SlideShare a Scribd company logo
Zaragoza 17 septiembre 2015
La ciencia (la nanociencia) y las
tecnologías energéticas del futuro
Félix Yndurain
Departamento de Física de la Materia Condensada
Universidad Autónoma de Madrid
(e-mail: felix.yndurain@uam.es)
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
INDICE
•  Introducción: Por qué hay que hacer investigación básica?
•  Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
!  Energía nuclear
!  Fotovoltaica
!  Hidrógeno
!  Eficiencia
!  Almacenamiento
!  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
Zaragoza 17 septiembre 2015
Producción y consumo de petróleo por región
(millones de barriles diarios)
Production by region Consumption by region
Fuente: BP Statistical Review of World Energy June 2015
Zaragoza 17 septiembre 2015
Lo arriesgado de hacer predicciones:
El pico de Hubbert (1956)
Zaragoza 17 septiembre 2015
Reservas probadas de petróleo en 19924, 2004 y 2012
(porcentage)
Fuente: BP Statistical Review of World Energy June 2015
Zaragoza 17 septiembre 2015
Reservas probadas de gas en 1994, 2004 y 2014
(porcentage)
Fuente: BP Statistical Review of World Energy June 2015
Zaragoza 17 septiembre 2015
Consumo de energía primaria en algunos países en el año 2012 (Mtoe)
Petróleo Gas natural Carbón Nuclear Hidráulica Renovable Per
capita
(toe)
PIB(k$)
per
capita
USA 819,9 722,1 437,8 183,2 86,0 50,7 8,07 43,68
China 483,7 143,8 1873,3 22,0 194,8 31,9 0,78 7,78
Japón 218,2 116,7 124,4 4,1* 18,3 8,2 3,99 33,07
España 63,8 31,4 19,3 13,9 4,6 14,9 3,27 25,47
Alemania 111,5 75,2 79.2 22,5 4,8 26,0 3,99 31,93
Francia 80,9 42,5 11,4 96,3 13,2 5,4 4,36 31,16
Reino Unido 68,5 78,3 39,1 15,9 1,2 8,4 3,69 31,94
Brasil 125,6 29,2 13,5 3,6 94,5 11,2 1,03 8,77
Fuente: BP Statistical Review of World Energy June 2013
Zaragoza 17 septiembre 2015
Fuente: http://www.nationmaster.com y United Nations Development Programme
y elaboración propia
Consumo de energía por habitante frente producto
interior bruto para diversos países
Zaragoza 17 septiembre 2015
Consumo de energía por habitante frente a
“índice de desarrollo humano”
Fuente: http://www.nationmaster.com y United Nations Development
Programme y elaboración propia
Zaragoza 17 septiembre 2015
El ejemplo de California
Consumo de electricidad y PIB en Estados Unidos y California
Zaragoza 17 septiembre 2015
Problemas relacionados con la energía:
Distribución geográfica no uniforme de los
recursos fósiles (finitos)
Deterioro del medio ambiente
Zaragoza 17 septiembre 2015
Efectos de las actividades humanas en el
Medio Ambiente
población emisiones
CO2
D
Zaragoza 17 septiembre 2015
Necesidad de Nuevas Tecnologías
(Que deberán ser respetuosas con el medio ambiente)
Zaragoza 17 septiembre 2015
Máquina de vapor: J. Watt (1769)
Motor eléctrico: W. Siemens (1866)
Plantas de carbón para producir electricidad: H. Stinnes (1898)
Motor de explosión: C. & B. Benz (1888) {H. Ford (1903)}
Pila de combustible: W. R. Grove (1843)
Lámpara incandescente: T. Edison (1879)
Batería eléctrica: A. Volta (1798)
Efecto fotovoltaico: Becquerel (1839)
Turbinas para aviación: 1930-40
Nuclear: 1940 aprox.
Molino de viento ?
Las Tecnologías Energéticas no son Nuevas:
están en evolución gracias al I+D
Zaragoza 17 septiembre 2015
Maduración y Penetración
Tecnológica
Investigación en Energía:
de la Investigación Básica a la Tecnología
Investigación Aplicada
• Investigación básica para
generar conocimiento
sobre materiales y
sistemas aunque puedan
parecer solo
marginalmente
relacionados con los
problemas actuales de las
tecnologías energéticas.
• Investigación con el
objetivo de cumplir hitos
tecnológicos y ensayos
con énfasis en el
desarrollo , rendimiento,
reducción de coste,
durabilidad de materiales
y componentes y en
procesos eficientes
• Investigación de escala
• Plantas de
demostración
• Reducción de costes
• Prototipos
• Soporte a la
comercialización
Investigación Básica
Evidentemente no es tan simple…
Zaragoza 17 septiembre 2015
La investigación promovida por el
Deparment of Energy (DOE) en
Estados Unidos
Zaragoza 17 septiembre 2015
"  Increase energy efficiency
"  Increase use of renewables
"  Adaptation of Carbon Capture and Sequestration
"  Increase nuclear power
"  Improve climate prediction
Energy Imperatives (DOE)
Zaragoza 17 septiembre 2015
Beneficio de la Ciencia Básica
(Department of Energy)
The energy systems of the future—whether they tap sunlight,
store electricity, or make fuel from splitting water or reducing
carbon dioxide—will revolve around materials and chemical
changes that convert energy from one form to another.
Such materials will need to be more functional than today’s
energy materials. To control chemical reactions or to convert
a solar photon to an electron requires coordination of multiple
steps, each carried out by customized materials with
designed nanoscale structures. Such advanced materials are
not found in nature; they must be designed and fabricated to
exacting standards using principles revealed by basic
science.
Zaragoza 17 septiembre 2015
Beneficio de la Ciencia Básica
(Basic Energy Sciences )
“The Department of Energy BES program also plays a
major role in enabling the nanoscale revolution. The
importance of nanoscience to future energy
technologies is clearly reflected by the fact that all of
the elementary steps of energy conversion (e.g.,
charge transfer, molecular rearrangement, and
chemical reactions) take place on the nanoscale. The
development of new nanoscale materials, as well as
the methods to characterize, manipulate, and
assemble them, create an entirely new paradigm for
developing new and revolutionary energy
technologies.”
Zaragoza 17 septiembre 2015
Status of FY 2014 Appropriations (DOE)
Zaragoza 17 septiembre 2015
History of BES Request vs. Appropriation
(¡aumenta durante la crisis!)
26
Zaragoza 17 septiembre 2015
Office of Science Programs
FY 2010 Appropriation
Advanced Scientific
Computing Research
(ASCR)
Basic Energy Sciences (BES)
Biological and Environmental
Research (BER)
Fusion Energy Sciences (FES)
High Energy Physics (HEP)
Nuclear Physics (NP)
Workforce Development for
Teachers and Scientists (WDTS)
Science Lab Infrastructure (SLI)
ASCR, $394,000K
BES, $1,636,500K
BER, $604,182K
FES, $426,000K
HEP, $810,483K
NP, $535,000K
WDTS, $20,678K
SLI, $127,600K
S&S, $83,000K
SCPD, $189,377K
FY 2010 Funding
Total = $4,903,710K
ASCR
BES
BER
FES
HEP
NP
BESAC November 5, 2009
Zaragoza 17 septiembre 2015
National
Synchrotron
Light Source
Advanced Photon Source
Stanford Synchrotron
Radiation Laboratory
Advanced Light Source
High-Flux
Isotope Reactor
Intense Pulsed
Neutron Source
Manuel Lujan Jr. Neutron
Scattering Center
The Basic Energy Sciences Major Scientific User Facilities
Combustion Research
Facility 2828
Zaragoza 17 septiembre 2015
¿Por qué Investigación Básica?
A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director
of the Office of Scientific Research and Development un estudio sobre las
razones para realizar investigación básica.
“Science can be effective in the national welfare only as a member of a team,
whether the conditions be peace or war. But without scientific progress no
amount of achievement in other directions can insure our health, prosperity,
and security as a nation in the modern World”.
“Basic research is performed without thought of practical ends. It results in
general knowledge and an understanding of nature and its laws. This general
knowledge provides the means of answering a large number of important
practical problems, though it may not give a complete specific answer to any
one of them. The function of applied research is to provide such complete
answers. The scientist doing basic research may not be at all interested
in the practical applications of his work, yet the further progress of
industrial development would eventually stagnate if basic scientific
research were long neglected.”
Zaragoza 17 septiembre 2015
¿Por qué Investigación Básica?
A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director
of the Office of Scientific Research and Development un estudio sobre las
razones para realizar investigación básica.
“Science can be effective in the national welfare only as a member of a team,
whether the conditions be peace or war. But without scientific progress no
amount of achievement in other directions can insure our health, prosperity,
and security as a nation in the modern World”.
“Basic research is performed without thought of practical ends. It results in
general knowledge and an understanding of nature and its laws. This general
knowledge provides the means of answering a large number of important
practical problems, though it may not give a complete specific answer to any
one of them. The function of applied research is to provide such complete
answers. The scientist doing basic research may not be at all interested
in the practical applications of his work, yet the further progress of
industrial development would eventually stagnate if basic scientific
research were long neglected.”
Zaragoza 17 septiembre 2015
¿Por qué Investigación Básica?
A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director
of the Office of Scientific Research and Development un estudio sobre las
razones para realizar investigación básica.
“Science can be effective in the national welfare only as a member of a team,
whether the conditions be peace or war. But without scientific progress no
amount of achievement in other directions can insure our health, prosperity,
and security as a nation in the modern World”.
“Basic research is performed without thought of practical ends. It results in
general knowledge and an understanding of nature and its laws. This general
knowledge provides the means of answering a large number of important
practical problems, though it may not give a complete specific answer to any
one of them. The function of applied research is to provide such complete
answers. The scientist doing basic research may not be at all interested
in the practical applications of his work, yet the further progress of
industrial development would eventually stagnate if basic scientific
research were long neglected.”
Zaragoza 17 septiembre 2015
¿Por qué Investigación Básica?
A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director
of the Office of Scientific Research and Development un estudio sobre las
razones para realizar investigación básica.
“Science can be effective in the national welfare only as a member of a team,
whether the conditions be peace or war. But without scientific progress no
amount of achievement in other directions can insure our health, prosperity,
and security as a nation in the modern World”.
“Basic research is performed without thought of practical ends. It results in
general knowledge and an understanding of nature and its laws. This general
knowledge provides the means of answering a large number of important
practical problems, though it may not give a complete specific answer to any
one of them. The function of applied research is to provide such complete
answers. The scientist doing basic research may not be at all interested
in the practical applications of his work, yet the further progress of
industrial development would eventually stagnate if basic scientific
research were long neglected.”
Zaragoza 17 septiembre 2015
¿Por qué Investigación Básica?
A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director
of the Office of Scientific Research and Development un estudio sobre las
razones para realizar investigación básica.
“Science can be effective in the national welfare only as a member of a team,
whether the conditions be peace or war. But without scientific progress no
amount of achievement in other directions can insure our health, prosperity,
and security as a nation in the modern World”.
“Basic research is performed without thought of practical ends. It results in
general knowledge and an understanding of nature and its laws. This general
knowledge provides the means of answering a large number of important
practical problems, though it may not give a complete specific answer to any
one of them. The function of applied research is to provide such complete
answers. The scientist doing basic research may not be at all interested
in the practical applications of his work, yet the further progress of
industrial development would eventually stagnate if basic scientific
research were long neglected.”
Zaragoza 17 septiembre 2015
Nanoscience and energy technologies
Zaragoza 17 septiembre 2015
Center for Nanophase Materials
Sciences
(Oak Ridge National Laboratory)
Center for Nanoscale Materials
(Argonne National Laboratory)
Molecular Foundry
(Lawrence Berkeley National
Laboratory)
Center for Integrated Nanotechnologies (Sandia &
Los Alamos National Labs)
Nuevos centros de materiales/nanotecnologia
Zaragoza 17 septiembre 2015
Five grand Challenges for Basic
Energy Sciences. Department of Energy
1.  How do we Control Materials Processes at the Level of Electrons
2.  How do we Design and Perfect Atom- and Energy-Efficient Syntheses
of Revolutionary New Forms of Matter with Tailored Properties
3.  How do Remarkable Properties of Matter Emerge from the Complex
Correlations of Atomic or Electronic Constituents and How Can We
Control These Properties
4.  How can we Master Energy and Information on the Nanoscale to
Create New Technologies with Capabilities Rivaling Those of Living
Things?
5.  How do we Characterize and Control Matter Away—Especially Very
Far Away—from Equilibrium
Zaragoza 17 septiembre 2015
•  Fuels from Sunlight (Joint Center for Artificial Photosynthesis)
•  Energy Efficient Building Systems Design
•  Modeling and Simulation for Nuclear Fuel Cycles and Systems
•  Batteries and Energy Storage
•  Critical Materials
DOE Energy Innovation Hubs
Each Hub will comprise a world-class, multi-disciplinary, and
highly collaborative research and development team.
Strong scientific leadership must be located at the primary location of the
Hub. Each hub must have a clear organization and management plan that
“infuses” a culture of empowered central research management throughout
the Hub.
Zaragoza 17 septiembre 2015
Fundamental research
JCESR’s core task is basic research—using a
new generation of nanoscience tools that
enable us to observe, characterize, and control
matter down to the atomic and molecular
scales.
This enhanced ability to understand materials
and chemical processes at a fundamental level
will enable us to reinvent electrical storage and
achieve major improvements in battery
performance at reduced cost.
Our industrial partners will help guide our efforts
to ensure that research leads toward practical
solutions that are competitive in the
marketplace.
Energy Innovation Hub: Batteries and Energy Storage
(Joint Center for Energy Storage Research: JCESR)
Zaragoza 17 septiembre 2015
Scanning electron micrograph of a new solid
electrolyte material (lithium thiophosphate)
showing its surface morphology and the
nanoscale porosity which are responsible for its
high ionic conductivity; Inset shows its crystal
structure.
The Science
Introduction of nanoscale porosity in a bulk
electrolyte material (lithium thiophosphate)
was found to promote surface conduction of
lithium ions, thereby enhancing the ionic
conductivity in the nanostructured material by
three orders of magnitude over the normal
bulk phase.
The Impact
The high ionic conductivities in these new,
nanoporous electrolytes coupled with sulfur-
rich, nanostructured cathode materials have
led to the development of a new type of solid-
state, rechargeable lithium-sulfur battery that
is potentially safer and more reliable than
today’s commercial Li ion batteries.
New Materials for High-Energy, Long-Life Rechargeable Batteries
Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solid-
state lithium-sulfur rechargeable batteries.
Z. Liu, W. Fu, E. Andrew Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J.
Rondinone, and C. Liang, “Anomalous High Ionic Conductivity of Nanoporous b-Li3PS4”, J.
Am. Chem. Soc., 135, 975, (2013).
Zaragoza 17 septiembre 2015
Nano-Composite Designs for Energy Storage
Nano-porous metal oxide coatings on carbon fiber dramatically enhance the
electrical storage capacity for supercapacitors.
Researchers have discovered
that controlling the
nanostructured architecture of
metal oxides coated on carbon
fibers can lead to an unusually
high capacity to store electrical
charge in a special type of
supercapacitor known as a
pseudocapacitor.
Scanning electron microscopy of conductive
carbon fibers coated with metal oxide nanowires
(left) and close-ups of the cobalt oxide (Co3O4)
nanowires (top right) and the nanowire surface
(bottom right). These materials are being
developed to improve the storage capacity of a
type of supercapacitor known as a
psuedocapacitor.
Zaragoza 17 septiembre 2015
Algunos ejemplos de investigación básica
relacionada con la energía
Zaragoza 17 septiembre 2015
• Secciones eficaces de neutrones
• Separación de isótopos
• Físico-química de elementos pesados
• Daño por Radiación
Energía Nuclear
Zaragoza 17 septiembre 2015
Evolución de conceptos de Reactores
Zaragoza 17 septiembre 2015
REPROCESADO DEL COMBUSTIBLE IRRADIADO
El proceso PUREX actual
(separación de U y Pu)
•  Disolución del UO2 en ácido nítrico
•  Separación del U+Pu con TBP ( tri-butil-fosfato)
•  Separación del U por reducción del Pu
•  Transformación del U y del Pu en óxidos para nuevo uso
•  Almacenamiento del resto de los residuos
( incluyen los productos de fisión y los actínidos menores ( Am Np y Cm)
Probablemente el mayor cuello de botella para el
desarrollo de los nuevos reactores nucleares
Necesidad de Nuevos métodos de Separación
Zaragoza 17 septiembre 2015
Daño por Radiación
Esencial para:
• Almacenamiento del Combustible Nuclear
• Protección Radiológica
Zaragoza 17 septiembre 2015
Quantification of actinide a-radiation damage in minerals and ceramics
Nature 445, 190-193 (2007)
Ian Farnan, Herman Cho & William J. Weber
There are large amounts of heavy a-emitters in nuclear waste and nuclear materials inventories stored in
various sites around the world. These include plutonium and minor actinides such as americium and curium.
In preparation for geological disposal there is consensus that actinides that have been separated from spent
nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their
superior aqueous durability and lower risk of accidental criticality. However, in the long term, the -decay
taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A
fundamental property in predicting cumulative radiation damage is the number of atoms permanently
displaced per -decay. At present, this number is estimated to be 1,000–2,000 atoms/ in zircon. Here we
report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/ in
radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly
radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the
same dose.
“On the basis of these measurements, the initially crystalline
structure of a 10 weight per cent 239Pu zircon would be
amorphous after only 1,400 years in a geological repository
(desired immobilization timescales are of the order of
250,000 years)”. These measurements establish a basis for assessing the long-term structural
durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage
event.
Zaragoza 17 septiembre 2015
MIT CAMBRIDGE, Mass., Mar. 5, 1997
In the first national study of the economic impact of a research university,
BankBoston reported today that graduates of the Massachusetts
Institute of Technology have founded 4,000 firms which, in 1994 alone,
employed at least 1.1 million people and generated $232 billion of
world sales.
The five states benefiting most from MIT-related jobs are California
(162,000), Massachusetts (125,000), Texas (84,000), New Jersey (34,000)
and Pennsylvania (21,000).
Wayne M. Ayers, chief economist of BankBoston:
"In a national economy that is increasingly emphasizing innovation, these
findings extend our understanding of how MIT has been instrumental in
generating new businesses nationwide. MIT is not the only university that
has had a national impact of this kind, but because of its historical and
continuing importance, it illustrates the contribution of research
universities to the evolving national economy."
Zaragoza 17 septiembre 2015
zircon
Zaragoza 17 septiembre 2015
•  Supercell of insulator’s bulk
•  Periodic boundary conditions
•  Density functional theory
•  Add external charge (potential)
•  Move it and follow electron wave-functions with Time-
Dependent DFT
Zaragoza 17 septiembre 2015
Stopping power vs velocity
Threshold effect yes,
but still too low values
Proton/antiproton right
Zaragoza 17 septiembre 2015
Potential impact on ANES
Summary of research directionScientific challenges
• Overcome limitations in current
experimental/theoretical
approaches to determining/
describing actinide material
properties
• Fundamental understanding of
thermal properties of complex
microstructure/composition
materials
• New approach to modeling phase
stability/compatibility in complex,
multicomponent actinide systems
•  Develop new quantum chemical/molecular
dynamic approaches that can accommodate the
additional complexity of 5f elements
•  Utilize/develop non-conventional experimental
techniques to measure and model thermal
properties of complex behavior actinide materials
•  Develop innovative defect models for multi-
component actinide fuel/fission product systems
• Scientific basis for nuclear fuel design
• Optimizing fuel development and testing
• Reducing uncertainty in operational/safety
margins
Mystery of 5f-electron elements New paradigm for 5f-electron research
Beyond cook and look
Advanced actinide fuels: Develop a fundamental
understanding of actinide-bearing materials properties
Fuente: DOE. Advanced Nuclear Energy Systems
Zaragoza 17 septiembre 2015
The Development of New Density Functional Theory and Computational Approaches for Strongly
Correlated f-Electron Ststems and Actinide Materials
Investigating the Nature of Extreme Condition Actinide Chemistry
Actinide Chemistry in Oxidative Alkaline Solutions: Synergistic Molecular Chemistry for Advanced
SNF Reprocessing
A First-principles Theory of the Energetics and Materials Properties of Actinides: The 5f-electron
Challenge
Actinide Binding to Dendritic Nanoscale Ligands: Fundamental Investigations and Applications to
Nuclear Separations
Probing f-electron interactions in actinide metal-ligand and metal-metal bonding
f-Electron Physics in α-Uranium, New Tools for an Historic Challenge
Materials for highly specific extraction of Cs and Sr from aqueous nuclear waste solutions
Modeling Spectroscopy and Photochemistry of Actinide Systems in Solution
An Experimental and Computational Study of Actinide and Fission Product Separation and
Sequestration by Engineered Mesoporous Materials
The link between actinide chemistry and core-level spectroscopies
An Ab Initio Full Potential Fully Relativistic Electronic Structure Study of Actinide Nitrides as
Nuclear Fuels
Algunos Proyectos financiados por el DOE
Zaragoza 17 septiembre 2015
Energía Fotovoltaica
Shockley-Queisser límite para la eficiencia para el Si: 32%
Gap 1.1 eV, gap inidrecto, perdidas por calor etc.
Zaragoza 17 septiembre 2015
Conversion Efficiencies vs. time (NREL)
Zaragoza 17 septiembre 2015
Mercado de células fotovoltaicas
Fuente: P. Frankl, NEEDS, 2007
Zaragoza 17 septiembre 2015
Células fotoeléctricas tandem
Usadas en el
Espacio
Zaragoza 17 septiembre 2015
Otra manera de aumentar la eficiencia:
Introducción de una banda intermedia:
Zaragoza 17 septiembre 2015
Stanford University
“Stanford University's spirit of innovation and entrepreneurship has always
played an important role in the university's history. Our faculty and
students are immersed in entrepreneurship as well as its natural
extensions to industry.
The entrepreneur then benefits from a research-driven university through
a myriad of ways: direct research, classroom lessons, discussions with
faculty, the cross-fertilization of ideas from different disciplines, and even
the entrepreneurial spirit of Stanford.
In the last several decades, over 6,000 companies were founded by
members of the Stanford University community”.
Top Silicon Valley companies founded or co-founded by those with a
current or former affiliation with Stanford University, as an alumnus/
alumna or faculty/staff.
In 2010, the 53 largest Silicon Valley companies on our list were
responsible for generating sales totaling $267.4 billion. This represents
49.2% of the $543.9 billion total sales reported by the 150 firms that make
up the “The Silicon Valley 150”.
Zaragoza 17 septiembre 2015
Stanford University
“Stanford University's spirit of innovation and entrepreneurship has always
played an important role in the university's history. Our faculty and
students are immersed in entrepreneurship as well as its natural
extensions to industry.
The entrepreneur then benefits from a research-driven university through
a myriad of ways: direct research, classroom lessons, discussions with
faculty, the cross-fertilization of ideas from different disciplines, and even
the entrepreneurial spirit of Stanford.
In the last several decades, over 6,000 companies were founded by
members of the Stanford University community”.
Top Silicon Valley companies founded or co-founded by those with a
current or former affiliation with Stanford University, as an alumnus/
alumna or faculty/staff.
In 2010, the 53 largest Silicon Valley companies on our list were
responsible for generating sales totaling $267.4 billion. This represents
49.2% of the $543.9 billion total sales reported by the 150 firms that make
up the “The Silicon Valley 150”.
Zaragoza 17 septiembre 2015
Nuevas ideas para células Fotovoltaicas
Basadas en colorantes
y nanoparticulas
Basadas en “pozos cuánticos”
… y moléculas orgánicas
Zaragoza 17 septiembre 2015
HIDRÓGENO COMO VECTOR ENERGÉTICO
Zaragoza 17 septiembre 2015
"  There exists an enormous gap between present state-of-
the-art capabilities and requirements that will allow
hydrogen to be competitive with today’s energy
technologies:
"  Production: 9M tons to 40M tons (vehicles)
"  Storage: 4.4 MJ/L (10K psi gas) to 9.72 MJ/L
"  Fuel cells: $3,000/kW to $35/kW (gasoline engine)
"  Major R&D efforts will be required:
"  Simple improvements of today’s technologies will not
meet requirements
"  Technical barriers can be overcome only with high
risk/high payoff basic research
"  Research is highly interdisciplinary, requiring
chemistry, materials science, physics, biology,
engineering, nanoscience, computational science.
"  Basic and applied research should couple seamlessly.
DOE Basic Research Needs for the Hydrogen Economy
Workshop: May 13-15, 2003
Report: Summer 2003
Zaragoza 17 septiembre 2015
How to produce H2?
(The Joint Center for Artificial Photosynthesis: JCAP)
“Net primary energy balance of a solar-driven photoelectrochemical
water-splitting device”
Pei Zhai et al. Energy Environ. Sci., 2013,6, 2380-2389
“A fundamental requirement for a renewable energy generation technology
is that it should produce more energy during its lifetime than is required to
manufacture it. In this study we evaluate the primary energy requirements
of a prospective renewable energy technology, solar-driven
photoelectrochemical (PEC) production of hydrogen from water. Using a
life cycle assessment (LCA) methodology, we evaluate the primary energy
requirements for upstream raw material preparation and fabrication under
a range of assumptions of processes and materials. As the technology is
at a very early stage of research and development, the analysis has
considerable uncertainties”.
Zaragoza 17 septiembre 2015
How to produce H2?
(The Joint Center for Artificial Photosynthesis: JCAP)
Molecular and Nanoscale Interfaces Project
Research in the Molecular and Nanoscale Interfaces Project is directed
towards the development of strategies and tools for linking individual
components into fully functioning, nanoscale artificial photosynthetic
assemblies. A major obstacle towards the development of a viable
artificial photosynthetic systems for water splitting to hydrogen and oxygen,
or the conversion of carbon dioxide and water to liquid fuel, involves the
inefficient charge transport between light absorbers and catalysts and, in
particular, between the sites of water oxidation and fuel-generating half-
reactions. To address these challenges, the Molecular and Nanoscale
Interfaces Project aims to couple light absorbers, catalysts, and half-
reactions for optimal control of the rate, yield, and energetics of electron
and proton flow at the nanoscale, so that complete macroscale artificial
photosynthetic systems can achieve maximum conversion of solar photon
energy into the chemical energy of a fuel.
Zaragoza 17 septiembre 2015
Hydrogen storage at metal-organic materials
Zaragoza 17 septiembre 2015
Hydrogen storage at metal-organic materials
Only H2 2% uptake: not
enough to be usefull!
Zaragoza 17 septiembre 2015
Eficiencia energética
Ejemplos de nuevas tecnologías:
• Diodos de Estado Sólido para la iluminación
• Superconductividad
Zaragoza 17 septiembre 2015
Zero resistance
Below Tc (-270 ºC) the
resistance drops (rapidly) to
zero.
Flux expulsion
Below Tc magnetic flux is
expelled from
the sample. This give rise to
phenomenon of magnetic
levitation.
Use of Superconducting Materials
Zaragoza 17 septiembre 2015
Zaragoza 17 septiembre 2015
La red eléctrica está bajo estrés, cerca de la saturación
Capacidad en Estados Unidos
Crecimiento del 50% para el año 2030
Red urbana: cuello de botella
Fiabilidad
“Blackouts”
Eficiencia
El 7-10% se pierde en el transporte.
En Estados Unidos, equivalente a 40
centrales de 1GW
Lower Manhattan infrastructure
(Courtesy of Con Edison)
Zaragoza 17 septiembre 2015
Los Superconductores podrían transformar la red de
distribución
Japanese Maglev flies with HTS coils,
(courtesy CJR)
Albany N.Y.
Zaragoza 17 septiembre 2015
Control of Grain Boundary Currents by Texturing - Key
to Second Generation (2G) YBCO Wire
Dimos, Chaudhari + Mannhart, PR 1990
AMSC 2G wire architecture:
RABiTSTM process
Texturing within ~50 enables Jc(77 K) ~ 3x106 A/cm2 over 100’s of meters –
An amazing success, though it has taken 18 years to get to this point!
Grain boundary critical current vs
misorientation angle
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
CONSUMO DE ENERGEIA
Zaragoza 17 septiembre 2015
Enormes reservas
Zaragoza 17 septiembre 2015
Preguntas:
Cómo se forman?
Cuantos hidrocarburos caben?
Son estables sin el hidrocarburo?
Se puede sustituir el Metano por CO2?
Sirven para almacenar H2?
Diagrama de fases P-T?
Zaragoza 17 septiembre 2015
Reproducen la estructura de los clatratos y predicen cuantas moléculas de
metano y CO2 se pueden alojar en las cavidades (no más de 2 por cavidad).
La sustitución de metano por CO2 es dudosa
No sabemos como se forman. No son estables sin metano
Cálculos de Primeros Principios
Difusión molecular
Zaragoza 17 septiembre 2015
Conclusiones:
Como para toda tecnología, la investigación básica es
indispensable para el desarrollo de la tecnología energética
La investigación básica sirve para generar conocimiento sobre
materiales y sistemas aunque puedan parecer solo
marginalmente relacionados con los problemas actuales de
las tecnologías energéticas
La investigación básica servirá al desarrollo tecnológico si se
aprovecha en un entorno adecuado
Zaragoza 17 septiembre 2015
MUCHAS GRACIAS!

More Related Content

Similar to Félix Yndurain: Nanociencia y tecnologías energéticas

ICRST proceedings of Novemeber 2016,Singapore
ICRST proceedings of Novemeber 2016,Singapore ICRST proceedings of Novemeber 2016,Singapore
ICRST proceedings of Novemeber 2016,Singapore
Global R & D Services
 
Ken Baldwin - Energy Change Institute
Ken Baldwin - Energy Change InstituteKen Baldwin - Energy Change Institute
Ken Baldwin - Energy Change Institute
ANUECI
 
The fascinating future of energy practitioners v2
The fascinating future of energy practitioners v2The fascinating future of energy practitioners v2
The fascinating future of energy practitioners v2
Richard Chuchla
 
1 diego pulido, bifi pv psda, antofagasta (chile) 2015
1 diego pulido, bifi pv psda, antofagasta (chile) 20151 diego pulido, bifi pv psda, antofagasta (chile) 2015
1 diego pulido, bifi pv psda, antofagasta (chile) 2015
Sandia National Laboratories: Energy & Climate: Renewables
 
Modeling residential water, energy, GHG emissions and cost in California. IWa...
Modeling residential water, energy, GHG emissions and cost in California. IWa...Modeling residential water, energy, GHG emissions and cost in California. IWa...
Modeling residential water, energy, GHG emissions and cost in California. IWa...
Àlvar Escrivà i Bou
 
Daniel Kammen-La ciencia y la política de la energía sostenible
Daniel Kammen-La ciencia y la política de la energía sostenibleDaniel Kammen-La ciencia y la política de la energía sostenible
Daniel Kammen-La ciencia y la política de la energía sostenible
Fundación Ramón Areces
 
Bangalore | Jul-16 | Solar power as a tool for emissions mitigations and dev...
Bangalore |  Jul-16 | Solar power as a tool for emissions mitigations and dev...Bangalore |  Jul-16 | Solar power as a tool for emissions mitigations and dev...
Bangalore | Jul-16 | Solar power as a tool for emissions mitigations and dev...
Smart Villages
 
DoE activities in CCS and workshop summary
DoE activities in CCS and workshop summaryDoE activities in CCS and workshop summary
DoE activities in CCS and workshop summary
IEA-ETSAP
 
ECG proceedings of November 2016,Singapore
ECG proceedings of November 2016,SingaporeECG proceedings of November 2016,Singapore
ECG proceedings of November 2016,Singapore
Global R & D Services
 
Cullen reducing energy demand EST 2011
Cullen reducing energy demand EST 2011Cullen reducing energy demand EST 2011
Cullen reducing energy demand EST 2011
morosini1952
 
Set lecture-00-course-introduction
Set lecture-00-course-introductionSet lecture-00-course-introduction
Set lecture-00-course-introduction
Taye Zewdu
 
Burton brazilian congress april 2015
Burton brazilian congress april 2015Burton brazilian congress april 2015
Burton brazilian congress april 2015
Global CCS Institute
 
Energia solar thermal energy storage systems
Energia solar   thermal energy storage systemsEnergia solar   thermal energy storage systems
Energia solar thermal energy storage systems
Usama Abudawud
 
NMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
NMRESGI_Optimized Integration of PV with Battery Storage_HawkinsNMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
NMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
Sandia National Laboratories: Energy & Climate: Renewables
 
The rise of the prosumer july 1_2015
The rise of the prosumer july 1_2015The rise of the prosumer july 1_2015
The rise of the prosumer july 1_2015
Alejandro S. Core
 
Risoe Energy Report 5
Risoe Energy Report 5Risoe Energy Report 5
Risoe Energy Report 5
Glenn Klith Andersen
 
A non-academic perspective on applied battery research - Battery2030+ annual ...
A non-academic perspective on applied battery research - Battery2030+ annual ...A non-academic perspective on applied battery research - Battery2030+ annual ...
A non-academic perspective on applied battery research - Battery2030+ annual ...
MatthewLacey
 
Emergent Energy Futures
Emergent Energy FuturesEmergent Energy Futures
Emergent Energy Futures
james_hamilton
 
Pr%c3%a4s%20 iuliafin[1]
Pr%c3%a4s%20 iuliafin[1]Pr%c3%a4s%20 iuliafin[1]
Pr%c3%a4s%20 iuliafin[1]
Iulia-Valentina Iliut
 
Decarbonizing the Grid: Pathways to Sustainable Energy Storage
Decarbonizing the Grid: Pathways to Sustainable Energy StorageDecarbonizing the Grid: Pathways to Sustainable Energy Storage
Decarbonizing the Grid: Pathways to Sustainable Energy Storage
Christo Ananth
 

Similar to Félix Yndurain: Nanociencia y tecnologías energéticas (20)

ICRST proceedings of Novemeber 2016,Singapore
ICRST proceedings of Novemeber 2016,Singapore ICRST proceedings of Novemeber 2016,Singapore
ICRST proceedings of Novemeber 2016,Singapore
 
Ken Baldwin - Energy Change Institute
Ken Baldwin - Energy Change InstituteKen Baldwin - Energy Change Institute
Ken Baldwin - Energy Change Institute
 
The fascinating future of energy practitioners v2
The fascinating future of energy practitioners v2The fascinating future of energy practitioners v2
The fascinating future of energy practitioners v2
 
1 diego pulido, bifi pv psda, antofagasta (chile) 2015
1 diego pulido, bifi pv psda, antofagasta (chile) 20151 diego pulido, bifi pv psda, antofagasta (chile) 2015
1 diego pulido, bifi pv psda, antofagasta (chile) 2015
 
Modeling residential water, energy, GHG emissions and cost in California. IWa...
Modeling residential water, energy, GHG emissions and cost in California. IWa...Modeling residential water, energy, GHG emissions and cost in California. IWa...
Modeling residential water, energy, GHG emissions and cost in California. IWa...
 
Daniel Kammen-La ciencia y la política de la energía sostenible
Daniel Kammen-La ciencia y la política de la energía sostenibleDaniel Kammen-La ciencia y la política de la energía sostenible
Daniel Kammen-La ciencia y la política de la energía sostenible
 
Bangalore | Jul-16 | Solar power as a tool for emissions mitigations and dev...
Bangalore |  Jul-16 | Solar power as a tool for emissions mitigations and dev...Bangalore |  Jul-16 | Solar power as a tool for emissions mitigations and dev...
Bangalore | Jul-16 | Solar power as a tool for emissions mitigations and dev...
 
DoE activities in CCS and workshop summary
DoE activities in CCS and workshop summaryDoE activities in CCS and workshop summary
DoE activities in CCS and workshop summary
 
ECG proceedings of November 2016,Singapore
ECG proceedings of November 2016,SingaporeECG proceedings of November 2016,Singapore
ECG proceedings of November 2016,Singapore
 
Cullen reducing energy demand EST 2011
Cullen reducing energy demand EST 2011Cullen reducing energy demand EST 2011
Cullen reducing energy demand EST 2011
 
Set lecture-00-course-introduction
Set lecture-00-course-introductionSet lecture-00-course-introduction
Set lecture-00-course-introduction
 
Burton brazilian congress april 2015
Burton brazilian congress april 2015Burton brazilian congress april 2015
Burton brazilian congress april 2015
 
Energia solar thermal energy storage systems
Energia solar   thermal energy storage systemsEnergia solar   thermal energy storage systems
Energia solar thermal energy storage systems
 
NMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
NMRESGI_Optimized Integration of PV with Battery Storage_HawkinsNMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
NMRESGI_Optimized Integration of PV with Battery Storage_Hawkins
 
The rise of the prosumer july 1_2015
The rise of the prosumer july 1_2015The rise of the prosumer july 1_2015
The rise of the prosumer july 1_2015
 
Risoe Energy Report 5
Risoe Energy Report 5Risoe Energy Report 5
Risoe Energy Report 5
 
A non-academic perspective on applied battery research - Battery2030+ annual ...
A non-academic perspective on applied battery research - Battery2030+ annual ...A non-academic perspective on applied battery research - Battery2030+ annual ...
A non-academic perspective on applied battery research - Battery2030+ annual ...
 
Emergent Energy Futures
Emergent Energy FuturesEmergent Energy Futures
Emergent Energy Futures
 
Pr%c3%a4s%20 iuliafin[1]
Pr%c3%a4s%20 iuliafin[1]Pr%c3%a4s%20 iuliafin[1]
Pr%c3%a4s%20 iuliafin[1]
 
Decarbonizing the Grid: Pathways to Sustainable Energy Storage
Decarbonizing the Grid: Pathways to Sustainable Energy StorageDecarbonizing the Grid: Pathways to Sustainable Energy Storage
Decarbonizing the Grid: Pathways to Sustainable Energy Storage
 

Recently uploaded

writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Henry Hollis
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
EduSkills OECD
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
giancarloi8888
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
RamseyBerglund
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Vivekanand Anglo Vedic Academy
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
Nguyen Thanh Tu Collection
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
سمير بسيوني
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
National Information Standards Organization (NISO)
 

Recently uploaded (20)

writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
 

Félix Yndurain: Nanociencia y tecnologías energéticas

  • 1. Zaragoza 17 septiembre 2015 La ciencia (la nanociencia) y las tecnologías energéticas del futuro Félix Yndurain Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid (e-mail: felix.yndurain@uam.es)
  • 2. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 3. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 4. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 5. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 6. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 7. Zaragoza 17 septiembre 2015 INDICE •  Introducción: Por qué hay que hacer investigación básica? •  Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en: !  Energía nuclear !  Fotovoltaica !  Hidrógeno !  Eficiencia !  Almacenamiento !  “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/
  • 8. Zaragoza 17 septiembre 2015 Producción y consumo de petróleo por región (millones de barriles diarios) Production by region Consumption by region Fuente: BP Statistical Review of World Energy June 2015
  • 9. Zaragoza 17 septiembre 2015 Lo arriesgado de hacer predicciones: El pico de Hubbert (1956)
  • 10. Zaragoza 17 septiembre 2015 Reservas probadas de petróleo en 19924, 2004 y 2012 (porcentage) Fuente: BP Statistical Review of World Energy June 2015
  • 11. Zaragoza 17 septiembre 2015 Reservas probadas de gas en 1994, 2004 y 2014 (porcentage) Fuente: BP Statistical Review of World Energy June 2015
  • 12. Zaragoza 17 septiembre 2015 Consumo de energía primaria en algunos países en el año 2012 (Mtoe) Petróleo Gas natural Carbón Nuclear Hidráulica Renovable Per capita (toe) PIB(k$) per capita USA 819,9 722,1 437,8 183,2 86,0 50,7 8,07 43,68 China 483,7 143,8 1873,3 22,0 194,8 31,9 0,78 7,78 Japón 218,2 116,7 124,4 4,1* 18,3 8,2 3,99 33,07 España 63,8 31,4 19,3 13,9 4,6 14,9 3,27 25,47 Alemania 111,5 75,2 79.2 22,5 4,8 26,0 3,99 31,93 Francia 80,9 42,5 11,4 96,3 13,2 5,4 4,36 31,16 Reino Unido 68,5 78,3 39,1 15,9 1,2 8,4 3,69 31,94 Brasil 125,6 29,2 13,5 3,6 94,5 11,2 1,03 8,77 Fuente: BP Statistical Review of World Energy June 2013
  • 13. Zaragoza 17 septiembre 2015 Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia Consumo de energía por habitante frente producto interior bruto para diversos países
  • 14. Zaragoza 17 septiembre 2015 Consumo de energía por habitante frente a “índice de desarrollo humano” Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia
  • 15. Zaragoza 17 septiembre 2015 El ejemplo de California Consumo de electricidad y PIB en Estados Unidos y California
  • 16. Zaragoza 17 septiembre 2015 Problemas relacionados con la energía: Distribución geográfica no uniforme de los recursos fósiles (finitos) Deterioro del medio ambiente
  • 17. Zaragoza 17 septiembre 2015 Efectos de las actividades humanas en el Medio Ambiente población emisiones CO2 D
  • 18. Zaragoza 17 septiembre 2015 Necesidad de Nuevas Tecnologías (Que deberán ser respetuosas con el medio ambiente)
  • 19. Zaragoza 17 septiembre 2015 Máquina de vapor: J. Watt (1769) Motor eléctrico: W. Siemens (1866) Plantas de carbón para producir electricidad: H. Stinnes (1898) Motor de explosión: C. & B. Benz (1888) {H. Ford (1903)} Pila de combustible: W. R. Grove (1843) Lámpara incandescente: T. Edison (1879) Batería eléctrica: A. Volta (1798) Efecto fotovoltaico: Becquerel (1839) Turbinas para aviación: 1930-40 Nuclear: 1940 aprox. Molino de viento ? Las Tecnologías Energéticas no son Nuevas: están en evolución gracias al I+D
  • 20. Zaragoza 17 septiembre 2015 Maduración y Penetración Tecnológica Investigación en Energía: de la Investigación Básica a la Tecnología Investigación Aplicada • Investigación básica para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo marginalmente relacionados con los problemas actuales de las tecnologías energéticas. • Investigación con el objetivo de cumplir hitos tecnológicos y ensayos con énfasis en el desarrollo , rendimiento, reducción de coste, durabilidad de materiales y componentes y en procesos eficientes • Investigación de escala • Plantas de demostración • Reducción de costes • Prototipos • Soporte a la comercialización Investigación Básica Evidentemente no es tan simple…
  • 21. Zaragoza 17 septiembre 2015 La investigación promovida por el Deparment of Energy (DOE) en Estados Unidos
  • 22. Zaragoza 17 septiembre 2015 "  Increase energy efficiency "  Increase use of renewables "  Adaptation of Carbon Capture and Sequestration "  Increase nuclear power "  Improve climate prediction Energy Imperatives (DOE)
  • 23. Zaragoza 17 septiembre 2015 Beneficio de la Ciencia Básica (Department of Energy) The energy systems of the future—whether they tap sunlight, store electricity, or make fuel from splitting water or reducing carbon dioxide—will revolve around materials and chemical changes that convert energy from one form to another. Such materials will need to be more functional than today’s energy materials. To control chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials with designed nanoscale structures. Such advanced materials are not found in nature; they must be designed and fabricated to exacting standards using principles revealed by basic science.
  • 24. Zaragoza 17 septiembre 2015 Beneficio de la Ciencia Básica (Basic Energy Sciences ) “The Department of Energy BES program also plays a major role in enabling the nanoscale revolution. The importance of nanoscience to future energy technologies is clearly reflected by the fact that all of the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for developing new and revolutionary energy technologies.”
  • 25. Zaragoza 17 septiembre 2015 Status of FY 2014 Appropriations (DOE)
  • 26. Zaragoza 17 septiembre 2015 History of BES Request vs. Appropriation (¡aumenta durante la crisis!) 26
  • 27. Zaragoza 17 septiembre 2015 Office of Science Programs FY 2010 Appropriation Advanced Scientific Computing Research (ASCR) Basic Energy Sciences (BES) Biological and Environmental Research (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear Physics (NP) Workforce Development for Teachers and Scientists (WDTS) Science Lab Infrastructure (SLI) ASCR, $394,000K BES, $1,636,500K BER, $604,182K FES, $426,000K HEP, $810,483K NP, $535,000K WDTS, $20,678K SLI, $127,600K S&S, $83,000K SCPD, $189,377K FY 2010 Funding Total = $4,903,710K ASCR BES BER FES HEP NP BESAC November 5, 2009
  • 28. Zaragoza 17 septiembre 2015 National Synchrotron Light Source Advanced Photon Source Stanford Synchrotron Radiation Laboratory Advanced Light Source High-Flux Isotope Reactor Intense Pulsed Neutron Source Manuel Lujan Jr. Neutron Scattering Center The Basic Energy Sciences Major Scientific User Facilities Combustion Research Facility 2828
  • 29. Zaragoza 17 septiembre 2015 ¿Por qué Investigación Básica? A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las razones para realizar investigación básica. “Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”. “Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific research were long neglected.”
  • 30. Zaragoza 17 septiembre 2015 ¿Por qué Investigación Básica? A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las razones para realizar investigación básica. “Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”. “Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific research were long neglected.”
  • 31. Zaragoza 17 septiembre 2015 ¿Por qué Investigación Básica? A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las razones para realizar investigación básica. “Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”. “Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific research were long neglected.”
  • 32. Zaragoza 17 septiembre 2015 ¿Por qué Investigación Básica? A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las razones para realizar investigación básica. “Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”. “Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific research were long neglected.”
  • 33. Zaragoza 17 septiembre 2015 ¿Por qué Investigación Básica? A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las razones para realizar investigación básica. “Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”. “Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific research were long neglected.”
  • 34. Zaragoza 17 septiembre 2015 Nanoscience and energy technologies
  • 35. Zaragoza 17 septiembre 2015 Center for Nanophase Materials Sciences (Oak Ridge National Laboratory) Center for Nanoscale Materials (Argonne National Laboratory) Molecular Foundry (Lawrence Berkeley National Laboratory) Center for Integrated Nanotechnologies (Sandia & Los Alamos National Labs) Nuevos centros de materiales/nanotecnologia
  • 36. Zaragoza 17 septiembre 2015 Five grand Challenges for Basic Energy Sciences. Department of Energy 1.  How do we Control Materials Processes at the Level of Electrons 2.  How do we Design and Perfect Atom- and Energy-Efficient Syntheses of Revolutionary New Forms of Matter with Tailored Properties 3.  How do Remarkable Properties of Matter Emerge from the Complex Correlations of Atomic or Electronic Constituents and How Can We Control These Properties 4.  How can we Master Energy and Information on the Nanoscale to Create New Technologies with Capabilities Rivaling Those of Living Things? 5.  How do we Characterize and Control Matter Away—Especially Very Far Away—from Equilibrium
  • 37. Zaragoza 17 septiembre 2015 •  Fuels from Sunlight (Joint Center for Artificial Photosynthesis) •  Energy Efficient Building Systems Design •  Modeling and Simulation for Nuclear Fuel Cycles and Systems •  Batteries and Energy Storage •  Critical Materials DOE Energy Innovation Hubs Each Hub will comprise a world-class, multi-disciplinary, and highly collaborative research and development team. Strong scientific leadership must be located at the primary location of the Hub. Each hub must have a clear organization and management plan that “infuses” a culture of empowered central research management throughout the Hub.
  • 38. Zaragoza 17 septiembre 2015 Fundamental research JCESR’s core task is basic research—using a new generation of nanoscience tools that enable us to observe, characterize, and control matter down to the atomic and molecular scales. This enhanced ability to understand materials and chemical processes at a fundamental level will enable us to reinvent electrical storage and achieve major improvements in battery performance at reduced cost. Our industrial partners will help guide our efforts to ensure that research leads toward practical solutions that are competitive in the marketplace. Energy Innovation Hub: Batteries and Energy Storage (Joint Center for Energy Storage Research: JCESR)
  • 39. Zaragoza 17 septiembre 2015 Scanning electron micrograph of a new solid electrolyte material (lithium thiophosphate) showing its surface morphology and the nanoscale porosity which are responsible for its high ionic conductivity; Inset shows its crystal structure. The Science Introduction of nanoscale porosity in a bulk electrolyte material (lithium thiophosphate) was found to promote surface conduction of lithium ions, thereby enhancing the ionic conductivity in the nanostructured material by three orders of magnitude over the normal bulk phase. The Impact The high ionic conductivities in these new, nanoporous electrolytes coupled with sulfur- rich, nanostructured cathode materials have led to the development of a new type of solid- state, rechargeable lithium-sulfur battery that is potentially safer and more reliable than today’s commercial Li ion batteries. New Materials for High-Energy, Long-Life Rechargeable Batteries Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solid- state lithium-sulfur rechargeable batteries. Z. Liu, W. Fu, E. Andrew Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, “Anomalous High Ionic Conductivity of Nanoporous b-Li3PS4”, J. Am. Chem. Soc., 135, 975, (2013).
  • 40. Zaragoza 17 septiembre 2015 Nano-Composite Designs for Energy Storage Nano-porous metal oxide coatings on carbon fiber dramatically enhance the electrical storage capacity for supercapacitors. Researchers have discovered that controlling the nanostructured architecture of metal oxides coated on carbon fibers can lead to an unusually high capacity to store electrical charge in a special type of supercapacitor known as a pseudocapacitor. Scanning electron microscopy of conductive carbon fibers coated with metal oxide nanowires (left) and close-ups of the cobalt oxide (Co3O4) nanowires (top right) and the nanowire surface (bottom right). These materials are being developed to improve the storage capacity of a type of supercapacitor known as a psuedocapacitor.
  • 41. Zaragoza 17 septiembre 2015 Algunos ejemplos de investigación básica relacionada con la energía
  • 42. Zaragoza 17 septiembre 2015 • Secciones eficaces de neutrones • Separación de isótopos • Físico-química de elementos pesados • Daño por Radiación Energía Nuclear
  • 43. Zaragoza 17 septiembre 2015 Evolución de conceptos de Reactores
  • 44. Zaragoza 17 septiembre 2015 REPROCESADO DEL COMBUSTIBLE IRRADIADO El proceso PUREX actual (separación de U y Pu) •  Disolución del UO2 en ácido nítrico •  Separación del U+Pu con TBP ( tri-butil-fosfato) •  Separación del U por reducción del Pu •  Transformación del U y del Pu en óxidos para nuevo uso •  Almacenamiento del resto de los residuos ( incluyen los productos de fisión y los actínidos menores ( Am Np y Cm) Probablemente el mayor cuello de botella para el desarrollo de los nuevos reactores nucleares Necesidad de Nuevos métodos de Separación
  • 45. Zaragoza 17 septiembre 2015 Daño por Radiación Esencial para: • Almacenamiento del Combustible Nuclear • Protección Radiológica
  • 46. Zaragoza 17 septiembre 2015 Quantification of actinide a-radiation damage in minerals and ceramics Nature 445, 190-193 (2007) Ian Farnan, Herman Cho & William J. Weber There are large amounts of heavy a-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the -decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per -decay. At present, this number is estimated to be 1,000–2,000 atoms/ in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/ in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose. “On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years)”. These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event.
  • 47. Zaragoza 17 septiembre 2015 MIT CAMBRIDGE, Mass., Mar. 5, 1997 In the first national study of the economic impact of a research university, BankBoston reported today that graduates of the Massachusetts Institute of Technology have founded 4,000 firms which, in 1994 alone, employed at least 1.1 million people and generated $232 billion of world sales. The five states benefiting most from MIT-related jobs are California (162,000), Massachusetts (125,000), Texas (84,000), New Jersey (34,000) and Pennsylvania (21,000). Wayne M. Ayers, chief economist of BankBoston: "In a national economy that is increasingly emphasizing innovation, these findings extend our understanding of how MIT has been instrumental in generating new businesses nationwide. MIT is not the only university that has had a national impact of this kind, but because of its historical and continuing importance, it illustrates the contribution of research universities to the evolving national economy."
  • 48. Zaragoza 17 septiembre 2015 zircon
  • 49. Zaragoza 17 septiembre 2015 •  Supercell of insulator’s bulk •  Periodic boundary conditions •  Density functional theory •  Add external charge (potential) •  Move it and follow electron wave-functions with Time- Dependent DFT
  • 50. Zaragoza 17 septiembre 2015 Stopping power vs velocity Threshold effect yes, but still too low values Proton/antiproton right
  • 51. Zaragoza 17 septiembre 2015 Potential impact on ANES Summary of research directionScientific challenges • Overcome limitations in current experimental/theoretical approaches to determining/ describing actinide material properties • Fundamental understanding of thermal properties of complex microstructure/composition materials • New approach to modeling phase stability/compatibility in complex, multicomponent actinide systems •  Develop new quantum chemical/molecular dynamic approaches that can accommodate the additional complexity of 5f elements •  Utilize/develop non-conventional experimental techniques to measure and model thermal properties of complex behavior actinide materials •  Develop innovative defect models for multi- component actinide fuel/fission product systems • Scientific basis for nuclear fuel design • Optimizing fuel development and testing • Reducing uncertainty in operational/safety margins Mystery of 5f-electron elements New paradigm for 5f-electron research Beyond cook and look Advanced actinide fuels: Develop a fundamental understanding of actinide-bearing materials properties Fuente: DOE. Advanced Nuclear Energy Systems
  • 52. Zaragoza 17 septiembre 2015 The Development of New Density Functional Theory and Computational Approaches for Strongly Correlated f-Electron Ststems and Actinide Materials Investigating the Nature of Extreme Condition Actinide Chemistry Actinide Chemistry in Oxidative Alkaline Solutions: Synergistic Molecular Chemistry for Advanced SNF Reprocessing A First-principles Theory of the Energetics and Materials Properties of Actinides: The 5f-electron Challenge Actinide Binding to Dendritic Nanoscale Ligands: Fundamental Investigations and Applications to Nuclear Separations Probing f-electron interactions in actinide metal-ligand and metal-metal bonding f-Electron Physics in α-Uranium, New Tools for an Historic Challenge Materials for highly specific extraction of Cs and Sr from aqueous nuclear waste solutions Modeling Spectroscopy and Photochemistry of Actinide Systems in Solution An Experimental and Computational Study of Actinide and Fission Product Separation and Sequestration by Engineered Mesoporous Materials The link between actinide chemistry and core-level spectroscopies An Ab Initio Full Potential Fully Relativistic Electronic Structure Study of Actinide Nitrides as Nuclear Fuels Algunos Proyectos financiados por el DOE
  • 53. Zaragoza 17 septiembre 2015 Energía Fotovoltaica Shockley-Queisser límite para la eficiencia para el Si: 32% Gap 1.1 eV, gap inidrecto, perdidas por calor etc.
  • 54. Zaragoza 17 septiembre 2015 Conversion Efficiencies vs. time (NREL)
  • 55. Zaragoza 17 septiembre 2015 Mercado de células fotovoltaicas Fuente: P. Frankl, NEEDS, 2007
  • 56. Zaragoza 17 septiembre 2015 Células fotoeléctricas tandem Usadas en el Espacio
  • 57. Zaragoza 17 septiembre 2015 Otra manera de aumentar la eficiencia: Introducción de una banda intermedia:
  • 58. Zaragoza 17 septiembre 2015 Stanford University “Stanford University's spirit of innovation and entrepreneurship has always played an important role in the university's history. Our faculty and students are immersed in entrepreneurship as well as its natural extensions to industry. The entrepreneur then benefits from a research-driven university through a myriad of ways: direct research, classroom lessons, discussions with faculty, the cross-fertilization of ideas from different disciplines, and even the entrepreneurial spirit of Stanford. In the last several decades, over 6,000 companies were founded by members of the Stanford University community”. Top Silicon Valley companies founded or co-founded by those with a current or former affiliation with Stanford University, as an alumnus/ alumna or faculty/staff. In 2010, the 53 largest Silicon Valley companies on our list were responsible for generating sales totaling $267.4 billion. This represents 49.2% of the $543.9 billion total sales reported by the 150 firms that make up the “The Silicon Valley 150”.
  • 59. Zaragoza 17 septiembre 2015 Stanford University “Stanford University's spirit of innovation and entrepreneurship has always played an important role in the university's history. Our faculty and students are immersed in entrepreneurship as well as its natural extensions to industry. The entrepreneur then benefits from a research-driven university through a myriad of ways: direct research, classroom lessons, discussions with faculty, the cross-fertilization of ideas from different disciplines, and even the entrepreneurial spirit of Stanford. In the last several decades, over 6,000 companies were founded by members of the Stanford University community”. Top Silicon Valley companies founded or co-founded by those with a current or former affiliation with Stanford University, as an alumnus/ alumna or faculty/staff. In 2010, the 53 largest Silicon Valley companies on our list were responsible for generating sales totaling $267.4 billion. This represents 49.2% of the $543.9 billion total sales reported by the 150 firms that make up the “The Silicon Valley 150”.
  • 60. Zaragoza 17 septiembre 2015 Nuevas ideas para células Fotovoltaicas Basadas en colorantes y nanoparticulas Basadas en “pozos cuánticos” … y moléculas orgánicas
  • 61. Zaragoza 17 septiembre 2015 HIDRÓGENO COMO VECTOR ENERGÉTICO
  • 62. Zaragoza 17 septiembre 2015 "  There exists an enormous gap between present state-of- the-art capabilities and requirements that will allow hydrogen to be competitive with today’s energy technologies: "  Production: 9M tons to 40M tons (vehicles) "  Storage: 4.4 MJ/L (10K psi gas) to 9.72 MJ/L "  Fuel cells: $3,000/kW to $35/kW (gasoline engine) "  Major R&D efforts will be required: "  Simple improvements of today’s technologies will not meet requirements "  Technical barriers can be overcome only with high risk/high payoff basic research "  Research is highly interdisciplinary, requiring chemistry, materials science, physics, biology, engineering, nanoscience, computational science. "  Basic and applied research should couple seamlessly. DOE Basic Research Needs for the Hydrogen Economy Workshop: May 13-15, 2003 Report: Summer 2003
  • 63. Zaragoza 17 septiembre 2015 How to produce H2? (The Joint Center for Artificial Photosynthesis: JCAP) “Net primary energy balance of a solar-driven photoelectrochemical water-splitting device” Pei Zhai et al. Energy Environ. Sci., 2013,6, 2380-2389 “A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties”.
  • 64. Zaragoza 17 septiembre 2015 How to produce H2? (The Joint Center for Artificial Photosynthesis: JCAP) Molecular and Nanoscale Interfaces Project Research in the Molecular and Nanoscale Interfaces Project is directed towards the development of strategies and tools for linking individual components into fully functioning, nanoscale artificial photosynthetic assemblies. A major obstacle towards the development of a viable artificial photosynthetic systems for water splitting to hydrogen and oxygen, or the conversion of carbon dioxide and water to liquid fuel, involves the inefficient charge transport between light absorbers and catalysts and, in particular, between the sites of water oxidation and fuel-generating half- reactions. To address these challenges, the Molecular and Nanoscale Interfaces Project aims to couple light absorbers, catalysts, and half- reactions for optimal control of the rate, yield, and energetics of electron and proton flow at the nanoscale, so that complete macroscale artificial photosynthetic systems can achieve maximum conversion of solar photon energy into the chemical energy of a fuel.
  • 65. Zaragoza 17 septiembre 2015 Hydrogen storage at metal-organic materials
  • 66. Zaragoza 17 septiembre 2015 Hydrogen storage at metal-organic materials Only H2 2% uptake: not enough to be usefull!
  • 67. Zaragoza 17 septiembre 2015 Eficiencia energética Ejemplos de nuevas tecnologías: • Diodos de Estado Sólido para la iluminación • Superconductividad
  • 68. Zaragoza 17 septiembre 2015 Zero resistance Below Tc (-270 ºC) the resistance drops (rapidly) to zero. Flux expulsion Below Tc magnetic flux is expelled from the sample. This give rise to phenomenon of magnetic levitation. Use of Superconducting Materials
  • 70. Zaragoza 17 septiembre 2015 La red eléctrica está bajo estrés, cerca de la saturación Capacidad en Estados Unidos Crecimiento del 50% para el año 2030 Red urbana: cuello de botella Fiabilidad “Blackouts” Eficiencia El 7-10% se pierde en el transporte. En Estados Unidos, equivalente a 40 centrales de 1GW Lower Manhattan infrastructure (Courtesy of Con Edison)
  • 71. Zaragoza 17 septiembre 2015 Los Superconductores podrían transformar la red de distribución Japanese Maglev flies with HTS coils, (courtesy CJR) Albany N.Y.
  • 72. Zaragoza 17 septiembre 2015 Control of Grain Boundary Currents by Texturing - Key to Second Generation (2G) YBCO Wire Dimos, Chaudhari + Mannhart, PR 1990 AMSC 2G wire architecture: RABiTSTM process Texturing within ~50 enables Jc(77 K) ~ 3x106 A/cm2 over 100’s of meters – An amazing success, though it has taken 18 years to get to this point! Grain boundary critical current vs misorientation angle
  • 73. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 74. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 75. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 76. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 77. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 78. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 79. Zaragoza 17 septiembre 2015 CONSUMO DE ENERGEIA
  • 80. Zaragoza 17 septiembre 2015 Enormes reservas
  • 81. Zaragoza 17 septiembre 2015 Preguntas: Cómo se forman? Cuantos hidrocarburos caben? Son estables sin el hidrocarburo? Se puede sustituir el Metano por CO2? Sirven para almacenar H2? Diagrama de fases P-T?
  • 82. Zaragoza 17 septiembre 2015 Reproducen la estructura de los clatratos y predicen cuantas moléculas de metano y CO2 se pueden alojar en las cavidades (no más de 2 por cavidad). La sustitución de metano por CO2 es dudosa No sabemos como se forman. No son estables sin metano Cálculos de Primeros Principios Difusión molecular
  • 83. Zaragoza 17 septiembre 2015 Conclusiones: Como para toda tecnología, la investigación básica es indispensable para el desarrollo de la tecnología energética La investigación básica sirve para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo marginalmente relacionados con los problemas actuales de las tecnologías energéticas La investigación básica servirá al desarrollo tecnológico si se aprovecha en un entorno adecuado
  • 84. Zaragoza 17 septiembre 2015 MUCHAS GRACIAS!