11/11/2015
1
david.lumley@uwa.edu.auLumley et al., 2014
Nonlinear Uncertainty Analysis:
4D Seismic reservoir monitoring
Prof David Lumley
+ various colleagues and students over the years...
UWA School of Physics; School of Earth & Environment
david.lumley@uwa.edu.auLumley et al., 2014
Outline
• Define “4D”
• Examples of 4D seismic
• Define “uncertainty”
• Nonlinear uncertainty analysis + examples
11/11/2015
2
david.lumley@uwa.edu.auLumley et al., 2014
Outline
• Define “4D”
• Examples of 4D seismic
• Define “uncertainty”
• Nonlinear uncertainty analysis + examples
david.lumley@uwa.edu.auLumley et al., 2014
Geophysics definition of “4D”
1D = f(x1): eg. well logs f(z)
f =
porosity, clay content, age
facies, velocity, density…
11/11/2015
3
david.lumley@uwa.edu.auLumley et al., 2014
Geophysics definition of “4D”
2D = f(x1,x2): eg. maps, cross-sections (x,z)
f =
porosity, clay content, age
structural depth, facies,
reflectivity…
Lumley et al.
david.lumley@uwa.edu.auLumley et al., 2014
Geophysics definition of “4D”
3D = f(x,y,z): volumes (x,y,z)
f =
porosity, clay content, age
velocity, reflectivity…
Niri & Lumley, 2013
11/11/2015
4
david.lumley@uwa.edu.auLumley et al., 2014
Geophysics definition of “4D”
4D = f(x,y,z,t): hyper-cubes (x,y,z,t)
f =
porosity, clay content, age
velocity, reflectivity…
Lumley, 1995
david.lumley@uwa.edu.auLumley et al., 2014
Outline
• Define “4D”
• Examples of 4D seismic
• Define “uncertainty”
• Nonlinear uncertainty analysis + examples
11/11/2015
5
david.lumley@uwa.edu.auLumley et al., 2014
Rock properties can change over time
with fluids, stress, temperature etc…
Duffaut et al.2011
david.lumley@uwa.edu.auLumley et al., 2014
Seismic Image – 2D cross-section
Lumley
11/11/2015
6
david.lumley@uwa.edu.auLumley et al., 2014
Seismic Image – zoom on reservoirs
OWC
Lumley
david.lumley@uwa.edu.auLumley et al., 2014
TIME 1 amplitude map
extracted along top of reservoir structure
Lumley et al., 2003
11/11/2015
7
david.lumley@uwa.edu.auLumley et al., 2014
TIME 2 amplitude map
extracted along top of reservoir structure
Lumley et al., 2003
david.lumley@uwa.edu.auLumley et al., 2014
4D amplitude difference map
extracted along top of reservoir structure
Lumley et al., 2003
11/11/2015
8
david.lumley@uwa.edu.auLumley et al., 2014
4D Monitoring of Steam Injectors
Sigit et al., 1999
steam costs > $2 MM / day
david.lumley@uwa.edu.auLumley et al., 2014
Before… After!
courtesy of Statoil
Monitoring Injection
11/11/2015
9
david.lumley@uwa.edu.auLumley et al., 2014
Injection Pressure Anomaly
Before After
Lumley et al., 2003Lumley et al.
david.lumley@uwa.edu.auLumley et al., 2014
Permanent Array 4D example
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude
changes
Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 1
0
Map of amplitude changes Map of compaction
2003 2004 2005 200820072006
LoFS Survey
Timeline
1 2 3 4 5 6 7 8 9 10
11/11/2015
10
david.lumley@uwa.edu.auLumley et al., 2014
Outline
• Define “4D”
• Examples of 4D seismic
• Define “uncertainty”
• Nonlinear uncertainty analysis + examples
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
input output
A B
transform
11/11/2015
11
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
various data results
A B
workflow
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
earth model simulated data
A B
Forward modeling… F
11/11/2015
12
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
geophysics data image of the earth
A B
Imaging… F*
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
geophysics data earth model
A B
Inversion… F-1
11/11/2015
13
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
geophysics data earth model
Inversion… F-1
A + errors B + ???
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
geophysics data earth model
Inversion… F-1
A + errors B + uncertainty!
11/11/2015
14
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
model simulated data
A + errors B + ???
Forward modeling… F
david.lumley@uwa.edu.auLumley et al., 2014
errors vs. uncertainty
model simulated data
A + errors B + uncertainty!
Forward modeling… F
11/11/2015
15
david.lumley@uwa.edu.auLumley et al., 2014
Errors Uncertainty
Domain 1 Domain 2
A Definition of “uncertainty”
david.lumley@uwa.edu.auLumley et al., 2014
Forward Modeling
Model space Data space
m d
F
11/11/2015
16
david.lumley@uwa.edu.auLumley et al., 2014
Model space
+ errors
Data space
+ uncertainty
m +  d + 
F + 
Forward Modeling
david.lumley@uwa.edu.auLumley et al., 2014
Model space
+ errors
Data space
+ uncertainty
m + 
dmod + 
F + 
dobs + 
Forward Modeling
11/11/2015
17
david.lumley@uwa.edu.auLumley et al., 2014
* You may have the right model, but it may not fit the data!
* You may have the wrong model, but it may fit the data!
Model space
+ errors
Data space
+ uncertainty
m + 
dmod + 
F + 
dobs + 
david.lumley@uwa.edu.auLumley et al., 2014
Non-uniqueness, null space…
Model “null” space Data space
m + m’ d + 
F(m’)≈ 0
11/11/2015
18
david.lumley@uwa.edu.auLumley et al., 2014
Example: low resolution data
Gravity data
david.lumley@uwa.edu.auLumley et al., 2014
“Mickey Mouse model”
Gravity data
11/11/2015
19
david.lumley@uwa.edu.auLumley et al., 2014
Model “null” space Data space
m + imi’ d + 
F(m’)≈ 0
* There are infinitely many models that fit the data!
david.lumley@uwa.edu.auLumley et al., 2014
Uncertainty ≠ Non-uniqueness
11/11/2015
20
david.lumley@uwa.edu.auLumley et al., 2014
Inversion …imaging, estimation
Model space Data space
F-1
m d
david.lumley@uwa.edu.auLumley et al., 2014
Inversion …imaging, estimation
Model space
+ uncertainty
Data space
+ errors
F-1 + 
m +  d + 
11/11/2015
21
david.lumley@uwa.edu.auLumley et al., 2014
Inversion …imaging, estimation
Model space
+ uncertainty
+ non-uniqueness
Data space
+ errors
F-1 + 
m + + m’ d + 
david.lumley@uwa.edu.auLumley et al., 2014
Inversion …imaging, estimation
Model space
+ uncertainty
+ non-uniqueness
* Regularization *
* Model-shaping *
Data space
+ errors
F-1 + 
m + + imi’ d + 
11/11/2015
22
david.lumley@uwa.edu.auLumley et al., 2014
“Mickey Mouse model”
Gravity data
david.lumley@uwa.edu.auLumley et al., 2014
Outline
• Define “4D”
• Examples of 4D seismic
• Define “uncertainty”
• Nonlinear uncertainty analysis + examples
11/11/2015
23
david.lumley@uwa.edu.auLumley et al., 2014
“Closing the loop… history matching”
Observed
Data; t++
Inversion
Estimated
model; t++
Simulation
Predicted
data
david.lumley@uwa.edu.auLumley et al., 2014
4D amplitude difference map
extracted along top of reservoir structure
Lumley et al., 2003
11/11/2015
24
david.lumley@uwa.edu.auLumley et al., 2014
Sources of 4D error and uncertainty
• 4D Seismic data errors
• Non-repeatable noise
• Source-receiver positioning errors
• Changes in the water column / near-surface / overburden
• Changes in acquisition geometry
• Changes in source-receiver characteristics
• Non 4D-compliant processing flow
• Etcetera…
david.lumley@uwa.edu.auLumley et al., 2014
3D Noise
data = “signal” + noise
11/11/2015
25
david.lumley@uwa.edu.auLumley et al., 2014
4D NR Noise
T1 T2 T2-T1
david.lumley@uwa.edu.auLumley et al., 2014
4D Repeatability
Saul & Lumley, 2013
11/11/2015
26
david.lumley@uwa.edu.auLumley et al., 2014
after Landro
4D NRMS vs. position error
david.lumley@uwa.edu.auLumley et al., 2014
image image difference
Image difference
after 40-60 cm tidal
corrections
Eiken et al., EAGE 1999
4D tidal corrections
11/11/2015
27
david.lumley@uwa.edu.auLumley et al., 2014
Line A: before the platform Line B: after the platform
with Petrobras
david.lumley@uwa.edu.auLumley et al., 2014
“Statistical” image processing
Baseline Monitor Difference
Lumley et al., SEG, 1998
11/11/2015
28
david.lumley@uwa.edu.auLumley et al., 2014
Lumley et al., SEG, 1998
Baseline Monitor Difference
“Physics-based” image processing
david.lumley@uwa.edu.auLumley et al., 2014
1999 Local Diff Global Diff
?
4D Local vs. Global optimization
Lumley et al. 2003
11/11/2015
29
david.lumley@uwa.edu.auLumley et al., 2014
Local image difference Global image difference
CO2 injectors?
Lumley et al. 2003
4D Local vs. Global Optimization
david.lumley@uwa.edu.auLumley et al., 2014
Sources of 4D error and uncertainty
• Model definition
• Model parameterization (acoustic, elastic, aniso, attenuation…)
• Physical property relationships (velocity-pressure…)
• Model discretization/sampling (fine, coarse, up/down-scale…)
• Model relationships (geology, seismic, fluid flow…)
• Etcetera…
11/11/2015
30
david.lumley@uwa.edu.auLumley et al., 2014
Reservoir container
david.lumley@uwa.edu.auLumley et al., 2014
Reservoir properties
11/11/2015
31
david.lumley@uwa.edu.auLumley et al., 2014
Up/down scaling
david.lumley@uwa.edu.auLumley et al., 2014
porosity clay fraction
11/11/2015
32
david.lumley@uwa.edu.auLumley et al., 2014
Rock physics param pdfs
david.lumley@uwa.edu.auLumley et al., 2014
Sources of 4D error and uncertainty
• Physics (modeling/inversion operators/code)
• Linear versus nonlinear
• Acoustic, Elastic, Anisotropy, Attenuation…
• Convolution, Raytracing, Finite Difference…
• Algorithm implementations
• Etcetera…
11/11/2015
33
david.lumley@uwa.edu.auLumley et al., 2014
4D FD elastic modeling
david.lumley@uwa.edu.auLumley et al., 2014
1 layer CO2
Lumley et al., 2008
synth PSDM
11/11/2015
34
david.lumley@uwa.edu.auLumley et al., 2014
real PSTM
1 layer CO2
StatoilLumley et al., 2008
synth PSDM
david.lumley@uwa.edu.auLumley et al., 2014
Sources of 4D error and uncertainty
• Optimization criteria (inversion/estimation)
• Least squares (L2), Least absolute (L1), hybrid…
• Optimal fit to data, amplitude, phase…
• Multiple objectives, weighting schemes…
• Inversion constraints (soft, hard, weighted…)
• Optimization method (gradients, stochastic, MC, PSO, genetic…)
• Resolution, Null space, Non-uniqueness…
• Etcetera…
11/11/2015
35
david.lumley@uwa.edu.auLumley et al., 2014
Multi-objective optimisation
find a reservoir model m such that:
min E = (seismic)p + (logs)q + (geology)r + …
david.lumley@uwa.edu.auLumley et al., 2014
13.22
13.27
13.32
13.37
13.42
13.47
13.52
13.57
36 41 46
ObjectiveFunction2
Objective Function 1
Generation 1
13.22
13.24
13.26
13.28
13.3
13.32
13.34
13.36
35 36 37 38 39 40
ObjectiveFunction2
Objective Function 1
Generation 10
13.12
13.14
13.16
13.18
13.2
13.22
13.24
13.26
30 32 34 36 38
ObjectiveFunction2
Objective Function 1
Generation 20
13
13.02
13.04
13.06
13.08
13.1
13.12
26 27 28 29 30
ObjectiveFunction2
Objective Function 1
Generation 50
12.96
12.97
12.98
12.99
13
13.01
13.02
13.03
13.04
13.05
13.06
24 25 26 27 28 29
ObjectiveFunction2
Objective Function 1
Generation 70
12.95
12.96
12.97
12.98
12.99
13
13.01
13.02
13.03
13.04
13.05
24 25 26 27 28
ObjectiveFunction2
Objective Function 1
Generation 100
Multi-objective optimization – “Pareto front”
70
Niri & Lumley 2013
11/11/2015
36
david.lumley@uwa.edu.auLumley et al., 2014
a) Reference Litho-facies model
b) Before MO model updating c) After MO model updating
 Average Mismatch error reduced from 36.5% to 14.6%
Multi-objective optimization – “Pareto front”
Niri & Lumley 2013
david.lumley@uwa.edu.auLumley et al., 2014
How to quantify 4D errors + uncertainty?
11/11/2015
37
david.lumley@uwa.edu.auLumley et al., 2014
How to quantify 4D errors + uncertainty?
>> Nonlinear stochastic error propagation
david.lumley@uwa.edu.auLumley et al., 2014
d1 d2 p
N=1000 realizations
Sw Pp
4D inversion
statistics
N=1000
11/11/2015
38
david.lumley@uwa.edu.auLumley et al., 2014
4D seismic image of
water saturation (Sw)
a
b
david.lumley@uwa.edu.auLumley et al., 2014
4D seismic inversion for
water saturation (Sw)
Sw
a
b
11/11/2015
39
david.lumley@uwa.edu.auLumley et al., 2014
{Sw} for 1000 realizations
a
b
david.lumley@uwa.edu.auLumley et al., 2014
signal to noise ratio “S/N” of Sw
a
b
11/11/2015
40
david.lumley@uwa.edu.auLumley et al., 2014
Probability that Sw > 0.5
a
b
david.lumley@uwa.edu.auLumley et al., 2014
“Closing the loop… history matching”
Observed
Data; t++
Inversion
Estimated
model; t++
Simulation
Predicted
data
11/11/2015
41
david.lumley@uwa.edu.auLumley et al., 2014

David Lumley - 4D uncertainty - Nov 11, 2015

  • 1.
    11/11/2015 1 david.lumley@uwa.edu.auLumley et al.,2014 Nonlinear Uncertainty Analysis: 4D Seismic reservoir monitoring Prof David Lumley + various colleagues and students over the years... UWA School of Physics; School of Earth & Environment david.lumley@uwa.edu.auLumley et al., 2014 Outline • Define “4D” • Examples of 4D seismic • Define “uncertainty” • Nonlinear uncertainty analysis + examples
  • 2.
    11/11/2015 2 david.lumley@uwa.edu.auLumley et al.,2014 Outline • Define “4D” • Examples of 4D seismic • Define “uncertainty” • Nonlinear uncertainty analysis + examples david.lumley@uwa.edu.auLumley et al., 2014 Geophysics definition of “4D” 1D = f(x1): eg. well logs f(z) f = porosity, clay content, age facies, velocity, density…
  • 3.
    11/11/2015 3 david.lumley@uwa.edu.auLumley et al.,2014 Geophysics definition of “4D” 2D = f(x1,x2): eg. maps, cross-sections (x,z) f = porosity, clay content, age structural depth, facies, reflectivity… Lumley et al. david.lumley@uwa.edu.auLumley et al., 2014 Geophysics definition of “4D” 3D = f(x,y,z): volumes (x,y,z) f = porosity, clay content, age velocity, reflectivity… Niri & Lumley, 2013
  • 4.
    11/11/2015 4 david.lumley@uwa.edu.auLumley et al.,2014 Geophysics definition of “4D” 4D = f(x,y,z,t): hyper-cubes (x,y,z,t) f = porosity, clay content, age velocity, reflectivity… Lumley, 1995 david.lumley@uwa.edu.auLumley et al., 2014 Outline • Define “4D” • Examples of 4D seismic • Define “uncertainty” • Nonlinear uncertainty analysis + examples
  • 5.
    11/11/2015 5 david.lumley@uwa.edu.auLumley et al.,2014 Rock properties can change over time with fluids, stress, temperature etc… Duffaut et al.2011 david.lumley@uwa.edu.auLumley et al., 2014 Seismic Image – 2D cross-section Lumley
  • 6.
    11/11/2015 6 david.lumley@uwa.edu.auLumley et al.,2014 Seismic Image – zoom on reservoirs OWC Lumley david.lumley@uwa.edu.auLumley et al., 2014 TIME 1 amplitude map extracted along top of reservoir structure Lumley et al., 2003
  • 7.
    11/11/2015 7 david.lumley@uwa.edu.auLumley et al.,2014 TIME 2 amplitude map extracted along top of reservoir structure Lumley et al., 2003 david.lumley@uwa.edu.auLumley et al., 2014 4D amplitude difference map extracted along top of reservoir structure Lumley et al., 2003
  • 8.
    11/11/2015 8 david.lumley@uwa.edu.auLumley et al.,2014 4D Monitoring of Steam Injectors Sigit et al., 1999 steam costs > $2 MM / day david.lumley@uwa.edu.auLumley et al., 2014 Before… After! courtesy of Statoil Monitoring Injection
  • 9.
    11/11/2015 9 david.lumley@uwa.edu.auLumley et al.,2014 Injection Pressure Anomaly Before After Lumley et al., 2003Lumley et al. david.lumley@uwa.edu.auLumley et al., 2014 Permanent Array 4D example Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 1 0 Map of amplitude changes Map of compaction 2003 2004 2005 200820072006 LoFS Survey Timeline 1 2 3 4 5 6 7 8 9 10
  • 10.
    11/11/2015 10 david.lumley@uwa.edu.auLumley et al.,2014 Outline • Define “4D” • Examples of 4D seismic • Define “uncertainty” • Nonlinear uncertainty analysis + examples david.lumley@uwa.edu.auLumley et al., 2014 errors vs. uncertainty input output A B transform
  • 11.
    11/11/2015 11 david.lumley@uwa.edu.auLumley et al.,2014 errors vs. uncertainty various data results A B workflow david.lumley@uwa.edu.auLumley et al., 2014 errors vs. uncertainty earth model simulated data A B Forward modeling… F
  • 12.
    11/11/2015 12 david.lumley@uwa.edu.auLumley et al.,2014 errors vs. uncertainty geophysics data image of the earth A B Imaging… F* david.lumley@uwa.edu.auLumley et al., 2014 errors vs. uncertainty geophysics data earth model A B Inversion… F-1
  • 13.
    11/11/2015 13 david.lumley@uwa.edu.auLumley et al.,2014 errors vs. uncertainty geophysics data earth model Inversion… F-1 A + errors B + ??? david.lumley@uwa.edu.auLumley et al., 2014 errors vs. uncertainty geophysics data earth model Inversion… F-1 A + errors B + uncertainty!
  • 14.
    11/11/2015 14 david.lumley@uwa.edu.auLumley et al.,2014 errors vs. uncertainty model simulated data A + errors B + ??? Forward modeling… F david.lumley@uwa.edu.auLumley et al., 2014 errors vs. uncertainty model simulated data A + errors B + uncertainty! Forward modeling… F
  • 15.
    11/11/2015 15 david.lumley@uwa.edu.auLumley et al.,2014 Errors Uncertainty Domain 1 Domain 2 A Definition of “uncertainty” david.lumley@uwa.edu.auLumley et al., 2014 Forward Modeling Model space Data space m d F
  • 16.
    11/11/2015 16 david.lumley@uwa.edu.auLumley et al.,2014 Model space + errors Data space + uncertainty m +  d +  F +  Forward Modeling david.lumley@uwa.edu.auLumley et al., 2014 Model space + errors Data space + uncertainty m +  dmod +  F +  dobs +  Forward Modeling
  • 17.
    11/11/2015 17 david.lumley@uwa.edu.auLumley et al.,2014 * You may have the right model, but it may not fit the data! * You may have the wrong model, but it may fit the data! Model space + errors Data space + uncertainty m +  dmod +  F +  dobs +  david.lumley@uwa.edu.auLumley et al., 2014 Non-uniqueness, null space… Model “null” space Data space m + m’ d +  F(m’)≈ 0
  • 18.
    11/11/2015 18 david.lumley@uwa.edu.auLumley et al.,2014 Example: low resolution data Gravity data david.lumley@uwa.edu.auLumley et al., 2014 “Mickey Mouse model” Gravity data
  • 19.
    11/11/2015 19 david.lumley@uwa.edu.auLumley et al.,2014 Model “null” space Data space m + imi’ d +  F(m’)≈ 0 * There are infinitely many models that fit the data! david.lumley@uwa.edu.auLumley et al., 2014 Uncertainty ≠ Non-uniqueness
  • 20.
    11/11/2015 20 david.lumley@uwa.edu.auLumley et al.,2014 Inversion …imaging, estimation Model space Data space F-1 m d david.lumley@uwa.edu.auLumley et al., 2014 Inversion …imaging, estimation Model space + uncertainty Data space + errors F-1 +  m +  d + 
  • 21.
    11/11/2015 21 david.lumley@uwa.edu.auLumley et al.,2014 Inversion …imaging, estimation Model space + uncertainty + non-uniqueness Data space + errors F-1 +  m + + m’ d +  david.lumley@uwa.edu.auLumley et al., 2014 Inversion …imaging, estimation Model space + uncertainty + non-uniqueness * Regularization * * Model-shaping * Data space + errors F-1 +  m + + imi’ d + 
  • 22.
    11/11/2015 22 david.lumley@uwa.edu.auLumley et al.,2014 “Mickey Mouse model” Gravity data david.lumley@uwa.edu.auLumley et al., 2014 Outline • Define “4D” • Examples of 4D seismic • Define “uncertainty” • Nonlinear uncertainty analysis + examples
  • 23.
    11/11/2015 23 david.lumley@uwa.edu.auLumley et al.,2014 “Closing the loop… history matching” Observed Data; t++ Inversion Estimated model; t++ Simulation Predicted data david.lumley@uwa.edu.auLumley et al., 2014 4D amplitude difference map extracted along top of reservoir structure Lumley et al., 2003
  • 24.
    11/11/2015 24 david.lumley@uwa.edu.auLumley et al.,2014 Sources of 4D error and uncertainty • 4D Seismic data errors • Non-repeatable noise • Source-receiver positioning errors • Changes in the water column / near-surface / overburden • Changes in acquisition geometry • Changes in source-receiver characteristics • Non 4D-compliant processing flow • Etcetera… david.lumley@uwa.edu.auLumley et al., 2014 3D Noise data = “signal” + noise
  • 25.
    11/11/2015 25 david.lumley@uwa.edu.auLumley et al.,2014 4D NR Noise T1 T2 T2-T1 david.lumley@uwa.edu.auLumley et al., 2014 4D Repeatability Saul & Lumley, 2013
  • 26.
    11/11/2015 26 david.lumley@uwa.edu.auLumley et al.,2014 after Landro 4D NRMS vs. position error david.lumley@uwa.edu.auLumley et al., 2014 image image difference Image difference after 40-60 cm tidal corrections Eiken et al., EAGE 1999 4D tidal corrections
  • 27.
    11/11/2015 27 david.lumley@uwa.edu.auLumley et al.,2014 Line A: before the platform Line B: after the platform with Petrobras david.lumley@uwa.edu.auLumley et al., 2014 “Statistical” image processing Baseline Monitor Difference Lumley et al., SEG, 1998
  • 28.
    11/11/2015 28 david.lumley@uwa.edu.auLumley et al.,2014 Lumley et al., SEG, 1998 Baseline Monitor Difference “Physics-based” image processing david.lumley@uwa.edu.auLumley et al., 2014 1999 Local Diff Global Diff ? 4D Local vs. Global optimization Lumley et al. 2003
  • 29.
    11/11/2015 29 david.lumley@uwa.edu.auLumley et al.,2014 Local image difference Global image difference CO2 injectors? Lumley et al. 2003 4D Local vs. Global Optimization david.lumley@uwa.edu.auLumley et al., 2014 Sources of 4D error and uncertainty • Model definition • Model parameterization (acoustic, elastic, aniso, attenuation…) • Physical property relationships (velocity-pressure…) • Model discretization/sampling (fine, coarse, up/down-scale…) • Model relationships (geology, seismic, fluid flow…) • Etcetera…
  • 30.
    11/11/2015 30 david.lumley@uwa.edu.auLumley et al.,2014 Reservoir container david.lumley@uwa.edu.auLumley et al., 2014 Reservoir properties
  • 31.
    11/11/2015 31 david.lumley@uwa.edu.auLumley et al.,2014 Up/down scaling david.lumley@uwa.edu.auLumley et al., 2014 porosity clay fraction
  • 32.
    11/11/2015 32 david.lumley@uwa.edu.auLumley et al.,2014 Rock physics param pdfs david.lumley@uwa.edu.auLumley et al., 2014 Sources of 4D error and uncertainty • Physics (modeling/inversion operators/code) • Linear versus nonlinear • Acoustic, Elastic, Anisotropy, Attenuation… • Convolution, Raytracing, Finite Difference… • Algorithm implementations • Etcetera…
  • 33.
    11/11/2015 33 david.lumley@uwa.edu.auLumley et al.,2014 4D FD elastic modeling david.lumley@uwa.edu.auLumley et al., 2014 1 layer CO2 Lumley et al., 2008 synth PSDM
  • 34.
    11/11/2015 34 david.lumley@uwa.edu.auLumley et al.,2014 real PSTM 1 layer CO2 StatoilLumley et al., 2008 synth PSDM david.lumley@uwa.edu.auLumley et al., 2014 Sources of 4D error and uncertainty • Optimization criteria (inversion/estimation) • Least squares (L2), Least absolute (L1), hybrid… • Optimal fit to data, amplitude, phase… • Multiple objectives, weighting schemes… • Inversion constraints (soft, hard, weighted…) • Optimization method (gradients, stochastic, MC, PSO, genetic…) • Resolution, Null space, Non-uniqueness… • Etcetera…
  • 35.
    11/11/2015 35 david.lumley@uwa.edu.auLumley et al.,2014 Multi-objective optimisation find a reservoir model m such that: min E = (seismic)p + (logs)q + (geology)r + … david.lumley@uwa.edu.auLumley et al., 2014 13.22 13.27 13.32 13.37 13.42 13.47 13.52 13.57 36 41 46 ObjectiveFunction2 Objective Function 1 Generation 1 13.22 13.24 13.26 13.28 13.3 13.32 13.34 13.36 35 36 37 38 39 40 ObjectiveFunction2 Objective Function 1 Generation 10 13.12 13.14 13.16 13.18 13.2 13.22 13.24 13.26 30 32 34 36 38 ObjectiveFunction2 Objective Function 1 Generation 20 13 13.02 13.04 13.06 13.08 13.1 13.12 26 27 28 29 30 ObjectiveFunction2 Objective Function 1 Generation 50 12.96 12.97 12.98 12.99 13 13.01 13.02 13.03 13.04 13.05 13.06 24 25 26 27 28 29 ObjectiveFunction2 Objective Function 1 Generation 70 12.95 12.96 12.97 12.98 12.99 13 13.01 13.02 13.03 13.04 13.05 24 25 26 27 28 ObjectiveFunction2 Objective Function 1 Generation 100 Multi-objective optimization – “Pareto front” 70 Niri & Lumley 2013
  • 36.
    11/11/2015 36 david.lumley@uwa.edu.auLumley et al.,2014 a) Reference Litho-facies model b) Before MO model updating c) After MO model updating  Average Mismatch error reduced from 36.5% to 14.6% Multi-objective optimization – “Pareto front” Niri & Lumley 2013 david.lumley@uwa.edu.auLumley et al., 2014 How to quantify 4D errors + uncertainty?
  • 37.
    11/11/2015 37 david.lumley@uwa.edu.auLumley et al.,2014 How to quantify 4D errors + uncertainty? >> Nonlinear stochastic error propagation david.lumley@uwa.edu.auLumley et al., 2014 d1 d2 p N=1000 realizations Sw Pp 4D inversion statistics N=1000
  • 38.
    11/11/2015 38 david.lumley@uwa.edu.auLumley et al.,2014 4D seismic image of water saturation (Sw) a b david.lumley@uwa.edu.auLumley et al., 2014 4D seismic inversion for water saturation (Sw) Sw a b
  • 39.
    11/11/2015 39 david.lumley@uwa.edu.auLumley et al.,2014 {Sw} for 1000 realizations a b david.lumley@uwa.edu.auLumley et al., 2014 signal to noise ratio “S/N” of Sw a b
  • 40.
    11/11/2015 40 david.lumley@uwa.edu.auLumley et al.,2014 Probability that Sw > 0.5 a b david.lumley@uwa.edu.auLumley et al., 2014 “Closing the loop… history matching” Observed Data; t++ Inversion Estimated model; t++ Simulation Predicted data
  • 41.