SlideShare a Scribd company logo
1 of 7
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
69
Dynamic Response of Wound Rotor Induction Generator for
Wind Energy Application
Saurabh Gupta Kishor Thakre Gaurav Gupta
Research scholar Research scholar Research Scholar
UIT-RGPV BHOPAL UIT-RGPV BHOPAL UIT-RGPV BHOPAL
saurabhgupta.sgsits@gmail.com thakrekishor26@gmail.com gauravmits@yahoo.com
ABSTRACT
The magnitude and frequency of the output voltage can be controlled by varying the effective rotor resistance of
a wound rotor induction generator (WRIG), over a wide speed range. For a given stator load impedance, both the
frequency and the voltage can be maintained constant as the speed is varied, without changing the excitation
capacitance. When the stator load is variable, simultaneous voltage and frequency control requires the excitation
capacitance to be changed as the rotor resistance is varied. Simulations performed on a 1.8-kW wound rotor
induction machine confirm the feasibility of the method of control. Simulated implementation of a closed-loop
control scheme for a WRIG using chopper-controlled rotor resistance is also discussed. With a properly tuned
proportional-plus-integral (PI) controller, satisfactory dynamic performance of the WRIG is obtained. The
implemented scheme may be used in a low-cost variable-speed wind energy system for providing good-quality
electric power to remote regions.
Index Terms—Induction generators, slip-ring machines, voltage and frequency control.
1. INTRODUCTION
In this paper unlike induction generators connected to the power utility grid, both the frequency and the terminal
voltage of the SEIG vary with load even when the rotor speed is maintained constant. An increase in the rotor
speed will result in a proportionate increase in frequency, often accompanied by severe over voltage and
excessive current. Recently, there has been rigorous research on the voltage and frequency control of
squirrel-cage type SEIGs [1]–[5], but relatively little research efforts have been devoted to the use of the
slip-ring induction machine for generator applications. Although the slip-ring machine is more expensive and
requires more maintenance, it permits rotor slip-power control when driven by a variable-speed turbine. When a
grid connection is permissible, the slip-ring machine may be operated as a double-output induction generator
(DOIG) using the slip-energy recovery technique [6]. In the case of a wound rootor induction generator (WRIG),
the system cost can be further reduced by the use of a simple rotor resistance controller [7], [8]. Since only a
capacitor bank needs to be connected to the stator terminals. Another advantageous feature of the WRIG is that
independent control of the voltage and frequency can be achieved easily. The rating of the rotor resistance
controller is small compared with the generator rating; hence, the cost saving is quite significant. Fig.1shows the
circuit arrangement of a three-phase WRIG. The excitation capacitance C is required for initiating voltage
buildup and maintaining the output voltage.
Fig.1 wound rotor induction generator.
2. PERFORMANCE AND ANALYSIS OF WRIG
Fig.2 shows the per-phase equivalent circuit of the WRIG, where the rotor resistance R2 is the sum of the rotor
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
70
winding resistance and the external rotor resistance, both referred to the stator side. The circuit has been
normalized to the base (rated) frequency through the introduction of the per-unit frequency “a” and the per-unit
speed “b” [9].
Fig.2 Per-phase equivalent circuit of the WRIG
Various methods have been developed for solution of the SEIG equivalent circuit. Adopting the nodal admittance
method [10], the following relationship may be established for successful voltage build-up:
Yt+Ym+Y2=0 (1)
Where
Yt = (2)
Ym = (3)
Y2 = -jB2 (4)
Equating the real and imaginary parts in (1) to zero, respectively, the fallowing equations in real numbers
are obtained:
Gt+Gm+G2=0 (5)
Bt-Bm-B2=0 (6)
For a given rotor speed, load impedance and excitation capacitance, (5) is a nonlinear equation in
the variable only. Numerical solution of (5) using an iterative method [10] enables a to be determined, and (6)
can subsequently be used to calculate Xm.
Performance analysis and experiments for variable-speed operation were conducted on a three
phase,four-pole,50-Hz,380-V,4.5-A,1.8-kW, star/star connected WRIG whose per-unit equivalent circuit
constants are R1=0.0597,X1=0.118,R2=0.0982,X2=0.118. The magnetization curve (plot of E1 versus Xm) was
represented by the following set of describing equations:
Fig.3 Magnetization Curve Table 1-Magnetization curve parameter
Xm (pu) E (pu) Im (pu)
0.2 1.393 6.967
0.6 1.2603 2.10
1 1.1286 1.1286
1.7728 0.8714 0.4915
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
71
To achieve higher system efficiency, it is important that the power dissipated in Rx be fully utilized. The total
power output of the WRIG is then the sum of the stator load power and the power consumed by Rx. The
operating speed range of the WRIG depends upon the maximum value of Rx available, the rated voltage of the
rotor winding, as well as the mechanical constraints of the turbine generator system.
3. FREQUENCY AND VOLTAGE CONTROL:
It is assumed that both the excitation capacitance and stator load resistance remain constant,
while Rx is varied with b in order to maintain a constant output frequency. For convenience, the conductance
Ge= Gt+Gm and the slip parameter γ = a-b are introduced. From (4) and (5), the following equation may be
written:
Ge+γR2/R2
2
+γ2
X2
2
=0 (7)
It should be noted that for a specified value of a, Ge is a constant when the excitation
capacitance and load resistance are both constant.
Solving (7) for γ, one obtains
(8)
For practical induction generators, the term R2/(a-b) usually assumes a large negative value; hence, the
negative sign in the numerator of (8) should be chosen. Therefore Equation (9)
(9)
Shows that the total rotor circuit resistance should be varied linearly with the per-unit speed b in
order to control the frequency at a given value. Substituting (10) into (6)
(10)
Equation (10) implies that for a given per-unit frequency a, excitation capacitance and load
resistance, the magnetizing reactance Xm of the WRIG, and hence, the air gap voltage is independent of the rotor
speed.
Fig. 6(b) shows the variation of external rotor resistance and the resultant output voltage when
the per-unit frequency of the WRIG is maintained at 1.0 p.u. and the stator load is 1800w. Over a wide range of
speed, the stator voltage remains constant at 530v when C= 30µf.
4. CONTROL WITH VARIABLE STATOR LOAD:
When the stator load impedance is changed, it is also possible to maintain the output frequency
constant by varying Rx, but the stator terminal voltage will differ from the nominal value. In order to control the
stator terminal voltage at the desired value, it is necessary to control the excitation capacitance C simultaneously
Rx as is varied. The analysis can now be formulated as the following problem. For a given value of load
impedance ZL and per-unit speed b,to determine the values of C and Rx that result in operation of the WRIG at
the specified voltageV1* and per-unit frequency. at a specific rotor speed, has to be increased when the output
power increases, while has to be reduced. There is thus a value of output power at which is reduced to zero,
which corresponds to operation with the slip-rings short-circuited. At b=1.56 p.u. for example, this condition
prevails when the machine is delivering an output power of 530v.
[A] External Rotor Resistance Controller using Chopper:
It is desirable to have automatic control of the voltage and frequency when either the stator loads
Impedance or the rotor speed changes. Instead of a variable three-phase rotor resistance, a Chopper-controlled
external resistance may be employed, as illustrated in Fig. 4. Assuming that the diodes in the rotor bridge
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
72
rectifier are ideal and the choke is lossless, the effective external resistance per phase in the rotor circuit, referred
to the stator winding, is given by [12]
(11)
Rx= 430Ω
Where Rdc = dc resistance across the chopper, α = duty cycle of the chopper
αt = stator/rotor turns ratio.
Fig.4 WRIG with chopper controlled ext .rotor resistance
A reduction in the duty cycle of the chopper results in an increase in the effective rotor resistance of the
WRIG. A variable external resistance is thus presented to the rotor circuit.
[B] Closed-Loop Control:
Fig.5 shows the block diagram for closed-loop control of voltage and frequency of the
WRIG.The stator terminal voltage is conveniently chosen as the feedback variable since any change in speed and
stator load impedance will result in a corresponding change in the terminal voltage. Referring to fig.5, the stator
terminal voltage signal, derived from the step-down isolation transformer and signal conditioning circuit, is
compared with the reference signal that corresponds to the set-point voltage. The error signal is fed to a
proportional- plus-integral (PI) controller that outputs a signal for controlling the duty cycle of the chopper via
pulse-width modulation (PWM), opto isolation. In the prototype controller implemented, the chopper main
switch was a power metal-oxide semiconductor field-effect transistor (MOSFET) controlled by a PWM circuit.
Fig. 5 Feedback circuit for voltage control of WRIG
Proper tuning of the PI controller is required in order to give satisfactory dynamic performance.
For this purpose, the WRIG may be approximated as a first-order system with the following transfer function:
The parameters of the transfer function may be determined using the open-loop step response
method [13]. With the transfer function identified, the gain of the proportional controller Kp and the gain of the
integral controller Ki can be determined using the Ziegler–Nichols open-loop tuning method [13].
[C] Dynamic Response:
To study the dynamic response of the WRIG with closed-loop control, the machine was driven
by a separately-excited dc motor that emulated an unregulated, variable-speed turbine while a resistive load was
being supplied. It was found that with an excitation capacitance of 30µf per phase, the terminal voltage could be
maintained at the rated value over a wide speed range, the maximum rotor speed attained being limited primarily
by the rated current of the dc motor. The PI controller took effect as soon as the speed started to change,
outputting a corresponding PWM control signal. The stator voltage was restored to the set-point value in
approximately 2s when the speed was increased from 1.56 to 1.86p.u. (Fig. 6 c& d), and 3.2 s when the speed
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
73
was decreased from 2 to 1.75 p.u. (fig. 6 c& d) at no load. The dynamic response characteristics displayed very
little overshoot, showing that the controller had been properly designed, with minimal overshoot and small
steady-state error.
TABLE 2
Simulation Result in MATLAB Full load to No-load
Load
(W)
O/P
Voltage
(V)
O/P
Current
(A)
Stator
voltage
(pu)
Stator
current
(pu)
Torque
(pu)
1800 510 4 1 1 -1.3
1500 520 3.3 1 1 -1.2
500 530 0.9 1 1 -1
100 550 0.3 1 1 -0.5
Stator output voltage in no load (100w) Stator output voltage full load (1800w)
Fig.6 (a) Fig.6 (b)
Rotor speed (rpm) in no load(100w) Rotor speed (rpm) in full load (1800w)
Fig.6(c) Fig. 6(d)
5. CONCLUSION
This paper has presented the voltage and frequency control for a self-excited slip-ring induction generator by
varying the external rotor resistance. Steady-state performance and the control characteristics of the WRIG have
been obtained from an equivalent circuit analysis. It is shown that with a constant load Impedance and excitation
capacitance, both the frequency and the output voltage of the WRIG can be maintained constant by rotor
resistance control over a wide range of speeds without exceeding the stator current limit. A properly tuned PI
controller enables good steady-state accuracy and satisfactory dynamic response to be obtained on the generator
system.
6.REFERENCES
[1] M. A. Al-Saffa, E.-C. Nho, and T. A. Lipo, “Controlled shunt capacitor self-excited induction generator,” in
Proc. 33rd IEEE Ind. Applicat. Soc. Annu. Meeting, vol. 2, 1998, pp.1486–1490.
[2] R. Bonert and S. Rajakaruna, “Self-excited induction generator with excellent voltage and frequency
control,” Proc. Inst. Elect. Eng.–Gen., Transm. Dist., vol.145, no.1, pp.33–39, 1998.
[3] E. G. Marra and J. A. Pomilio, “Induction-generator-based system providing regulated voltage with constant
frequency,” IEEE Trans. Ind. Electron., vol. 47, pp. 908–914, Aug. 2000.
[4] O. Chtchetinine, “Voltage stabilization system for induction generator in stand alone mode,” IEEE Trans.
Energy Conversion, vol. 14, pp. 298–303, Sept. 1999.
Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications
74
[5] E. Suarez and G. Bortolotto, “Voltage-frequency control of a self-excited induction generator,” IEEE Trans.
Energy Conversion, vol. 14, pp. 94–401, Sept. 1999.
[6] Z. M. Salameh and L. F. Kazda, “Analysis of the steady state performance of the double output induction
generator,” IEEE Trans. Energy Conversion, vol. EC-1, pp. 26–32, Mar. 1986.
[7] K. A. Nigim, “Static exciter for wound rotor induction machine,” in Proc. Conf. Rec. 16th Ind. Applicat.
Soc. Annu. Meeting, vol. 2, 1990, pp. 934–937.
[ 8] F. Giraud and Z. M. Salameh, “Wind-driven, variable-speed, variable- frequency, double-output, induction
generator,” Elect. Mach. Power Syst., vol. 26, pp. 287–297, 1998.
[9] M. G. Say, Alternating Current Machines, 5th ed. London, U.K.: Pitman Publishers (ELBS), 1983, pp.
333–336.
[10] L. Ouazene and G. McPherson, Jr, “Analysis of the isolated induction generator,” IEEE Trans. Power App.
Syst., vol. PAS-102, pp.2793–2798, Aug.1983.
[11] T. F. Chan, “Analysis of self-excited induction generators using an iterative method,” IEEE Trans.
Energy Conversion, vol. 10, pp. 502–507, Sept. 1995.
[12] G. K. Dubey, Power Semiconductor Controlled Drives. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[13] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. Research Triangle Park, NC:
Instrument Society of America, 1995.
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.
More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org
CALL FOR PAPERS
The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. There’s no deadline for
submission. Prospective authors of IISTE journals can find the submission
instruction on the following page: http://www.iiste.org/Journals/
The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

More Related Content

What's hot

A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...IAES-IJPEDS
 
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...INFOGAIN PUBLICATION
 
Fault Analysis of DFIG under Grid Disturbances
Fault Analysis of DFIG under Grid DisturbancesFault Analysis of DFIG under Grid Disturbances
Fault Analysis of DFIG under Grid DisturbancesIJERA Editor
 
The Self Excited Induction Generator with Observation Magnetizing Characteris...
The Self Excited Induction Generator with Observation Magnetizing Characteris...The Self Excited Induction Generator with Observation Magnetizing Characteris...
The Self Excited Induction Generator with Observation Magnetizing Characteris...IJPEDS-IAES
 
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...Société Française d'Energie Nucléaire
 
Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...ISA Interchange
 
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...Analytical Description of Dc Motor with Determination of Rotor Damping Consta...
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...theijes
 
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...IJERA Editor
 
Design and Modelling of 5 Phase DFIM for Wind Energy System
Design and Modelling of 5 Phase DFIM for Wind Energy SystemDesign and Modelling of 5 Phase DFIM for Wind Energy System
Design and Modelling of 5 Phase DFIM for Wind Energy SystemShachin Shibi
 
Control of the powerquality for a DFIG powered by multilevel inverters
Control of the powerquality for a DFIG powered  by multilevel inverters Control of the powerquality for a DFIG powered  by multilevel inverters
Control of the powerquality for a DFIG powered by multilevel inverters IJECEIAES
 
Analysis of wind turbine driven permanent magnet synchronous generator under ...
Analysis of wind turbine driven permanent magnet synchronous generator under ...Analysis of wind turbine driven permanent magnet synchronous generator under ...
Analysis of wind turbine driven permanent magnet synchronous generator under ...Alexander Decker
 
Final Report_Solar_Powered_Battery_Charger
Final Report_Solar_Powered_Battery_ChargerFinal Report_Solar_Powered_Battery_Charger
Final Report_Solar_Powered_Battery_ChargerNathan TeBeest
 
Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Alexander Decker
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Alan Courtay
 

What's hot (19)

A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
 
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...
Ijaems apr-2016-29 Application of STATCOM for Enhancing Steady and Dynamic Pe...
 
I1086470
I1086470I1086470
I1086470
 
JSAEM
JSAEMJSAEM
JSAEM
 
Cm36532538
Cm36532538Cm36532538
Cm36532538
 
Fault Analysis of DFIG under Grid Disturbances
Fault Analysis of DFIG under Grid DisturbancesFault Analysis of DFIG under Grid Disturbances
Fault Analysis of DFIG under Grid Disturbances
 
E010343239
E010343239E010343239
E010343239
 
H1103015764
H1103015764H1103015764
H1103015764
 
The Self Excited Induction Generator with Observation Magnetizing Characteris...
The Self Excited Induction Generator with Observation Magnetizing Characteris...The Self Excited Induction Generator with Observation Magnetizing Characteris...
The Self Excited Induction Generator with Observation Magnetizing Characteris...
 
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...
Michael Fuchs the Head of Technology at E.On Kernkraft (Atoms for the Future ...
 
Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...
 
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...Analytical Description of Dc Motor with Determination of Rotor Damping Consta...
Analytical Description of Dc Motor with Determination of Rotor Damping Consta...
 
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
 
Design and Modelling of 5 Phase DFIM for Wind Energy System
Design and Modelling of 5 Phase DFIM for Wind Energy SystemDesign and Modelling of 5 Phase DFIM for Wind Energy System
Design and Modelling of 5 Phase DFIM for Wind Energy System
 
Control of the powerquality for a DFIG powered by multilevel inverters
Control of the powerquality for a DFIG powered  by multilevel inverters Control of the powerquality for a DFIG powered  by multilevel inverters
Control of the powerquality for a DFIG powered by multilevel inverters
 
Analysis of wind turbine driven permanent magnet synchronous generator under ...
Analysis of wind turbine driven permanent magnet synchronous generator under ...Analysis of wind turbine driven permanent magnet synchronous generator under ...
Analysis of wind turbine driven permanent magnet synchronous generator under ...
 
Final Report_Solar_Powered_Battery_Charger
Final Report_Solar_Powered_Battery_ChargerFinal Report_Solar_Powered_Battery_Charger
Final Report_Solar_Powered_Battery_Charger
 
Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
 

Similar to Dynamic response of wound rotor induction generator for wind energy application

Active and Reactive Power Control of a Doubly Fed Induction Generator
Active and Reactive Power Control of a Doubly Fed Induction GeneratorActive and Reactive Power Control of a Doubly Fed Induction Generator
Active and Reactive Power Control of a Doubly Fed Induction GeneratorIJPEDS-IAES
 
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...IJPEDS-IAES
 
IRJET- Simulation of a Doubly Fed Induction Generator based Wind Energy C...
IRJET-  	  Simulation of a Doubly Fed Induction Generator based Wind Energy C...IRJET-  	  Simulation of a Doubly Fed Induction Generator based Wind Energy C...
IRJET- Simulation of a Doubly Fed Induction Generator based Wind Energy C...IRJET Journal
 
ECE711_Project_Digvijay_Raghunathan
ECE711_Project_Digvijay_RaghunathanECE711_Project_Digvijay_Raghunathan
ECE711_Project_Digvijay_RaghunathanDigvijay Raghunathan
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
New direct torque control SIDDANNA M BALAPGOL
New direct torque control SIDDANNA M BALAPGOLNew direct torque control SIDDANNA M BALAPGOL
New direct torque control SIDDANNA M BALAPGOLSiddanna Balapgol
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Uday Wankar
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Uday Wankar
 
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...IRJET Journal
 
Life Cycle of Big Data Analysis by using MapReduce Algorithm
Life Cycle of Big Data Analysis by using MapReduce AlgorithmLife Cycle of Big Data Analysis by using MapReduce Algorithm
Life Cycle of Big Data Analysis by using MapReduce AlgorithmIRJET Journal
 
Load Frequency Control of DFIG-isolated and Grid Connected Mode
Load Frequency Control of DFIG-isolated and Grid Connected ModeLoad Frequency Control of DFIG-isolated and Grid Connected Mode
Load Frequency Control of DFIG-isolated and Grid Connected ModeIJAPEJOURNAL
 
Performance investigation of stand-alone induction generator based on STATCOM...
Performance investigation of stand-alone induction generator based on STATCOM...Performance investigation of stand-alone induction generator based on STATCOM...
Performance investigation of stand-alone induction generator based on STATCOM...IJECEIAES
 
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side Converter
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side ConverterVoltage Oriented Decoupled Control Scheme for DFIG’s Grid Side Converter
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side ConverterTELKOMNIKA JOURNAL
 
Active and Reactive Power control operation of DFIG forWind Power Generation ...
Active and Reactive Power control operation of DFIG forWind Power Generation ...Active and Reactive Power control operation of DFIG forWind Power Generation ...
Active and Reactive Power control operation of DFIG forWind Power Generation ...IOSR Journals
 
05 13 jan17 13239 dfim dpcs(edit)
05 13 jan17 13239 dfim dpcs(edit)05 13 jan17 13239 dfim dpcs(edit)
05 13 jan17 13239 dfim dpcs(edit)IAESIJEECS
 
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...IOSR Journals
 

Similar to Dynamic response of wound rotor induction generator for wind energy application (20)

Active and Reactive Power Control of a Doubly Fed Induction Generator
Active and Reactive Power Control of a Doubly Fed Induction GeneratorActive and Reactive Power Control of a Doubly Fed Induction Generator
Active and Reactive Power Control of a Doubly Fed Induction Generator
 
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...
Low Voltage Ride-through Capability Enhancement of Doubly Fed Induction Gener...
 
IRJET- Simulation of a Doubly Fed Induction Generator based Wind Energy C...
IRJET-  	  Simulation of a Doubly Fed Induction Generator based Wind Energy C...IRJET-  	  Simulation of a Doubly Fed Induction Generator based Wind Energy C...
IRJET- Simulation of a Doubly Fed Induction Generator based Wind Energy C...
 
ECE711_Project_Digvijay_Raghunathan
ECE711_Project_Digvijay_RaghunathanECE711_Project_Digvijay_Raghunathan
ECE711_Project_Digvijay_Raghunathan
 
G010234652
G010234652G010234652
G010234652
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
New direct torque control SIDDANNA M BALAPGOL
New direct torque control SIDDANNA M BALAPGOLNew direct torque control SIDDANNA M BALAPGOL
New direct torque control SIDDANNA M BALAPGOL
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...
 
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...
Improvement of Transient Stability in Doubly Fed Induction Wind Generator usi...
 
Life Cycle of Big Data Analysis by using MapReduce Algorithm
Life Cycle of Big Data Analysis by using MapReduce AlgorithmLife Cycle of Big Data Analysis by using MapReduce Algorithm
Life Cycle of Big Data Analysis by using MapReduce Algorithm
 
Load Frequency Control of DFIG-isolated and Grid Connected Mode
Load Frequency Control of DFIG-isolated and Grid Connected ModeLoad Frequency Control of DFIG-isolated and Grid Connected Mode
Load Frequency Control of DFIG-isolated and Grid Connected Mode
 
Performance investigation of stand-alone induction generator based on STATCOM...
Performance investigation of stand-alone induction generator based on STATCOM...Performance investigation of stand-alone induction generator based on STATCOM...
Performance investigation of stand-alone induction generator based on STATCOM...
 
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side Converter
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side ConverterVoltage Oriented Decoupled Control Scheme for DFIG’s Grid Side Converter
Voltage Oriented Decoupled Control Scheme for DFIG’s Grid Side Converter
 
Active and Reactive Power control operation of DFIG forWind Power Generation ...
Active and Reactive Power control operation of DFIG forWind Power Generation ...Active and Reactive Power control operation of DFIG forWind Power Generation ...
Active and Reactive Power control operation of DFIG forWind Power Generation ...
 
Mh3621022106
Mh3621022106Mh3621022106
Mh3621022106
 
05 13 jan17 13239 dfim dpcs(edit)
05 13 jan17 13239 dfim dpcs(edit)05 13 jan17 13239 dfim dpcs(edit)
05 13 jan17 13239 dfim dpcs(edit)
 
Hr3513381342
Hr3513381342Hr3513381342
Hr3513381342
 
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...
Commanding Doubly-Fed Induction Generator (DFIG) to Decouple Active and React...
 

More from Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

More from Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Recently uploaded

Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaoncallgirls2057
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Riya Pathan
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadIslamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadAyesha Khan
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdfKhaled Al Awadi
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...lizamodels9
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCRashishs7044
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africaictsugar
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 

Recently uploaded (20)

Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadIslamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africa
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 

Dynamic response of wound rotor induction generator for wind energy application

  • 1. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 69 Dynamic Response of Wound Rotor Induction Generator for Wind Energy Application Saurabh Gupta Kishor Thakre Gaurav Gupta Research scholar Research scholar Research Scholar UIT-RGPV BHOPAL UIT-RGPV BHOPAL UIT-RGPV BHOPAL saurabhgupta.sgsits@gmail.com thakrekishor26@gmail.com gauravmits@yahoo.com ABSTRACT The magnitude and frequency of the output voltage can be controlled by varying the effective rotor resistance of a wound rotor induction generator (WRIG), over a wide speed range. For a given stator load impedance, both the frequency and the voltage can be maintained constant as the speed is varied, without changing the excitation capacitance. When the stator load is variable, simultaneous voltage and frequency control requires the excitation capacitance to be changed as the rotor resistance is varied. Simulations performed on a 1.8-kW wound rotor induction machine confirm the feasibility of the method of control. Simulated implementation of a closed-loop control scheme for a WRIG using chopper-controlled rotor resistance is also discussed. With a properly tuned proportional-plus-integral (PI) controller, satisfactory dynamic performance of the WRIG is obtained. The implemented scheme may be used in a low-cost variable-speed wind energy system for providing good-quality electric power to remote regions. Index Terms—Induction generators, slip-ring machines, voltage and frequency control. 1. INTRODUCTION In this paper unlike induction generators connected to the power utility grid, both the frequency and the terminal voltage of the SEIG vary with load even when the rotor speed is maintained constant. An increase in the rotor speed will result in a proportionate increase in frequency, often accompanied by severe over voltage and excessive current. Recently, there has been rigorous research on the voltage and frequency control of squirrel-cage type SEIGs [1]–[5], but relatively little research efforts have been devoted to the use of the slip-ring induction machine for generator applications. Although the slip-ring machine is more expensive and requires more maintenance, it permits rotor slip-power control when driven by a variable-speed turbine. When a grid connection is permissible, the slip-ring machine may be operated as a double-output induction generator (DOIG) using the slip-energy recovery technique [6]. In the case of a wound rootor induction generator (WRIG), the system cost can be further reduced by the use of a simple rotor resistance controller [7], [8]. Since only a capacitor bank needs to be connected to the stator terminals. Another advantageous feature of the WRIG is that independent control of the voltage and frequency can be achieved easily. The rating of the rotor resistance controller is small compared with the generator rating; hence, the cost saving is quite significant. Fig.1shows the circuit arrangement of a three-phase WRIG. The excitation capacitance C is required for initiating voltage buildup and maintaining the output voltage. Fig.1 wound rotor induction generator. 2. PERFORMANCE AND ANALYSIS OF WRIG Fig.2 shows the per-phase equivalent circuit of the WRIG, where the rotor resistance R2 is the sum of the rotor
  • 2. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 70 winding resistance and the external rotor resistance, both referred to the stator side. The circuit has been normalized to the base (rated) frequency through the introduction of the per-unit frequency “a” and the per-unit speed “b” [9]. Fig.2 Per-phase equivalent circuit of the WRIG Various methods have been developed for solution of the SEIG equivalent circuit. Adopting the nodal admittance method [10], the following relationship may be established for successful voltage build-up: Yt+Ym+Y2=0 (1) Where Yt = (2) Ym = (3) Y2 = -jB2 (4) Equating the real and imaginary parts in (1) to zero, respectively, the fallowing equations in real numbers are obtained: Gt+Gm+G2=0 (5) Bt-Bm-B2=0 (6) For a given rotor speed, load impedance and excitation capacitance, (5) is a nonlinear equation in the variable only. Numerical solution of (5) using an iterative method [10] enables a to be determined, and (6) can subsequently be used to calculate Xm. Performance analysis and experiments for variable-speed operation were conducted on a three phase,four-pole,50-Hz,380-V,4.5-A,1.8-kW, star/star connected WRIG whose per-unit equivalent circuit constants are R1=0.0597,X1=0.118,R2=0.0982,X2=0.118. The magnetization curve (plot of E1 versus Xm) was represented by the following set of describing equations: Fig.3 Magnetization Curve Table 1-Magnetization curve parameter Xm (pu) E (pu) Im (pu) 0.2 1.393 6.967 0.6 1.2603 2.10 1 1.1286 1.1286 1.7728 0.8714 0.4915
  • 3. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 71 To achieve higher system efficiency, it is important that the power dissipated in Rx be fully utilized. The total power output of the WRIG is then the sum of the stator load power and the power consumed by Rx. The operating speed range of the WRIG depends upon the maximum value of Rx available, the rated voltage of the rotor winding, as well as the mechanical constraints of the turbine generator system. 3. FREQUENCY AND VOLTAGE CONTROL: It is assumed that both the excitation capacitance and stator load resistance remain constant, while Rx is varied with b in order to maintain a constant output frequency. For convenience, the conductance Ge= Gt+Gm and the slip parameter γ = a-b are introduced. From (4) and (5), the following equation may be written: Ge+γR2/R2 2 +γ2 X2 2 =0 (7) It should be noted that for a specified value of a, Ge is a constant when the excitation capacitance and load resistance are both constant. Solving (7) for γ, one obtains (8) For practical induction generators, the term R2/(a-b) usually assumes a large negative value; hence, the negative sign in the numerator of (8) should be chosen. Therefore Equation (9) (9) Shows that the total rotor circuit resistance should be varied linearly with the per-unit speed b in order to control the frequency at a given value. Substituting (10) into (6) (10) Equation (10) implies that for a given per-unit frequency a, excitation capacitance and load resistance, the magnetizing reactance Xm of the WRIG, and hence, the air gap voltage is independent of the rotor speed. Fig. 6(b) shows the variation of external rotor resistance and the resultant output voltage when the per-unit frequency of the WRIG is maintained at 1.0 p.u. and the stator load is 1800w. Over a wide range of speed, the stator voltage remains constant at 530v when C= 30µf. 4. CONTROL WITH VARIABLE STATOR LOAD: When the stator load impedance is changed, it is also possible to maintain the output frequency constant by varying Rx, but the stator terminal voltage will differ from the nominal value. In order to control the stator terminal voltage at the desired value, it is necessary to control the excitation capacitance C simultaneously Rx as is varied. The analysis can now be formulated as the following problem. For a given value of load impedance ZL and per-unit speed b,to determine the values of C and Rx that result in operation of the WRIG at the specified voltageV1* and per-unit frequency. at a specific rotor speed, has to be increased when the output power increases, while has to be reduced. There is thus a value of output power at which is reduced to zero, which corresponds to operation with the slip-rings short-circuited. At b=1.56 p.u. for example, this condition prevails when the machine is delivering an output power of 530v. [A] External Rotor Resistance Controller using Chopper: It is desirable to have automatic control of the voltage and frequency when either the stator loads Impedance or the rotor speed changes. Instead of a variable three-phase rotor resistance, a Chopper-controlled external resistance may be employed, as illustrated in Fig. 4. Assuming that the diodes in the rotor bridge
  • 4. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 72 rectifier are ideal and the choke is lossless, the effective external resistance per phase in the rotor circuit, referred to the stator winding, is given by [12] (11) Rx= 430Ω Where Rdc = dc resistance across the chopper, α = duty cycle of the chopper αt = stator/rotor turns ratio. Fig.4 WRIG with chopper controlled ext .rotor resistance A reduction in the duty cycle of the chopper results in an increase in the effective rotor resistance of the WRIG. A variable external resistance is thus presented to the rotor circuit. [B] Closed-Loop Control: Fig.5 shows the block diagram for closed-loop control of voltage and frequency of the WRIG.The stator terminal voltage is conveniently chosen as the feedback variable since any change in speed and stator load impedance will result in a corresponding change in the terminal voltage. Referring to fig.5, the stator terminal voltage signal, derived from the step-down isolation transformer and signal conditioning circuit, is compared with the reference signal that corresponds to the set-point voltage. The error signal is fed to a proportional- plus-integral (PI) controller that outputs a signal for controlling the duty cycle of the chopper via pulse-width modulation (PWM), opto isolation. In the prototype controller implemented, the chopper main switch was a power metal-oxide semiconductor field-effect transistor (MOSFET) controlled by a PWM circuit. Fig. 5 Feedback circuit for voltage control of WRIG Proper tuning of the PI controller is required in order to give satisfactory dynamic performance. For this purpose, the WRIG may be approximated as a first-order system with the following transfer function: The parameters of the transfer function may be determined using the open-loop step response method [13]. With the transfer function identified, the gain of the proportional controller Kp and the gain of the integral controller Ki can be determined using the Ziegler–Nichols open-loop tuning method [13]. [C] Dynamic Response: To study the dynamic response of the WRIG with closed-loop control, the machine was driven by a separately-excited dc motor that emulated an unregulated, variable-speed turbine while a resistive load was being supplied. It was found that with an excitation capacitance of 30µf per phase, the terminal voltage could be maintained at the rated value over a wide speed range, the maximum rotor speed attained being limited primarily by the rated current of the dc motor. The PI controller took effect as soon as the speed started to change, outputting a corresponding PWM control signal. The stator voltage was restored to the set-point value in approximately 2s when the speed was increased from 1.56 to 1.86p.u. (Fig. 6 c& d), and 3.2 s when the speed
  • 5. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 73 was decreased from 2 to 1.75 p.u. (fig. 6 c& d) at no load. The dynamic response characteristics displayed very little overshoot, showing that the controller had been properly designed, with minimal overshoot and small steady-state error. TABLE 2 Simulation Result in MATLAB Full load to No-load Load (W) O/P Voltage (V) O/P Current (A) Stator voltage (pu) Stator current (pu) Torque (pu) 1800 510 4 1 1 -1.3 1500 520 3.3 1 1 -1.2 500 530 0.9 1 1 -1 100 550 0.3 1 1 -0.5 Stator output voltage in no load (100w) Stator output voltage full load (1800w) Fig.6 (a) Fig.6 (b) Rotor speed (rpm) in no load(100w) Rotor speed (rpm) in full load (1800w) Fig.6(c) Fig. 6(d) 5. CONCLUSION This paper has presented the voltage and frequency control for a self-excited slip-ring induction generator by varying the external rotor resistance. Steady-state performance and the control characteristics of the WRIG have been obtained from an equivalent circuit analysis. It is shown that with a constant load Impedance and excitation capacitance, both the frequency and the output voltage of the WRIG can be maintained constant by rotor resistance control over a wide range of speeds without exceeding the stator current limit. A properly tuned PI controller enables good steady-state accuracy and satisfactory dynamic response to be obtained on the generator system. 6.REFERENCES [1] M. A. Al-Saffa, E.-C. Nho, and T. A. Lipo, “Controlled shunt capacitor self-excited induction generator,” in Proc. 33rd IEEE Ind. Applicat. Soc. Annu. Meeting, vol. 2, 1998, pp.1486–1490. [2] R. Bonert and S. Rajakaruna, “Self-excited induction generator with excellent voltage and frequency control,” Proc. Inst. Elect. Eng.–Gen., Transm. Dist., vol.145, no.1, pp.33–39, 1998. [3] E. G. Marra and J. A. Pomilio, “Induction-generator-based system providing regulated voltage with constant frequency,” IEEE Trans. Ind. Electron., vol. 47, pp. 908–914, Aug. 2000. [4] O. Chtchetinine, “Voltage stabilization system for induction generator in stand alone mode,” IEEE Trans. Energy Conversion, vol. 14, pp. 298–303, Sept. 1999.
  • 6. Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 74 [5] E. Suarez and G. Bortolotto, “Voltage-frequency control of a self-excited induction generator,” IEEE Trans. Energy Conversion, vol. 14, pp. 94–401, Sept. 1999. [6] Z. M. Salameh and L. F. Kazda, “Analysis of the steady state performance of the double output induction generator,” IEEE Trans. Energy Conversion, vol. EC-1, pp. 26–32, Mar. 1986. [7] K. A. Nigim, “Static exciter for wound rotor induction machine,” in Proc. Conf. Rec. 16th Ind. Applicat. Soc. Annu. Meeting, vol. 2, 1990, pp. 934–937. [ 8] F. Giraud and Z. M. Salameh, “Wind-driven, variable-speed, variable- frequency, double-output, induction generator,” Elect. Mach. Power Syst., vol. 26, pp. 287–297, 1998. [9] M. G. Say, Alternating Current Machines, 5th ed. London, U.K.: Pitman Publishers (ELBS), 1983, pp. 333–336. [10] L. Ouazene and G. McPherson, Jr, “Analysis of the isolated induction generator,” IEEE Trans. Power App. Syst., vol. PAS-102, pp.2793–2798, Aug.1983. [11] T. F. Chan, “Analysis of self-excited induction generators using an iterative method,” IEEE Trans. Energy Conversion, vol. 10, pp. 502–507, Sept. 1995. [12] G. K. Dubey, Power Semiconductor Controlled Drives. Englewood Cliffs, NJ: Prentice-Hall, 1989. [13] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. Research Triangle Park, NC: Instrument Society of America, 1995.
  • 7. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org CALL FOR PAPERS The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar