DATA SCIENCE UND MACHINE
LEARNING IM KUBERNETES-
ÖKOSYSTEM
Hans-Peter Zorn, Stefan Igel Heidelberg, 26. September 2018
● Use-case: Analyse von bildgebender
Massenspektronomie
● Data Science Workflows & ML Plattformen
● K8S als Basis für ML Plattformen
● Tools & Komponenten für DS-Workflows
● Ausblick
Agenda
› Expertensystem zur
Qualitätsbewertung und Auswertung
3-dimensionaler Massenspektroskopiedaten
› F&E-Projekt von
Hochschule Mannheim
und inovex
› Laufzeit:
01.11.2017 - 31.10.2019
Use Case: EMQ
Projekt Setup
Data acquisition
4 von x
Image Sources:
Nature Reviews Cancer 10, 639-646 09/2010
Molecular Oncology 4, Issue 6, 529-538 12/2010
Bruker Rapiflex
MALDI-TOF/TOF
Mass spectrometer
Kidney tissue
slice
Microscopic
image
Typical applications
• Clinical diagnostic
• Pharmaceutical monitoring
• Histological research
MALDI Mass Spectrometry
Basic workflow & application
5 von x
MSI Datacubes
A state of the art MALDI-imaging dataset comprises a huge amount of spectra (up to 100k
spectra) with each raw spectrum representing intensities (usually 10k – 100k) of small m/z bins
and describing up to hundreds of different molecules.
Data generation time: sample preparation (30 – 90 min), data acquisition (2 pixels / sec ~ 14 h,
currently with the next generation MALDI system up to 50 pixels / sec ~ 30 – 50 min), Data analysis
(~ 1 h) → Total time ~ 2 – 3.5 h / tissue sample.
Jones, Emrys A., et al. Journal of proteomics 75.16 (2012): 4962-4989.
1. support data science team processes
2. democratization of data
3. democratization of machine learning
Data Science / Machine Learning Plattformen
Ziel: Professionalisieren von Data Science
› Scalable
› Reliable
› Reproducible
› Easy-to-use
› Flexible
› Automated
› Offline and online
Data Science / Machine Learning Plattformen
unterstützen Machine Learning Workflows:
https://eng.uber.com/michelangelo/
Manage
Data
Train
Models
Evaluate
Models
Deploy
Models
Make
Predictions
Monitor
Predictions
EMQ Machine Learning Platform
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
EMQ Machine Learning Platform
Runtime Environment
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
Scalable? Sounds like Big Data ...
Is there anything beyond Hadoop?
Linux Kernel
YARN, Zookeeper CoreOS, Kubernetes
HDFS S3, NFS, Ceph, Quobyte, ...
JVM Docker
MapReduce, Tez, Spark, ... Spark, Tensorflow, ...
Hadoop Stack Kubernetes Stack
Distributed Processing
Operating System
Cluster Management
Distributed Storage
Processing Core Unit
HBaseDistributed Serving elastic, Cassandra, Druid, ...
Scalable? Sounds like Big Data ...
Is there anything beyond Hadoop?
Linux Kernel
YARN, Zookeeper CoreOS, Kubernetes
HDFS S3, NFS, Ceph, Quobyte, ...
JVM Docker
MapReduce, Tez, Spark, ... Spark, Tensorflow, ...
Hadoop Stack Kubernetes Stack
Distributed Processing
Operating System
Cluster Management
Distributed Storage
Processing Core Unit
HBaseDistributed Serving elastic, Cassandra, Druid, ...
› everything you need to build and scale
› build, ship and run any app, anywhere
› container orchestration, automated
management, deployment, scaling
› package manager for K8S Apps
Ingredients for K8S Solutions
Bare Metal, Public & Private Cloud
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
● Meistverbreitetes Containerformat
● Leichtgewichtig
● Resource Limitation
● Verfügbarkeit von Registries
Packaging
Docker, weil…
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
● Hardware-Abstraktion
● Container Scheduling und Management
● Service Discovery & Networking
● Konfigurationsmanagement
● Monitoring
● Load Balancing
● Rolling upgrades
Deployment
Kubernetes, wegen…
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
● Paketmanager
● Convenience
● Zahlreiche Vorlagen
● Templating Funktionalität
Dependency Management
Helm, für...
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
› Infrastructure as Code
› Cloud Provider agnostic
› Software Defined Networking
› Disposable Environments
Continuous Integration
Terraform, weil ...
• Integration mit Gitlab
• Einfach zu definierende
CI-Pipelines
• Integrierte Docker Registry
Continuous Integration
Gitlab-CI, weil
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
CI / CD Pipeline
https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
18
Gitlab
docker push
git push
helm install
Service
Deployment / Statefull Setkubectl
docker
pull
PodPod
EMQ Machine Learning Platform
Ingest & Store
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
Distributed File System
Ingest & Store
Data Lake
Stream
Processing NoSQL DB
File
Transfer
Runtime Environment
Msg
Online - Streaming
Offline - Batch
NoSQL DB
Kubernetes auf OpenstackKubernetes in der Cloud
Kubernetes neben Hadoop
HDFS Kubernetes
(managed) kubernetes
Kubernetes neben MapR-FS
EMQ Machine Learning Platform
(Pre-)Processing
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
• integrate legacy
algorithms
• different
programming
languages
(C++, R, Python, ...)
• different base images
(Pre-)Processing
Standardized Data Processing
(Pre-)Processing
Orchestrate data processing steps
● reproducible
● flexible
● scalable
(Pre-)Processing
argo Architecture
› Kubernetes API
Erweiterung (CRD)
› Batch Job Pattern
› Data Handling per
Buckets (S3)
EMQ Machine Learning Platform
Explore & Analyze
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
› Jupyter notebooks
› Language of choice (Python, R, Scala, ...
› Notebooks can be shared (git, ...)
› Big data integration (Apache Spark)
› pandas, scikit-learn, ggplot2, TensorFlow
› Jupyter Hub
› Multi-user Hub for Data Science Workgroups
› spawns, manages, and proxies multiple instances of the
single-user Jupyter notebook server.
Train Models
Jupyter Hub
› multi-user Hub (tornado process)
› configurable http proxy
(node-http-proxy)
› multiple single-user Jupyter
notebook servers
(Python/Jupyter/tornado)
› REST API for administration
of the Hub and its users.
Train Models
Jupyter Hub
https://github.com/jupyterhub/jupyterhub https://jupyterhub.readthedocs.io/en/stable/
EMQ Machine Learning Platform
Model Training & Inference
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
› Herbst 2015, Google
› “library for high performance
numerical computation”
› ML/ DL support
› TensorBoard
Deep Learning
https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf
Tensorflow
› Parameter Server
› multi CPU/ GPU, multi Node
› Infrastruktur:
keine Voraussetzungen
› IP-Adressen/ Hostnamen + Port
Deep Learning
Scaling Tensorflow
Carnegie Mellon University, Baidu, Google: “Scaling Distributed Machine Learning with the Parameter Server” (2014)
Worker Worker Worker
Parameter Server
› Distributed (Deep) Machine Learning Community
(DMLC)
› “A flexible and efficient library for deep learning.”
› Amazons Framework der Wahl
› (TensorBoard Support)
Deep Learning
Apache MXNet
https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf
› verteilter KVStore
› multi CPU/ GPU, multi Node
› Infrastruktur:
SSH / MPI / YARN / SGE
› Hostfile mit
IP-Adressen/ Hostnamen
Deep Learning
Scaling Apache MXNet
T. Chen et al.: “MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems”
(2015)
GPU
1
GPU
2
GPU
1
GPU
2
› DevicePlugin installieren
› Base Image: nvidia/cuda
› GPU Ressourcen verwenden
Deep Learning
GPU Support mit Kubernetes
https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf
1 resources:
2 limits:
3 nvidia.com/gpu: {{ $numGpus }}
3 Ways to run Spark on k8s:
● Spark in standalone mode:
https://github.com/helm/charts/tree/master/stable/spark
● Spark operator on Kubernetes:
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
● Using spark-submit:
https://spark.apache.org/docs/2.3.0/running-on-kubernetes.html
Train Models
Distributed Machine Learning
spark-submit:
● Spark creates a Spark driver
running within a k8s pod.
● The driver creates executors
running within k8s pods, connects
to them, and executes application
code.
Train Models
Distributed Machine Learning
https://spark.apache.org/docs/2.3.0/running-on-kubernetes.html
EMQ Machine Learning Platform
Logging & Monitoring
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
Logging & Monitoring
}
}
}
}
Buffering und
Transformation
Sammeln von Logs
Datenbank
Frontend
Logging & Monitoring
}
}
Sammeln von Metriken
Frontend
} Datenbank
EMQ Machine Learning Platform
Metadata Management
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
● über die Umgebung
● über die Daten
● über die Workflows
● über die Modelle
● über die Fachlichkeit
● ...
Metadata
… Daten über Daten
EMQ Machine Learning Platform
Putting it all together
Explore
(Pre-)
Process
Train
Raw
Data
Ingest
Prep.
Data Set
Training
Set
Infere
Model
Control
Result
MonitoringLogging Metadata
Runtime Environment
› Platform hardening
› Adaption und Erweiterung für neue use-cases
› NLP/Semantische Suche
› IIoT
› Metadaten
› Modell-Management
› Verbreitung
Ausblick
Manage
Data
Train
Models
Evaluat
e
Models
Deploy
Models
Make
Predicti
ons
Monitor
Predicti
ons
› Sebastian Schmidt
› Alexander Grizschancew
› Sebastian Jäger
› Alexander Lontke
› Julien Heitmann
› Marcel Hofmann
› Kevin Exel
› David Waidner
Das Team
… ohne das es das alles bei uns nicht gäbe
› Matthias Schwartz
› Stanislav Frolov
› David Schmidt
› Daniel Bäurer
› Nils Domrose
› Hans-Peter Zorn
› Stefan Igel
Vielen Dank
Hans-Peter Zorn
Head of Machine
Perception & AI
hzorn@inovex.de
Dr. Stefan Igel
Head of Big Data Solutions
sigel@inovex.de

Data Science und Machine Learning im Kubernetes-Ökosystem

  • 1.
    DATA SCIENCE UNDMACHINE LEARNING IM KUBERNETES- ÖKOSYSTEM Hans-Peter Zorn, Stefan Igel Heidelberg, 26. September 2018
  • 2.
    ● Use-case: Analysevon bildgebender Massenspektronomie ● Data Science Workflows & ML Plattformen ● K8S als Basis für ML Plattformen ● Tools & Komponenten für DS-Workflows ● Ausblick Agenda
  • 3.
    › Expertensystem zur Qualitätsbewertungund Auswertung 3-dimensionaler Massenspektroskopiedaten › F&E-Projekt von Hochschule Mannheim und inovex › Laufzeit: 01.11.2017 - 31.10.2019 Use Case: EMQ Projekt Setup
  • 4.
    Data acquisition 4 vonx Image Sources: Nature Reviews Cancer 10, 639-646 09/2010 Molecular Oncology 4, Issue 6, 529-538 12/2010 Bruker Rapiflex MALDI-TOF/TOF Mass spectrometer Kidney tissue slice Microscopic image Typical applications • Clinical diagnostic • Pharmaceutical monitoring • Histological research MALDI Mass Spectrometry Basic workflow & application
  • 5.
    5 von x MSIDatacubes A state of the art MALDI-imaging dataset comprises a huge amount of spectra (up to 100k spectra) with each raw spectrum representing intensities (usually 10k – 100k) of small m/z bins and describing up to hundreds of different molecules. Data generation time: sample preparation (30 – 90 min), data acquisition (2 pixels / sec ~ 14 h, currently with the next generation MALDI system up to 50 pixels / sec ~ 30 – 50 min), Data analysis (~ 1 h) → Total time ~ 2 – 3.5 h / tissue sample. Jones, Emrys A., et al. Journal of proteomics 75.16 (2012): 4962-4989.
  • 6.
    1. support datascience team processes 2. democratization of data 3. democratization of machine learning Data Science / Machine Learning Plattformen Ziel: Professionalisieren von Data Science
  • 7.
    › Scalable › Reliable ›Reproducible › Easy-to-use › Flexible › Automated › Offline and online Data Science / Machine Learning Plattformen unterstützen Machine Learning Workflows: https://eng.uber.com/michelangelo/ Manage Data Train Models Evaluate Models Deploy Models Make Predictions Monitor Predictions
  • 8.
    EMQ Machine LearningPlatform Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 9.
    EMQ Machine LearningPlatform Runtime Environment Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 10.
    Scalable? Sounds likeBig Data ... Is there anything beyond Hadoop? Linux Kernel YARN, Zookeeper CoreOS, Kubernetes HDFS S3, NFS, Ceph, Quobyte, ... JVM Docker MapReduce, Tez, Spark, ... Spark, Tensorflow, ... Hadoop Stack Kubernetes Stack Distributed Processing Operating System Cluster Management Distributed Storage Processing Core Unit HBaseDistributed Serving elastic, Cassandra, Druid, ...
  • 11.
    Scalable? Sounds likeBig Data ... Is there anything beyond Hadoop? Linux Kernel YARN, Zookeeper CoreOS, Kubernetes HDFS S3, NFS, Ceph, Quobyte, ... JVM Docker MapReduce, Tez, Spark, ... Spark, Tensorflow, ... Hadoop Stack Kubernetes Stack Distributed Processing Operating System Cluster Management Distributed Storage Processing Core Unit HBaseDistributed Serving elastic, Cassandra, Druid, ...
  • 12.
    › everything youneed to build and scale › build, ship and run any app, anywhere › container orchestration, automated management, deployment, scaling › package manager for K8S Apps Ingredients for K8S Solutions Bare Metal, Public & Private Cloud https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
  • 13.
    ● Meistverbreitetes Containerformat ●Leichtgewichtig ● Resource Limitation ● Verfügbarkeit von Registries Packaging Docker, weil… https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
  • 14.
    ● Hardware-Abstraktion ● ContainerScheduling und Management ● Service Discovery & Networking ● Konfigurationsmanagement ● Monitoring ● Load Balancing ● Rolling upgrades Deployment Kubernetes, wegen… https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
  • 15.
    ● Paketmanager ● Convenience ●Zahlreiche Vorlagen ● Templating Funktionalität Dependency Management Helm, für... https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
  • 16.
    › Infrastructure asCode › Cloud Provider agnostic › Software Defined Networking › Disposable Environments Continuous Integration Terraform, weil ...
  • 17.
    • Integration mitGitlab • Einfach zu definierende CI-Pipelines • Integrierte Docker Registry Continuous Integration Gitlab-CI, weil https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf
  • 18.
    CI / CDPipeline https://www.inovex.de/fileadmin/files/Vortraege/2017/big-data-in-der-cloud-zorn-kreiling-29.09.2017.pdf 18 Gitlab docker push git push helm install Service Deployment / Statefull Setkubectl docker pull PodPod
  • 19.
    EMQ Machine LearningPlatform Ingest & Store Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 20.
    Distributed File System Ingest& Store Data Lake Stream Processing NoSQL DB File Transfer Runtime Environment Msg Online - Streaming Offline - Batch NoSQL DB
  • 21.
    Kubernetes auf OpenstackKubernetesin der Cloud Kubernetes neben Hadoop HDFS Kubernetes (managed) kubernetes Kubernetes neben MapR-FS
  • 22.
    EMQ Machine LearningPlatform (Pre-)Processing Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 23.
    • integrate legacy algorithms •different programming languages (C++, R, Python, ...) • different base images (Pre-)Processing Standardized Data Processing
  • 24.
    (Pre-)Processing Orchestrate data processingsteps ● reproducible ● flexible ● scalable
  • 25.
    (Pre-)Processing argo Architecture › KubernetesAPI Erweiterung (CRD) › Batch Job Pattern › Data Handling per Buckets (S3)
  • 26.
    EMQ Machine LearningPlatform Explore & Analyze Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 27.
    › Jupyter notebooks ›Language of choice (Python, R, Scala, ... › Notebooks can be shared (git, ...) › Big data integration (Apache Spark) › pandas, scikit-learn, ggplot2, TensorFlow › Jupyter Hub › Multi-user Hub for Data Science Workgroups › spawns, manages, and proxies multiple instances of the single-user Jupyter notebook server. Train Models Jupyter Hub
  • 28.
    › multi-user Hub(tornado process) › configurable http proxy (node-http-proxy) › multiple single-user Jupyter notebook servers (Python/Jupyter/tornado) › REST API for administration of the Hub and its users. Train Models Jupyter Hub https://github.com/jupyterhub/jupyterhub https://jupyterhub.readthedocs.io/en/stable/
  • 29.
    EMQ Machine LearningPlatform Model Training & Inference Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 30.
    › Herbst 2015,Google › “library for high performance numerical computation” › ML/ DL support › TensorBoard Deep Learning https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf Tensorflow
  • 31.
    › Parameter Server ›multi CPU/ GPU, multi Node › Infrastruktur: keine Voraussetzungen › IP-Adressen/ Hostnamen + Port Deep Learning Scaling Tensorflow Carnegie Mellon University, Baidu, Google: “Scaling Distributed Machine Learning with the Parameter Server” (2014) Worker Worker Worker Parameter Server
  • 32.
    › Distributed (Deep)Machine Learning Community (DMLC) › “A flexible and efficient library for deep learning.” › Amazons Framework der Wahl › (TensorBoard Support) Deep Learning Apache MXNet https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf
  • 33.
    › verteilter KVStore ›multi CPU/ GPU, multi Node › Infrastruktur: SSH / MPI / YARN / SGE › Hostfile mit IP-Adressen/ Hostnamen Deep Learning Scaling Apache MXNet T. Chen et al.: “MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems” (2015) GPU 1 GPU 2 GPU 1 GPU 2
  • 34.
    › DevicePlugin installieren ›Base Image: nvidia/cuda › GPU Ressourcen verwenden Deep Learning GPU Support mit Kubernetes https://www.inovex.de/fileadmin/files/Vortraege/2018/skalieren-von-deep-learning-frameworks-m3-26.04.2018.pdf 1 resources: 2 limits: 3 nvidia.com/gpu: {{ $numGpus }}
  • 35.
    3 Ways torun Spark on k8s: ● Spark in standalone mode: https://github.com/helm/charts/tree/master/stable/spark ● Spark operator on Kubernetes: https://github.com/GoogleCloudPlatform/spark-on-k8s-operator ● Using spark-submit: https://spark.apache.org/docs/2.3.0/running-on-kubernetes.html Train Models Distributed Machine Learning
  • 36.
    spark-submit: ● Spark createsa Spark driver running within a k8s pod. ● The driver creates executors running within k8s pods, connects to them, and executes application code. Train Models Distributed Machine Learning https://spark.apache.org/docs/2.3.0/running-on-kubernetes.html
  • 37.
    EMQ Machine LearningPlatform Logging & Monitoring Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 38.
    Logging & Monitoring } } } } Bufferingund Transformation Sammeln von Logs Datenbank Frontend
  • 39.
    Logging & Monitoring } } Sammelnvon Metriken Frontend } Datenbank
  • 40.
    EMQ Machine LearningPlatform Metadata Management Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 41.
    ● über dieUmgebung ● über die Daten ● über die Workflows ● über die Modelle ● über die Fachlichkeit ● ... Metadata … Daten über Daten
  • 42.
    EMQ Machine LearningPlatform Putting it all together Explore (Pre-) Process Train Raw Data Ingest Prep. Data Set Training Set Infere Model Control Result MonitoringLogging Metadata Runtime Environment
  • 43.
    › Platform hardening ›Adaption und Erweiterung für neue use-cases › NLP/Semantische Suche › IIoT › Metadaten › Modell-Management › Verbreitung Ausblick Manage Data Train Models Evaluat e Models Deploy Models Make Predicti ons Monitor Predicti ons
  • 44.
    › Sebastian Schmidt ›Alexander Grizschancew › Sebastian Jäger › Alexander Lontke › Julien Heitmann › Marcel Hofmann › Kevin Exel › David Waidner Das Team … ohne das es das alles bei uns nicht gäbe › Matthias Schwartz › Stanislav Frolov › David Schmidt › Daniel Bäurer › Nils Domrose › Hans-Peter Zorn › Stefan Igel
  • 45.
    Vielen Dank Hans-Peter Zorn Headof Machine Perception & AI hzorn@inovex.de Dr. Stefan Igel Head of Big Data Solutions sigel@inovex.de