Prepared By: Shankar Gangaju
Divergence
z
D
y
D
x
D
D:Cartesian zyx










z
DD1)D(1
D:lCylindrica z

























D
sinr
1)sinD(
sinr
1
r
)Dr(
r
1
D:Sphecrical r
2
2

Gradient
zyx aˆ
z
V
aˆ
y
V
aˆ
x
V
V:Cartesian









zaˆ
z
V
aˆ
V1
aˆ
V
V:lCylindrica









 










 aˆ
V
sinr
1
aˆ
V
r
1
aˆ
r
V
V:Spherical r
Curl
z
xy
y
zx
x
yz
aˆ
y
H
x
H
aˆ
x
H
z
H
aˆ
z
H
y
H
H:Cartesian 






































z
zz
aˆ
HH(1
aˆ
H
z
H
aˆ
z
HH1
H:lCylindrica 
















































































 aˆ
H
r
rH(
r
1
aˆ
r
)rH(H
sinr
1
r
1
aˆ
H)sinH(
sinr
1
H:Spherical rr
r

Laplacian:
Cartesian: ∇2
V =
∂2V
∂x2
+
∂2V
∂y2
+
∂2V
∂z2
Cylindrical: ∇2
V =
1
ρ
∂
∂ρ
(ρ
∂V
∂ρ
) +
1
ρ2
∂2V
∂∅2
+
∂2V
∂z2
Spherical: ∇2
V =
1
r2
∂
∂r
(r2 ∂V
∂r
) +
1
r2sinθ
∂
∂θ
(sinθ
∂V
∂θ
) +
1
r2sin2θ
∂2V
∂∅2
Electromagnetic formula

Electromagnetic formula

  • 1.
    Prepared By: ShankarGangaju Divergence z D y D x D D:Cartesian zyx           z DD1)D(1 D:lCylindrica z                          D sinr 1)sinD( sinr 1 r )Dr( r 1 D:Sphecrical r 2 2  Gradient zyx aˆ z V aˆ y V aˆ x V V:Cartesian          zaˆ z V aˆ V1 aˆ V V:lCylindrica                       aˆ V sinr 1 aˆ V r 1 aˆ r V V:Spherical r Curl z xy y zx x yz aˆ y H x H aˆ x H z H aˆ z H y H H:Cartesian                                        z zz aˆ HH(1 aˆ H z H aˆ z HH1 H:lCylindrica                                                                                   aˆ H r rH( r 1 aˆ r )rH(H sinr 1 r 1 aˆ H)sinH( sinr 1 H:Spherical rr r  Laplacian: Cartesian: ∇2 V = ∂2V ∂x2 + ∂2V ∂y2 + ∂2V ∂z2 Cylindrical: ∇2 V = 1 ρ ∂ ∂ρ (ρ ∂V ∂ρ ) + 1 ρ2 ∂2V ∂∅2 + ∂2V ∂z2 Spherical: ∇2 V = 1 r2 ∂ ∂r (r2 ∂V ∂r ) + 1 r2sinθ ∂ ∂θ (sinθ ∂V ∂θ ) + 1 r2sin2θ ∂2V ∂∅2