 5. Weight the beaker with the overflow ๐ป2 ๐‘‚ and record the mass ๐‘€2 โ€ข 6. Evaluate the mass of the overflow ๐ป2 ๐‘‚ AS ๐‘Š = ๐‘€2 โˆ’ ๐‘€1 โ€ข 7. Remove the test tube with the leadshots from the ๐ป2 ๐‘‚, weigh and record the mass as ๐‘€
  • 37. OBSERVATION AND CONCLUSION โ€ข It is found that ๐‘€ = ๐‘š๐‘” indicating that mass of the test tube/ body is equal to the mass of overflow water โ€ข Weight of body = ๐‘š๐‘” โ€ข Upthrust = mass of fluid ร— g = ๐ดโ„Ž ๐œŒ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘” โ€ข ๐ด = ๐ถ๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก , ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐ดโ„Ž = ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘š๐‘” = ๐ดโ„Ž๐œŒ๐‘” ๐‘š = ๐ดโ„Ž๐œŒ(๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ) ๐‘š = ๐‘‰๐œŒ
  • 38. QUESTIONS โ€ข A test tube has a mass of 15 g, a cross sectional area of 1.5 ๐‘๐‘š2 . The test tube floats in the liquid of ๐œŒ = 0.8 ๐‘”/๐‘๐‘š3. Calculate the depth of immersion of the test tube. SOLUTION ๐‘€ = 15 ๐‘” ๐ด = 1.5 ๐‘๐‘š2 ๐œŒ = 0.8 ๐‘”/๐‘๐‘š3 ๐‘€ = ๐ดโ„Ž๐œŒ 15 = 1.5 ร— โ„Ž ร— 0.8 โ„Ž = 15 1.2 = 12.5 ๐‘๐‘š
  • 39. QUESTION โ€ข A piece of wood floats in a liquid of relative density(RD) = 1.02 if the mass of the wood is 25 kg and the volume of wood above the liquid is 0.0071 ๐‘š3. Calculate the total volume of the wood SOLUTION
  • 40. ๐‘…. ๐ท = 1.02 ๐œŒ = ๐‘…. ๐ท ร— ๐œŒ ๐‘ค = 1. 02 ร— 1000 = 1020 ๐‘˜๐‘”๐‘šโˆ’3 ๐‘ฃ๐‘œ๐‘™ ๐‘œ๐‘“ ๐‘ค๐‘œ๐‘œ๐‘‘ ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ = 0.0017, ๐‘€ = 25 ๐‘˜๐‘”, ๐‘€ = ๐‘‰2 ๐œŒ ๐‘‰2 = 25 1020 = 0.0245 ๐‘š3 Volume of wood = ๐‘‰1 + ๐‘‰2 = 0.0071 + 0.0245 = 0.0316 ๐‘š3
  • 41. QUESTIONS โ€ข A 200g wood float in ๐ป2 ๐‘‚. If the top part of the wood is just above covered water. What is the size length of the wood SOLUTION ๐‘€ = ๐‘‰๐œŒ 200 = ๐‘‰ ร— 1 ๐‘‰ = 200 ๐‘๐‘š3 But ๐ฟ3 = ๐‘‰ ๐ฟ3 = 200 ๐ฟ = 5.85 ๐‘๐‘š
  • 42. HYDROMETER โ€ข This is an instrument used to measure relative density or consist off a uniform glass tube containing lead shots. In another form of the instrument a uniform stem is mounted on a large bulb that has lead shots in it as shown in the diagram below
  • 43. HYDROMETER Calculations When height increases the ๐œŒ reduces ๐‘€ = ๐œŒ๐ดโ„Ž ๐‘€ ๐ดโ„Ž = ๐œŒ . ๐œŒ = 1 โ„Ž calibration is non linear Calculation in stem glass
  • 44. WEIGHTLESSNESS โ€“ MOTION IN A LIFT When a lift accelerates downwards occupants feel lighter, however they feel heavier when it accelerates upwards. These changes can be explained by considering the resultant force, which acts on the occupants as a combination of two forces that are acting. These are: i. Force of gravity on weight ii. The force needed to accelerate or decelerate the lift
  • 45. WEIGHTLESSNESS โ€“ MOTION IN A LIFT If the lift accelerates downwards with an acceleration of ๐‘Žmsโˆ’2 then ๐‘พ = ๐’Ž๐’ˆ โˆ’ ๐’Ž๐’‚. If the lift accelerates upwards with acceleration of ๐‘Žmsโˆ’2 then ๐‘พ = ๐’Ž๐’ˆ + ๐’Ž๐’‚ which implies that the weight appears to be increased and occupants appear to be decreased. As the lift increases its downwards acceleration, the apparent weight will be less and less until eventually becomes zero. If the acceleration of the lift increases beyond 10 ๐‘š/๐‘ 2 then the person inside will fly. Spacemen experience weightlessness when the acceleration of their spacecraft is greater than or equal to acceleration due to gravity.
  • 46. QUESTION โ€ข Calculate the force with which the feet of a passenger passes downwards on the floor of an elevator accelerating upwards of 4 ร— 10โˆ’3 ๐‘š๐‘ โˆ’2 if the passengerโ€™s weight is 60 ๐‘. SOLUTION Weight of passenger = 60 N But weight of passenger = ๐ฆ๐š๐ฌ๐ฌ ๐จ๐Ÿ ๐ฆ๐š๐ง ร— ๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ Mass of passenger = ๐ฐ๐ž๐ข๐ ๐ก๐ญ ๐จ๐Ÿ ๐ฉ๐š๐ฌ๐ฌ๐ž๐ง๐ ๐ž๐ซ ๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ I.E ๐’Ž = ๐‘พ ๐’ˆ = ๐Ÿ”๐ŸŽ ๐Ÿ๐ŸŽ = ๐Ÿ” ๐’Œ๐’ˆ. Let ๐‘Š๐‘Ž be the apparent weight of the passenger โ‡’ ๐‘Š๐‘Ž = ๐‘š๐‘” + ๐‘š๐‘Ž โ‡’ ๐‘Š๐‘Ž = 6 ร— 10 + 6 ร— (4 ร— 10โˆ’3 ) โ‡’ ๐‘Š๐‘Ž = ๐Ÿ”๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ’ ๐‘
  • 47. QUESTION โ€ข A man of mass 70 kg is standing in a lift. What force does the floor of the lift exert on the man if the lift is i. moving with a uniform velocity? ii. accelerating at 3 ๐‘š๐‘ โˆ’2 upwards? iii. Accelerating at 3 ๐‘š๐‘ โˆ’2 downwards? (Take ๐‘” = 10 ๐‘š๐‘ โˆ’2 )
  • 48. SOLUTION R is the normal reaction from the floor on the man i) Since the lift is moving with a uniform velocity, the resultant force is zero: ๐‘… = ๐‘š๐‘” = 70 ร— 10 = 700 ๐‘ R mg a Since the lift is accelerating upwards Equation of motion: ๐‘… โˆ’ ๐‘š๐‘” = ๐‘š๐‘Ž โ‡’ ๐‘… = ๐‘š๐‘” + ๐‘š๐‘Ž = ๐‘š ๐‘” + ๐‘Ž = 70 10 + 3 = 70 ร— 13 = ๐Ÿ—๐Ÿ๐ŸŽ ๐‘ต
  • 49. ii) Since the lift is accelerating downwards Equation of motion: ๐‘š๐‘” โˆ’ ๐‘… = ๐‘š๐‘Ž โ‡’ ๐‘… = ๐‘š๐‘” โˆ’ ๐‘š๐‘Ž = ๐‘š ๐‘” โˆ’ ๐‘Ž = 70 10 โˆ’ 3 = 70 ร— 7 = ๐Ÿ’๐Ÿ—๐ŸŽ ๐‘ต
  • 50. CONNECTED BODIES Two particles connected by a light inextensible string passing over a fixed light smooth frictionless pulley are called connected bodies. The tension in the string is the same throughout its length so the body is acted upon by the same tension. Problems concerned with connected bodies usually involve finding the acceleration of the system and the tension in the string.
  • 51. BODIES ON HORIZONTAL SURFACES ๐’‡ ๐’™ ๐‘“๐‘ฅ = ๐œ‡๐‘… = ๐œ‡๐‘š1 ๐‘” For ๐’Ž ๐Ÿ ๐‘š1 ๐‘Ž = ๐‘‡ โˆ’ ๐‘“๐‘ฅ or ๐‘š1 ๐‘Ž = ๐‘‡ โˆ’ ๐œ‡๐‘š1 ๐‘” For ๐’Ž ๐Ÿ ๐‘š2 ๐‘Ž = ๐‘š2 ๐‘” โˆ’ ๐‘‡ Eqn (1) + eqn(2) ๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š2 ๐‘” โˆ’ ๐œ‡๐‘š1 ๐‘” ๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š2 ๐‘” โˆ’ ๐œ‡๐‘š1 ๐‘” ๐’‚ = ๐’Ž ๐Ÿ ๐’ˆ ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ โˆ’ ๐๐’Ž ๐Ÿ ๐’ˆ ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
  • 52. BODIES ON INCLINED PLANES ๐‘“๐‘ฅ = ๐œ‡๐‘… = ๐œ‡๐‘š2 ๐‘” ๐‘๐‘œ๐‘ ๐œƒ For ๐’Ž ๐Ÿ ๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡ โˆ’ (1) For ๐’Ž ๐Ÿ ๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ [๐‘“๐‘ฅ + ๐‘š2 ๐‘” sin ๐œƒ ] Eqn (1) + eqn(2) ๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ (๐‘“๐‘ฅ + ๐‘š2 ๐‘”๐‘ ๐‘–๐‘› ๐œƒ) ๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š1 ๐‘” โˆ’ (๐‘“๐‘ฅ + ๐‘š2 ๐‘”๐‘ ๐‘–๐‘› ๐œƒ) ๐’‚ = ๐’Ž ๐Ÿ ๐’ˆ ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ โˆ’ (๐’‡ ๐’™ + ๐’Ž ๐Ÿ ๐’ˆ๐’”๐’Š๐’ ๐œฝ) ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
  • 53. BODIES ON INCLINED PLANES ๐‘“๐‘ฅ = ๐œ‡๐‘… = 0.2 ร— 2 ร— 10 cos 30 = 3.5 For ๐’Ž ๐Ÿ ๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡ ๐Ÿ๐ŸŽ๐’‚ = ๐Ÿ๐ŸŽ๐ŸŽ โ€“ ๐‘ป __ (๐Ÿ) For ๐’Ž ๐Ÿ ๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ [๐‘“๐‘ฅ + ๐‘š2 ๐‘” sin ๐œƒ ] 2๐’‚ = ๐‘ป โ€“ (๐Ÿ‘. ๐Ÿ“ + ๐Ÿ ร— ๐Ÿ๐ŸŽ๐’”๐’Š๐’ ๐Ÿ‘๐ŸŽ 2๐’‚ = ๐‘ป โˆ’ ๐Ÿ๐Ÿ‘. ๐Ÿ“ __ (๐Ÿ) Eqn (1) + eqn(2) 12๐‘Ž = 100 โˆ’ 13.5 ๐’‚ = ๐Ÿ•. ๐Ÿ๐Ÿ๐’Ž/๐’” ๐Ÿ Substituting a = 7.21 into eqn 1 ๐Ÿ๐ŸŽ ๐Ÿ•. ๐Ÿ๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽ โˆ’ ๐‘ป ๐‘ป = ๐Ÿ๐Ÿ•. ๐Ÿ— = 10 kg ๐Ÿ‘๐ŸŽยฐ = 2 kg ๐ = ๐ŸŽ. ๐Ÿ
  • 54. PULLEY SYSTEM Because the direction ๐‘š1 ๐‘” is greater than the ๐‘š2 ๐‘š1 > ๐‘š2 For ๐’Ž ๐Ÿ ๐‘š1 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘‡ โˆ’ (1) For ๐’Ž ๐Ÿ ๐‘š2 ๐‘Ž = ๐‘‡ โˆ’ ๐‘š2 ๐‘” โˆ’ 2 Eqn (1) + eqn(2) ๐‘š1 ๐‘Ž + ๐‘š2 ๐‘Ž = ๐‘š1 ๐‘” โˆ’ ๐‘š2 ๐‘” ๐‘Ž ๐‘š1 + ๐‘š2 = ๐‘š1 ๐‘” โˆ’ ๐‘š2 ๐‘” ๐’‚ = ๐’Ž ๐Ÿ ๐’ˆ ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ โˆ’ ๐’Ž ๐Ÿ ๐’ˆ ๐’Ž ๐Ÿ + ๐’Ž ๐Ÿ
  • 55. A thread is passed over a pulley. 10 kg mass and 8 kg mass are suspended at the ends of the ropes. Draw the arrangement and indicate the body force diagram on the masses. Evaluate 1. The acceleration of either masses 2. The tension in the tie Solution For ๐’Ž ๐Ÿ 10๐‘Ž = 100 โˆ’ ๐‘‡ โˆ’ (1) For ๐’Ž ๐Ÿ 8๐‘Ž = ๐‘‡ โˆ’ 80 โˆ’ 2 Eqn (1) + eqn(2) 18๐‘Ž = 20 ๐‘Ž = 20 18 = 10 9 = 1.11 ๐‘š/๐‘ 2 Substitute a into eqn 1 ๐‘ป = ๐Ÿ–๐Ÿ–. ๐Ÿ— ๐‘ต