SlideShare a Scribd company logo
1 of 30
Final Detail Briefings
Team Rocket:
Airik Phillips, Andrew Bothun, Chengyu Perry Zhang, Daisy
Lazaro, Yijie Wang
Overview
• Mission Objectives
• Requirements and Initial Conditions
• Propulsion System
• Stage Parameters
• Considerations
• Overall Performance
• Conclusion
Mission Objectives
General:
• Design a rapid response launcher system for simple, light-
weight satellites
Specific:
• Put a single 100 lb. satellite into a sun synchronous 165 km
circular orbit launched from Poker Flat Research Range,
AK.
Requirements and Initial
Conditions
Req. and Int. Conds.
Mass of Payload: 100 lb.=45.36 kg
Orbit Height: 165 km
Burnout Velocity: 7.805 km/s
Longitude of Launch 65.1167⁰
Earth Rotation Velocity: 195.45 m/s
V Loss Due to Gravity: 1.775 km/s
Circular Orbit: E=0
Inclination: 70⁰
γ=51.697 ⁰ , ϕ=0 ⁰ , β=54.374 ⁰
Req. and Int. Conds.
𝚫V of burn out = (-4.838 km/s ŝ + 6.125 km/s Ê + 0 ẑ)
𝚫V Needed = (-4.838 km/s ŝ + 5.930 km/s Ê + 1.775 km/s ẑ)
𝚫V of Design = 8.656 km/s
Req. and Int. Conds.
γ=51.697 ⁰ , ϕ=0 ⁰ , β=54.374 ⁰
Launch Window Conditions
Two Launch Windows
• AN Opportunity:
• LWST = 90°+51.6967° = 141.6967° = 0927 hrs.
• DN Opportunity:
• LWST = 90°+180°-51.6967° = 218.3033° = 1433 hrs
Req. and Int. Conds.
Dumbkopff Charts
Finert of 0.35 and an
Isp of 460 s give the
lowest total masses
Propulsion Systems
Propulsion Systems
Liquid Rockets
H2/F2
• Isp = 440 s
• Dangerous to handle
• Hydrofluoric acid is a product of reaction
H2/O2
• Isp = 435 s
• Needs to be very cold for best reaction
• H2 and water are a product of reaction
Propulsion Systems
O2/H2 Properties
Stage Parameters
Stage Parameters
Stage 1
Total initial mass: 4080.04 kg
Payload mass: 811.99 kg
Inert stage mass: 1143.82 kg
H2 mass: 563.11 kg
• Volume: 7.948 m3
O2 mass: 1564.12 kg
• Volume: 1.368 m3
Burn time: 55.772 s
Burn out height: 112.075 km
Isp: 388.603 s
𝚫V = 3.0296 km/s
Avg thrust: 145.197 kN
Stage Parameters
Nozzle and Chamber Stage 1
At: 0.025 m2
• Dt: 0.0892 m
Ae:0.407 m2
• De: 0.360 m
Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰
𝜂 𝑐: 98.3%
Lnozzle: 50.52 cm
𝐴 𝑐
𝐴 𝑡
: 3.402
Dc: 16.45 cm
L*: 1.02 m
Lc: 29.98 cm
Vc: 6375 cm3
ρ: 8500 kg/m3
σtu: 310 MPa
tc: 0.4964 mm
Factor of Safety: 2
tcactual: 0.993 mm
mc: 1.78 kg
mnozzle: 3.01 kg
Stage Parameters
Nozzle Schematics Stage 1
Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6
Tc: 3375 K Pc: 3.45 MPa
Stage Parameters
Stage 2
Total initial mass: 811.99 kg
Payload mass: 161.6 kg
Inert stage mass: 227.64 kg
H2 mass: 104.08 kg
• Volume: 1.469 m3
O2 mass: 316.67 kg
• Volume: 0.279 m3
Burn time: 14.635 s
Burn out height: 146.750 km
Isp: 415.502 s
𝚫V = 3.0296 km/s
Avg thrust: 117.743 kN
Stage Parameters
Nozzle and Chamber Stage 2
At: 0.019 m2
• Dt: 0.0778 m
Ae:0.308 m2
• De: 0.313 m
Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰
𝜂 𝑐: 98.3%
Lnozzle: 43.92 cm
𝐴 𝑐
𝐴 𝑡
: 3.587
Dc: 14.73 cm
L*: 1.02 m
Lc: 28.44 cm
Vc: 4845cm3
ρ: 8500 kg/m3
σtu: 310 MPa
tc: 0.4327 mm
Factor of Safety: 2
tcactual: 0.8655 mm
mc: 1.305 kg
mnozzle: 1.984 kg
Stage Parameters
Nozzle Schematics Stage 2
Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6
Tc: 3375 K Pc: 3.45 MPa
Stage Parameters
Stage 3
Total initial mass: 161.6 kg
Payload mass: 45.36 kg
Inert stage mass: 40.684 kg
H2 mass: 18.602 kg
• Volume: 0.263 m3
O2 mass: 56.954 kg
• Volume: 0.0499 m3
Burn time: 17.727 s
Burn out height: 165.496 km
Isp: 415.502 s
𝚫V = 2.5966 km/s
Avg thrust: 17.373 kN
Stage Parameters
Nozzle and Chamber Stage 3
At: 0.003 m2
• Dt: 0.0309 m
Ae:0.045 m2
• De: 0.12 m
Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰
𝜂 𝑐: 98.3%
Lnozzle: 16.57 cm
𝐴 𝑐
𝐴 𝑡
: 5.315
Dc: 7.12 cm
L*: 1.02 m
Lc: 19.19 cm
Vc: 765cm3
ρ: 8500 kg/m3
σtu: 310 MPa
tc: 0.172 mm
Factor of Safety: 4
tcactual: 0.6878 mm
mc: 0.322 kg
mnozzle: 0.229 kg
Stage Parameters
Nozzle Schematics Stage 3
Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6
Tc: 3375 K Pc: 3.45 MPa
Other Considerations
Other Considerations
Other Mass Costs:
• Exterior shell - sized for each stage
• Stage separators - sized for each stage
• Fuel/Oxidizer tanks - sized for each stage
• Fuel/Oxidizer coolers - consistent through the stages
• Transport conduits - consistent through the stages
To Fulfill these Other Considerations:
• Stage 1 is left with 1139.03 kg of inert mass
• Stage 2 is left with 222.76 kg of inert mass
• Stage 3 is left with 35.89 kg of inert mass
Other Considerations
Tanking Sizing
Stage 1
H2 @ 101.325 MPa: 7.948 m3
• Cylindrical R: 0.75 m, L: 4.498 m
• Mass w/ Graphite: 5578.58 kg
O2 @ 101.325 MPa: 1.368 m3
• Sphere R: 0.6887 m
• Mass w/ Graphite: 720.29 kg
Stage 2
H2 @ 101.325 MPa: 1.469 m3
• Cylindrical R: 0.7052 m
• Mass w/ Graphite: 775.21 kg
O2 @ 101.325 MPa: 0.279 m3
• Sphere R: 0.4054 m
• Mass w/ Graphite: 146.91 kg
Stage 3
101.325 MPa: 0.263 m3
• Sphere R: 0.3975 m
• Mass w/ Graphite: 138.52 kg
O2 @ 101.325 MPa: 0.0499 m3
• Sphere R: 0.2284 m
• Mass w/ Graphite: 26.44 kg
Other Considerations
Injectors:
• Shower Head
• Self Impinging Doublet
• Cross Impinging
• Centripetal/Swirling
• Pintle Injector
Overall Performance
Overall Performances
Final Altitude: 165.496 km
Final Velocity: 8.656 km/s
Nozzle Efficiency: 98.3%
Combustion Efficiency: 98.2%
Overall Efficiency: 96.53%
Conclusion
Conclusion
Problem:
On a first pass the rocket design looks feasible, but upon sizing
of fuel and oxidizer storage the maximum mass allowed was
greatly surpassed on all stages.
Solution:
This could potentially be mitigated by condensing the fuel and
oxidizer for smaller tanks.
END

More Related Content

What's hot

thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
尚儒 吳
 

What's hot (20)

BH6(2m)
BH6(2m)BH6(2m)
BH6(2m)
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
 
Mc conkey 12-pb
Mc conkey 12-pbMc conkey 12-pb
Mc conkey 12-pb
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
 
Metrado de una_vivienda
Metrado de una_viviendaMetrado de una_vivienda
Metrado de una_vivienda
 
Mc conkey 11-pb
Mc conkey 11-pbMc conkey 11-pb
Mc conkey 11-pb
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
 
Mc conkey 13-pb
Mc conkey 13-pbMc conkey 13-pb
Mc conkey 13-pb
 
Dome capability study
Dome capability study Dome capability study
Dome capability study
 
WATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and ThermodynamicsWATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and Thermodynamics
 
Control of air pollution technology 1
Control of air pollution technology 1Control of air pollution technology 1
Control of air pollution technology 1
 
Amateur 500N Ethanol/Lox Nozzle design study
Amateur 500N Ethanol/Lox Nozzle design studyAmateur 500N Ethanol/Lox Nozzle design study
Amateur 500N Ethanol/Lox Nozzle design study
 
1824 02
1824 021824 02
1824 02
 
Factoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimicaFactoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimica
 
Steam tables
Steam tablesSteam tables
Steam tables
 
Dryers
DryersDryers
Dryers
 
Conversion factors
Conversion factorsConversion factors
Conversion factors
 
Dynamic otto-cycle-analysis
Dynamic otto-cycle-analysisDynamic otto-cycle-analysis
Dynamic otto-cycle-analysis
 
Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)
 

Similar to Final Detail Briefings

Tablas termodinamica completas_cengel
Tablas termodinamica completas_cengelTablas termodinamica completas_cengel
Tablas termodinamica completas_cengel
Sol Engene
 
Design of a Scramjet Engine
Design of a Scramjet EngineDesign of a Scramjet Engine
Design of a Scramjet Engine
Adam Resler
 
ESRA Final Presentation
ESRA Final PresentationESRA Final Presentation
ESRA Final Presentation
Connor Kelsay
 
Slow descent v3_IYPT
Slow descent v3_IYPTSlow descent v3_IYPT
Slow descent v3_IYPT
Tony Zhang
 
LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014
Les Sheffield
 

Similar to Final Detail Briefings (20)

Section 8 common
Section 8 commonSection 8 common
Section 8 common
 
Tablas termodinamica completas_cengel
Tablas termodinamica completas_cengelTablas termodinamica completas_cengel
Tablas termodinamica completas_cengel
 
Design of a Scramjet Engine
Design of a Scramjet EngineDesign of a Scramjet Engine
Design of a Scramjet Engine
 
Effect of cyclic load on the cbr of a clayey soil
Effect of cyclic load on the cbr of a clayey soilEffect of cyclic load on the cbr of a clayey soil
Effect of cyclic load on the cbr of a clayey soil
 
ESRA Final Presentation
ESRA Final PresentationESRA Final Presentation
ESRA Final Presentation
 
Slow descent v3_IYPT
Slow descent v3_IYPTSlow descent v3_IYPT
Slow descent v3_IYPT
 
تصمم.pptx
تصمم.pptxتصمم.pptx
تصمم.pptx
 
PROJECT DEMO final
PROJECT DEMO finalPROJECT DEMO final
PROJECT DEMO final
 
Design-ppt_SAmodified.pptx
Design-ppt_SAmodified.pptxDesign-ppt_SAmodified.pptx
Design-ppt_SAmodified.pptx
 
Rapid Response Launcher System
Rapid Response Launcher SystemRapid Response Launcher System
Rapid Response Launcher System
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptx
 
LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014
 
FINAL2 PPT3
FINAL2 PPT3FINAL2 PPT3
FINAL2 PPT3
 
Turbine Design
Turbine DesignTurbine Design
Turbine Design
 
ppty
pptyppty
ppty
 
PLATE FREEZER
PLATE FREEZERPLATE FREEZER
PLATE FREEZER
 
Unitconversion table
Unitconversion tableUnitconversion table
Unitconversion table
 
absorption.ppt
absorption.pptabsorption.ppt
absorption.ppt
 
reactor design.pptx
reactor design.pptxreactor design.pptx
reactor design.pptx
 

Final Detail Briefings

  • 1. Final Detail Briefings Team Rocket: Airik Phillips, Andrew Bothun, Chengyu Perry Zhang, Daisy Lazaro, Yijie Wang
  • 2. Overview • Mission Objectives • Requirements and Initial Conditions • Propulsion System • Stage Parameters • Considerations • Overall Performance • Conclusion
  • 3. Mission Objectives General: • Design a rapid response launcher system for simple, light- weight satellites Specific: • Put a single 100 lb. satellite into a sun synchronous 165 km circular orbit launched from Poker Flat Research Range, AK.
  • 5. Req. and Int. Conds. Mass of Payload: 100 lb.=45.36 kg Orbit Height: 165 km Burnout Velocity: 7.805 km/s Longitude of Launch 65.1167⁰ Earth Rotation Velocity: 195.45 m/s V Loss Due to Gravity: 1.775 km/s Circular Orbit: E=0 Inclination: 70⁰ γ=51.697 ⁰ , ϕ=0 ⁰ , β=54.374 ⁰
  • 6. Req. and Int. Conds. 𝚫V of burn out = (-4.838 km/s ŝ + 6.125 km/s Ê + 0 ẑ) 𝚫V Needed = (-4.838 km/s ŝ + 5.930 km/s Ê + 1.775 km/s ẑ) 𝚫V of Design = 8.656 km/s
  • 7. Req. and Int. Conds. γ=51.697 ⁰ , ϕ=0 ⁰ , β=54.374 ⁰ Launch Window Conditions Two Launch Windows • AN Opportunity: • LWST = 90°+51.6967° = 141.6967° = 0927 hrs. • DN Opportunity: • LWST = 90°+180°-51.6967° = 218.3033° = 1433 hrs
  • 8. Req. and Int. Conds. Dumbkopff Charts Finert of 0.35 and an Isp of 460 s give the lowest total masses
  • 10. Propulsion Systems Liquid Rockets H2/F2 • Isp = 440 s • Dangerous to handle • Hydrofluoric acid is a product of reaction H2/O2 • Isp = 435 s • Needs to be very cold for best reaction • H2 and water are a product of reaction
  • 13. Stage Parameters Stage 1 Total initial mass: 4080.04 kg Payload mass: 811.99 kg Inert stage mass: 1143.82 kg H2 mass: 563.11 kg • Volume: 7.948 m3 O2 mass: 1564.12 kg • Volume: 1.368 m3 Burn time: 55.772 s Burn out height: 112.075 km Isp: 388.603 s 𝚫V = 3.0296 km/s Avg thrust: 145.197 kN
  • 14. Stage Parameters Nozzle and Chamber Stage 1 At: 0.025 m2 • Dt: 0.0892 m Ae:0.407 m2 • De: 0.360 m Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰ 𝜂 𝑐: 98.3% Lnozzle: 50.52 cm 𝐴 𝑐 𝐴 𝑡 : 3.402 Dc: 16.45 cm L*: 1.02 m Lc: 29.98 cm Vc: 6375 cm3 ρ: 8500 kg/m3 σtu: 310 MPa tc: 0.4964 mm Factor of Safety: 2 tcactual: 0.993 mm mc: 1.78 kg mnozzle: 3.01 kg
  • 15. Stage Parameters Nozzle Schematics Stage 1 Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6 Tc: 3375 K Pc: 3.45 MPa
  • 16. Stage Parameters Stage 2 Total initial mass: 811.99 kg Payload mass: 161.6 kg Inert stage mass: 227.64 kg H2 mass: 104.08 kg • Volume: 1.469 m3 O2 mass: 316.67 kg • Volume: 0.279 m3 Burn time: 14.635 s Burn out height: 146.750 km Isp: 415.502 s 𝚫V = 3.0296 km/s Avg thrust: 117.743 kN
  • 17. Stage Parameters Nozzle and Chamber Stage 2 At: 0.019 m2 • Dt: 0.0778 m Ae:0.308 m2 • De: 0.313 m Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰ 𝜂 𝑐: 98.3% Lnozzle: 43.92 cm 𝐴 𝑐 𝐴 𝑡 : 3.587 Dc: 14.73 cm L*: 1.02 m Lc: 28.44 cm Vc: 4845cm3 ρ: 8500 kg/m3 σtu: 310 MPa tc: 0.4327 mm Factor of Safety: 2 tcactual: 0.8655 mm mc: 1.305 kg mnozzle: 1.984 kg
  • 18. Stage Parameters Nozzle Schematics Stage 2 Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6 Tc: 3375 K Pc: 3.45 MPa
  • 19. Stage Parameters Stage 3 Total initial mass: 161.6 kg Payload mass: 45.36 kg Inert stage mass: 40.684 kg H2 mass: 18.602 kg • Volume: 0.263 m3 O2 mass: 56.954 kg • Volume: 0.0499 m3 Burn time: 17.727 s Burn out height: 165.496 km Isp: 415.502 s 𝚫V = 2.5966 km/s Avg thrust: 17.373 kN
  • 20. Stage Parameters Nozzle and Chamber Stage 3 At: 0.003 m2 • Dt: 0.0309 m Ae:0.045 m2 • De: 0.12 m Assume 𝜃𝑐𝑛 = 𝜃𝑐𝑐 = 15⁰ 𝜂 𝑐: 98.3% Lnozzle: 16.57 cm 𝐴 𝑐 𝐴 𝑡 : 5.315 Dc: 7.12 cm L*: 1.02 m Lc: 19.19 cm Vc: 765cm3 ρ: 8500 kg/m3 σtu: 310 MPa tc: 0.172 mm Factor of Safety: 4 tcactual: 0.6878 mm mc: 0.322 kg mnozzle: 0.229 kg
  • 21. Stage Parameters Nozzle Schematics Stage 3 Expansion Ratio: 16.089 F/O Mixture Ratio: 5.6 Tc: 3375 K Pc: 3.45 MPa
  • 23. Other Considerations Other Mass Costs: • Exterior shell - sized for each stage • Stage separators - sized for each stage • Fuel/Oxidizer tanks - sized for each stage • Fuel/Oxidizer coolers - consistent through the stages • Transport conduits - consistent through the stages To Fulfill these Other Considerations: • Stage 1 is left with 1139.03 kg of inert mass • Stage 2 is left with 222.76 kg of inert mass • Stage 3 is left with 35.89 kg of inert mass
  • 24. Other Considerations Tanking Sizing Stage 1 H2 @ 101.325 MPa: 7.948 m3 • Cylindrical R: 0.75 m, L: 4.498 m • Mass w/ Graphite: 5578.58 kg O2 @ 101.325 MPa: 1.368 m3 • Sphere R: 0.6887 m • Mass w/ Graphite: 720.29 kg Stage 2 H2 @ 101.325 MPa: 1.469 m3 • Cylindrical R: 0.7052 m • Mass w/ Graphite: 775.21 kg O2 @ 101.325 MPa: 0.279 m3 • Sphere R: 0.4054 m • Mass w/ Graphite: 146.91 kg Stage 3 101.325 MPa: 0.263 m3 • Sphere R: 0.3975 m • Mass w/ Graphite: 138.52 kg O2 @ 101.325 MPa: 0.0499 m3 • Sphere R: 0.2284 m • Mass w/ Graphite: 26.44 kg
  • 25. Other Considerations Injectors: • Shower Head • Self Impinging Doublet • Cross Impinging • Centripetal/Swirling • Pintle Injector
  • 27. Overall Performances Final Altitude: 165.496 km Final Velocity: 8.656 km/s Nozzle Efficiency: 98.3% Combustion Efficiency: 98.2% Overall Efficiency: 96.53%
  • 29. Conclusion Problem: On a first pass the rocket design looks feasible, but upon sizing of fuel and oxidizer storage the maximum mass allowed was greatly surpassed on all stages. Solution: This could potentially be mitigated by condensing the fuel and oxidizer for smaller tanks.
  • 30. END

Editor's Notes

  1. Each stage is responsible for 𝚫V = 2.885 km/s