Embed presentation
Download to read offline
![For graph to the right Amplitude: Midline: Period: Equation using sine: Equation using
cosine:
Solution
a) amplitude =|(1-(-7))|/2 =4
b) mid line y=[1+(-7)]/2
y=-3
c)period =3-(-1)=4
d)equation using sine :
vertical shift D=-3
period =2/B=4 =>B=/2
y =4sin((/2)x) -3
d)equation using cosine
vertical shift D=-3
period =2/B=4 =>B=/2
phase shift =-C/B=1 =>C=-B=>C =-/2
y =4cos((/2)x-(/2)) -3](https://image.slidesharecdn.com/forgraphtotherightamplitudemidlineperiodequationusing-230705193149-2d78e514/75/For-graph-to-the-right-Amplitude-Midline-Period-Equation-using-pdf-1-2048.jpg)
The document provides mathematical calculations related to a sine and cosine graph, detailing parameters such as amplitude, midline, and period. Specific equations for sine and cosine functions are presented, incorporating values derived from the calculations. The solutions include determining the amplitude, midline equation, period, and equations for both sine and cosine functions with vertical and phase shifts.
![For graph to the right Amplitude: Midline: Period: Equation using sine: Equation using
cosine:
Solution
a) amplitude =|(1-(-7))|/2 =4
b) mid line y=[1+(-7)]/2
y=-3
c)period =3-(-1)=4
d)equation using sine :
vertical shift D=-3
period =2/B=4 =>B=/2
y =4sin((/2)x) -3
d)equation using cosine
vertical shift D=-3
period =2/B=4 =>B=/2
phase shift =-C/B=1 =>C=-B=>C =-/2
y =4cos((/2)x-(/2)) -3](https://image.slidesharecdn.com/forgraphtotherightamplitudemidlineperiodequationusing-230705193149-2d78e514/75/For-graph-to-the-right-Amplitude-Midline-Period-Equation-using-pdf-1-2048.jpg)