SlideShare a Scribd company logo
www.MATHVN.com

H phương trình mũ và logarit

HÖ ph−¬ng tr×nh mò vµ l«garit
A. Ph−¬ng ph¸p biÕn ®æi t−¬ng ®−¬ng.
Ph−¬ng ph¸p:

B−íc 1: §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa.
B−íc 2: Dïng c¸c phÐp biÕn ®æi ®Ó nhËn ®−îc mét ph−¬ng
tr×nh mét Èn.
B−íc 3: Gi¶i ph−¬ng tr×nh mét Èn nhËn ®−îc tõ hÖ.
B−íc 4: KÕt luËn.
Bµi tËp: Gi¶i c¸c hÖ sau:
1. Bµi 1.
x + y = 2

(1)

2
( y + 1) x +x + 2 = 1


Gi¶i.
§iÒu kiÖn y > −1.
x + y = 2

x + y = 2
x = 2
 y + 1 = 1
⇔
⇔
(1) ⇔ 
y +1 > 0
y = 0
y = 0

 2
 x + x + 2 = 0

2. Bµi 2.
 x x + x − 2 = x − 2( x − x − 2 ) (1)
 x x+ y = y x− y


( § K : x , y > 0) ⇔ 
 2
x y = 1
 y = x −2
( 2)


x = 1
x = 1
x = 1
(1) ⇔ 
⇔
⇔
−2
−2
3
 x + x = −2( x − x )
3 + 3x = 0
 x = −1 (lo¹i )


Thay x = 1 vµo (2) ta cã cÆp nghiÖm (1,1).
3. Bµi 3.
2 x + 2 y = 3 2 x + 21− x = 3 2 2 x − 3.2 x + 2 = 0



⇔
⇔

x + y = 1
y = 1 − x
y = 1 − x



1
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

 x = 0
2 x = 1


 x
y =1
⇔ 2 = 2 ⇔ 

 x = 1


y =1 − x

 y = 0


4. Bµi 4.
 2( 4 − 2 x + 4 − 2 y ) = 1


x + y = 1


5. Bµi 5.
x 9 x+ y = y 9 x− y

(1)
 2
x y = 1

§iÒu kiÖn: x, y > 0.
 x 9 x + x −2 = x −2(9 x − x −2 )
x 9 x+ y = y 9 x− y


(1) ⇔ 
⇔
 y = x −2
 y = x −2


x = 1
x = 1
( 2) ⇔ 
⇔
.
x = 1/ 3
9 x + x − 2 = −2(9 x − x − 2 )



Thay vµo (3) ta ®−îc c¸c cÆp nghiÖm: (1,1); (1/3,9).

(2)
(3)

6. Bµi 6.
log (2 x .3 y ) = log 12
2 x .3 y = 12
 x + y log 2 3 = 2 + log 2 3


2
⇔ 2
⇔
 x y
 x. log 2 3 + y = 1 + 2 log 2 3
3 .2 = 18
log 2 (3 x .2 y ) = log 2 18


Gi¶i hÖ trªn b»ng ph−¬ng ph¸p ®Þnh thøc ta cã cÆp nghiªm: (2,1).

7. Bµi 7 (HVNH 99).
2 x + y = 2
 2 x ( 2 x − 2) = 2
2 x = 1 + 3

x + y = 1



⇔
⇔
⇔
 x
2 − 2 y = 2
2 x − 2 y = 2
2 y = 2 x − 2
2 y = −1 + 3




 x = log 2 (1 + 3 )

⇔
 y = log 2 (−1 + 3 )


2
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

8. Bµi 8 (§HSP II 98).
2 3 x +1 + 2 y −2 = 3.2 y +3 x


 3 x 2 + 1 + xy = x + 1


(1)
( 2)

x = 0
x + 1 ≥ 0
 x ≥ −1


⇔
⇔  x ≥ −1
( 2) ⇔  2
3x + 1 + xy = x + 1  x(3x + y − 1) = 0

 y = 1 − 3 x

8
Víi x = 0 thay vµo (1) ta cã cÆp nghiÖm: (0, log 2 )
11
 x ≥ −1
, thay vµo (1) ta cã:
Víi 
y = 1 − 3x

2 3 x +1 + 2 −1−3 x = 3.2 (1−3 x )+31
1
Gi¶i ra ta ®−îc cÆp nghiÖm: ( [log 2 (3 + 8 ) − 1, 2 − log 2 (3 + 8 ))
3

9. Bµi 9 (§HKTQD 99).
x

5( y − )
x y+4 x = y
3
(1)

 x 3 = y −1
( 2)

§iÒu kiÖn: x, y > 0.
Tõ (2) ta cã: y = x− 3, thÕ vµo (1) ta ®−îc:
x
x = 1
−15( x −3 − )
x = 1
x −3 + 4 x
3 ⇔
x
=x
x ⇔
 x −3 + 4 x = −15( x −3 − )
x = 2
3

Thay vµo (2) ta ®−îc c¸c cÆp nghiÖm: (1, 1) vµ (2, 1/8).
10.Bµi 10 (§HQG 95).
2 x − 2 y = ( x − y )( xy + 2) (1)

 2
x + y 2 = 2
( 2)

Th¸y (2) vµo (1) ta ®−îc:
2 x − 2 y = ( x − y )( x 2 + y 2 + xy) ⇔ 2 x − 2 y = x 3 − y 3 ⇔ 2 x − x 3 = 2 y − y 3
Nh©n xÐt: x = y tho¶ m·n ph−¬ng tr×nh trªn.

NÕu x > y cã: 2 x + x 3 > 2 y + y 3
3
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

NÕu x < y cã: 2 x + x 3 < 2 y + y 3
Nh− vËy, tõ ph−¬ng tr×nh trªn ta cã x = y.
x = y = 1
Thay vµo (2) ta cã 
 x = y = −1
11.Bµi 11.
 x 2 + y 2 = 17
 x 2 + y 2 = 17
x 2 + y 2



⇔
⇔

 xy
log 2 x + log 2 y = 2
log 2 ( x. y ) = 2



Gi¶i ra ta ®−îc c¸c cÆp nghiÖm (1, 4); (4, 1).

= 17
=4

12.Bµi 12.
x 2 = y 4

(1)

x
log 2 = log y x

y

§iÒu kiÖn: x > 0, 0 < y ≠ 1.
log x 2 = log y 4
log 2 x = 2 log 2 y
2
 2

(1) ⇔ 
2 log 2 y
log 2 x ⇔ 
log 2 x − log 2 y =
2 log 2 y − log 2 y = log y
log 2 y

2

  x =1
 log 2 x = 2 log 2 y  

 log 2 x = 2 log 2 y

 y =1
⇔
⇔   y =1
⇔
  x = 16
 log 2 y − 2 log 2 y = 0  

2

 y=4
 y =4


13.Bµi 13.
4 x 2 − y 2 = 2

(1)

log 2 (2 x + y ) − log 2 (2 x − y ) = 1

§iÒu kiÖn: 2x+y > 0, 2x − y > 0.
log (2 x + y ) + log 2 (2 x − y ) = 1
(1) ⇔  2
log 2 (2 x + y ) − log 2 (2 x − y ) = 1
2. log 2 (2 x + y ) = 2
2 x + y = 2
x = 3 / 4
⇔
⇔
⇔
2 x − y = 1
y = 1/ 2
2. log 2 (2 x − y ) = 0

4
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

14.Bµi 14 (§HM§C 99).
log ( x 2 + y 2 ) − log (2 x) + 1 = log ( x + 3 y )
4
4
 4
(1)

x
log 4 ( xy + 1) − log 4 (4 y 2 + 2 y − 2 x + 4) = log 4 − 1

y

§iÒu kiÖn:
x > 0

x + 3 y > 0

(*)
 xy + 1 > 0
 2
4 y + 2 y − 2 x + 4 > 0
y > 0


 4( x 2 + y 2 )
4( x 2 + y 2 )
= log 4 ( x + 3 y )
= x + 3y
log 4



2x
2x
(1) ⇔ 
⇔
xy + 1
xy + 1
x
x
log 4

= log 4
=

4 y 2 + 2 y − 2x + 4 4 y
4y
4 y 2 + 2 y − 2x + 4


x = y
x = y
 x 2 − 3xy + 2 y 2 = 0
( x − y )( x − 2 y ) = 0



⇔
⇔
⇔  x = 2 y ⇔  x = 2
( x − y )( x − 2) = 0
 x 2 − 2 xy + 4 y − 4 x = 0
 x = 2
 y = 1



KiÓm tra l¹i ®iÒu kiÖn (*) ta cã nghiÖm:
x = y ∈ R

 x = 2

 y = 1

15.Bµi 15 (§HQG Khèi −D 95).
 x+ y
 y x
= 32
4
log ( x − y ) = 1 − log ( x + y )
 3
3
§iÒu kiÖn:

x − y > 0

x + y > 0
 xy ≠ 0


5
www.mathvn.com

(1)
www.MATHVN.com

H phương trình mũ và logarit

 x y
 x y
( x − 2 y )(2 y − x) = 0
 2( y + x ) = 5
 2( + ) = 5

(1) ⇔ 
⇔ y x
⇔ 2
x − y 2 = 3
log ( x 2 − y 2 ) = 1  2

2
x − y = 3
 3
 x = 2 y

 2
3 y = 3
x = 2

⇔
⇔
y = 1

 y = 2 x
(V« nghiÖm)

 − 3 y 2 = 3


(do (*))

16.Bµi 16 (§HBK 94).
 x + log 3 y = 3

(1)

(2 y 2 − y + 12).3 x = 81y

§iÒu kiÖn: y > 0.

 x = − log3 y + 3
x = − log3 y + 3


(1) ⇔ 
⇔
(2 y 2 − y + 12).27. y −1 = 81y
 y 2 + y − 12 = 0


 x = − log 3 y + 3
x = 2

⇔  y = 3
⇔
y = 3
 y = −4 < 0 (lo¹i )


17.Bµi 17 (§HTL 2000).
3x

 x. log 2 3 + log 2 y = y + log 2 2


 x. log 2 + log x = y + log 2 y
3
3
3

3


(1)

§iÒu kiÖn: x, y > 0.
 x 3x y
2 y.3 x = 3x.2 y
2 y.3 x = 3x.2 y
 y.3 = 2 .2



(1) ⇔ 
⇔
⇔
2 y.3 y = 3x.2 x
3 x − y = 2 y − x
 x.2 x = 2 y .3 y



3


6
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

 3  x 3
2 y.3 x = 3x.2 y
x = 1


=
⇔
⇔  2 
2⇔
 
y =1
6 x − y = 1


x = y

18.Bµi 18 (§HTCKT 2000).
 x log8 y + y log8 x = 4


log 4 x − log 4 y = 1


(1)

§iÒu kiÖn: x, y > 0.
 x log8 y + y log8 x = 4
 x log8 y + y log8 x = 4


(1) ⇔ 
⇔
x
x = 4 y
log 4 = 1

y

1
x = 2 3
 x log8 x = 2

 log 2 x = log x 2

⇔
⇔ 3
⇔
x = 4 y
x = 4 y
 y = 2 3 −2




( do x = 1 kh«ng lµ nghiÖm)
19.Bµi 19.
x
x
2
x
1 − x x
 1 −1

x
9
2y
=

=9
 x
3 x = 3 y
y=
y
 3



⇔
⇔
⇔  1− x

 x+3 y 2x
 3 y = 2 x − 5  3 y = 2 x − 5  3 x = 2 (1 − x ) − 5
1 − x
 x = y −4  x
 x
y
y


x



20.Bµi 20 (§HXD 94). Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh:
(1)
 x+2 y=a
 2 y=a− x
 2 y=a− x
 2 y=a− x
⇔ x
⇔ x
⇔ x
 x
y
2y
a− x
a −x
=1  2 + 2 2 =1 ( 2 )
 2 + 4 =1  2 + 2 =1  2 + 2

§Æt t = 2 x , t > 0 thay vµo (2) ta cã: t 2 − t + 2 a = 0 (3)

∆ =1− 4.2 a .
NÕu ∆ < 0 ⇔1− 4.2 a < 0 ⇔ a > −2 : Ph−¬ng tr×nh(3) v« nghiªm ⇔ hÖ v«
nghiÖm.
7
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

NÕu ∆ = 0 ⇔1− 4.2 a = 0 ⇔ a = −2 : Ph−¬ng tr×nh (3) cã nghiÖm t = 1/2, suy ra
x = −1, y= −1/2.
NÕu ∆ > 0 ⇔1− 4.2 a > 0 ⇔ a > −2 : Ph−¬ng tr×nh (3) cã 2 nghiÖm:
 1 − 1 − 4. 2 a

t=
2 x
2

⇒


a
1+ 1− 4.2
2 x
t=




2

1− 1− 4.2
=
2

a

1+ 1− 4.2
=
2

a

a

1 − 1 − 4. 2
 x = log 2
2
⇔

a
 x = log 1+ 1− 4.2
2


2

Thay vµo (1) ta tÝnh ®−îc y.
21.Bµi 21 (§HM§C 2000). Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh:
 x + y + a =1
 y =1 − a − x


⇔
 a 2 x + y − xy
2
2 ( x +1− a − x − x ( 1− a − x ))
1− a
 2 .4
=2 2
=2


 y = 1− a − x

⇔
 2 ( x +1− a − x − x ( 1− a − x )) = 1− a 2


(1)
(2)

22.Bµi 22 (§Ò 135). Cho hÖ ph−¬ng tr×nh:
1
2
 2 log 3 x − log 3 y = 0
(1)

3
2
 x + y − my = 0


a) Gi¶i hÖ víi m = 2.
b) T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm.
x ≠ 0
§iÒu kiÖn: 
(*)
y > 0
 log 3 x = log 3 y
(2)
 x =y


(1) ⇔  3
⇔
2
2
 x + y − my = 0  f ( y ) = y + y − m = 0 ( do (*)) ( 3 )



a) Víi m = 2, gi¶i ra ta cã c¸c cÆp nghiÖm (1, 1); (−1, 1).
b) (1) cã nghiÖm khi vµ chØ khi (3) cã nghiÖm y > 0. Do (3) cã −b/a= −1 nªn
(3) cã nghiÖm d−¬ng khi vµ chØ khi f(0) < 0 ⇔ −m < 0 ⇔ m > 0.

8
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

23.Bµi 23.
log x (3x + ky) = 2

log y (3 y + kx) = 2

(1)

§iÒu kiÖn:0 <x, y ≠ 1, 3x + ky > 0, 3y + kx > 0 (*).
3x + ky = x 2
3x + ky = x 2


(1) ⇔ 
⇔
( x − y )(3 − k − x − y ) = 0
3y + kx = y 2


3x + ky = x 2

2
( 2)

3x + ky = x
x = y


⇔  x = y
⇔


3x + ky = x 2
y =3−k − x
(3)

 y = 3 − k − x


a) Víi k = 2.

x = 5
 x 2 − 5x = 0
(2) ⇔ 
⇔
x = y
y = 5

 x = −1
x 2 − x − 2 = 0


(3) ⇔ 
⇔  x = 2 (lo¹i)

y =1 − y
y =1 − x


b) BiÖn luËn:
 x = 0 (lo¹i )
 x( x − 3 − k ) = 0
x = 3 + k

(2) ⇔ 
⇔  x = 3 + k
⇔ 

x = y
x = y
x = y

lµ nghiÖm cña hÖ khi vµ chØ khi tho¶ m·n (*), hay 0 < 3+k ≠ 1⇔ −3 < k ≠ −2.

 x 2 + (k − 3) x + (k − 3)k = 0
( 4)
(3) ⇔ 
y = 3 − k − x
(5)

XÐt ph−¬ng tr×nh (4) f ( x) = x 2 + (k − 3) x + k (k − 3) = 0 cã:
’ = −3(k − 3)(k + 1).
+ NÕu

’< 0 ⇔ k > 3 ho¨c k < −1: (4) v« nghiÖm ⇔ (3) v« nghiÖm.

+ NÕu

’= 0 ⇔ k = 3 ho¨c k = −1:
+ k = 3: (4) cã nghiÖm x = 0 kh«ng tho¶ m·n (*) ⇔ (3) v« nghiÖm.
+ k = −1: (4) cã nghiÖm x = 2, thay vµo (5) cã y = 2 ⇔ (2,2) lµ
nghiÖm cña (3).

9
www.mathvn.com
www.MATHVN.com

+ NÕu

H phương trình mũ và logarit

’> 0 ⇔ −1 < k < 3 (**): (4) cã 2:

3 − k + − 3(k − 3)(k + 1)
 x = x1 =
2


3 − k − − 3(k − 3)(k + 1)
 x = x2 =

2

Víi x = x1, thay vµo (5) ta cã y1 = x2.
Víi x = x2, thay vµo (5) ta cã y1 = x1.
Do ®ã, (3) cã nghiÖm tho¶ m·n 0 < x, y ≠ 1 khi vµ chØ khi:
 x1 x 2 > 0
k (k − 3) > 0
k < 0


x1 + x 2 > 0 ⇔ 3 − k > 0
⇔

k ≠ 1 − 3
 f (1) ≠ 0
1 − 3 + k + k (k − 3) ≠ 0


− 1 < k < 0
KÕt hîp (**) ta cã 
k ≠ 1 − 3
KÕt luËn:
+ Víi k ≤ −3 hoÆc k = −2 hÖ v« nghiÖm.
+ Víi k ∈ (−3,−1] ∪ {1 − 3} ∪ [0,+∞)  {−2} hÖ cã nghiÖm x=y=3+k.

+ Víi k ∈ (−1,0)  {1 − 3} hÖ cã 3 nghiÖm:
x = x2
 x = 3 + k  x = x1
;
vµ 

 y = 3 + k  y = x2
 y = x1

10
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

B. Ph−¬ng ph¸p ®Æt Èn phô
I. Ph−¬ng ph¸p:

B−íc 1: §Æt ®iÖu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa.
B−íc 2: Lùa chän Èn phô ®Ó biÕn ®æi hÖ ban ®Çu vÒ hÖ ®¹i sè
®· biÕt (hÖ ®èi xøng, hÖ ®¼ng cÊp, ...).
B−íc 3: Gi¶i hÖ.
B−íc 4: KÕt luËn.
II. Bµi tËp. Gi¶i c¸c hÖ ph−¬ng tr×nh sau:
24.Bµi 24.
 3 2 x + 2 + 2 2 y + 2 = 17


 2.3 x +1 + 3.2 y = 8


(1)

u = 3 x

§Æt: 
, u , v > 0 ( 2 ) ,thay vµo (1) ta cã:
v = 2 y


 9 u 2 + 4 v 2 = 17
, gi¶i ra ta ®−îc:

6u + 3v = 8

 u = 1/ 3  x = −1
⇒

v=2

 y =1

25.Bµi 25.
 2 2 x +1 − 3.2 x = y 2 − 2

 2
2 x
2 y −3 y =2
−2

x

§Æt u = 2 , u ≥ 1 , thay vµo hÖ ta cã:
 2 u 2 − 3u = y 2 − 2

, gi¶i ra ta ®−îc y = u = 2, suy ra hÖ cã c¸c cÆp

2 y 2 −3 y =u 2 − 2

nghiÖm: (0, 1); (1, 2); (−1, 2).
26.Bµi 26.
 4 2 x 2 − 2 − 2 2 x 2 + y + 4 y = 1  4 2 ( x 2 −1 ) − 4.4 x 2 −1 .2 y + 2 2 y = 1


⇔
(1)

2 y+2
2 x2 +y
2y
x 2 −1 y
2
 2 − 3.4
− 3.2
= 16
.2 = 4



11
www.mathvn.com
www.MATHVN.com


x 2 −1
u = 4
§Æt: 
,
v = 2 y


H phương trình mũ và logarit

u , v > 0 (*) , thay vµo (1) ta cã:

2
2
2
4
2
 2
 u 2 − 4 uv + v 2 = 1  ( v − 4 ) − 12 v ( v − 4 ) + 9 v − 9 v = 0

2
⇔
 2
v −4
 v − 3 uv = 4
u =

3v

4
2
 2 v − 31 v − 16 = 0  v 2 = 16
v = 4


2
2
⇔
⇔
⇔
v −4
v −4
 u =1
u =
u =
3v
3v


Thay vµo (*) ta ®−îc c¸c cÆp nghiÖm: (1, 2); (−1, 2).

27.Bµi 27.
 9 log 2 ( xy ) − 3 = 2 ( xy ) log 2 3
(1)


 ( x + 1 ) 2 + ( y +1 ) 2 = 1
(2)

§iÒu kiªn: xy > 0.
§Æt: log 2 ( xy ) = t ⇒ xy = 2 t , thay vµo (1) ta cã:

9 − 3 = 2.( 2 )
t

t

log 2 3

⇔3

2t

− 2.3 − 3 = 0 ⇔ 3 = 3 ⇔ t = 1 ⇒ xy = 2 (3)
t

t

( 2 ) ⇔ ( x + y ) + 2 ( x + y ) − 2 xy +1 = 0 ⇔ ( x + y ) + 2 ( x + y ) − 3 = 0
 x + y =1
(4)
⇔
 x + y = −3
KÕt hîp (3) vµ (4) ta cã c¸c cÆp nghiÖm: 1, 2); (2, 1).
2

2

28.Bµi 28.
 4 log 3 ( xy ) = 2 + ( xy ) log 3 2
(1)

 2
 x + y 2 −3 x −3 y = 2
(2)

§iÒu kiªn: xy > 0.
t
§Æt: log 3 ( xy ) = t ⇒ xy = 3 , thay vµo (1) ta cã:
4 = 2+ (3 )
t

t

log 3 2

⇔2

2t

− 2 − 2 = 0 ⇔ 2 = 2 ⇔ t = 1 ⇒ xy = 3 ( 3 )
t

t

( 2 ) ⇔ ( x + y ) − 3 ( x + y ) − 2 xy −12 = 0 ⇔ ( x + y ) − 3 ( x + y ) −18 = 0
 x+ y =6
⇔
(4)
 x + y = −3
Tõ (3) vµ (4) ta cã c¸c cÆp nghiÖm ( 3 + 6 , 3 − 6 ) , ( 3 − 6 , 3 + 6 ) .
2

2

12
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

29.Bµi 29.
3 x − 2 y 2 = 7

2
 x
y
 2
2 =7
3 − 2
30.Bµi 30.
 9 2 cot gx + sin y = 3
 9 2 cot gx .9 sin y = 3


⇔
 sin y
cot gx
sin y
2 cot gx
9
− 81
= 2 9
−9
=2



(1)

 u = 9 2 cot gx

§Æt: 
, u , v > 0 , thay vµo (1) ta cã:
 v = 9 sin y

u .v = 3
 u ( u + 2 ) = 3  u = 1  cot gx = 0
⇔
⇔
⇒

v −u = 2 v =u + 2
 v = 3  sin y = 1/ 2

31.Bµi 21 (§HDL TL 98).
 x + 2 lg y = 3  x + 2 lg y = 3

⇔
( 1 ) ®iÒu kiÖn:x ≥ 0, y > 0.

2
x − 6 lg y = 1
 x − 3 lg y = 1


§Æt Èn phô, gi¶i ra ta ®−îc cÆp nghiÖm: ( 4 , 10 ) .
32.Bµi 32 (§HNN I 98).
 3 lg x = 4 lg y

(1)

lg 4
lg y
( 4 x)
=(3 y )

§iÒu kiÖn: x, y > 0.
 lg( 3 lg x ) = lg( 4 lg y )
 lg x .lg 3 − lg y .lg 4 = 0

(1) ⇔ 
(2)
⇔
2
2
lg x .lg 4 − lg y .lg 3 = lg 3 − lg 4
 lg( 4 x ) lg 4 = lg( 3 y ) lg 3


 u = lg x
§Æt: 
, thay vµo (2) ta cã:
 v = lg y
 u .lg 3 − v .lg 4 = 0
.

2
2
 u .lg 4 − v .lg 3 = lg 3 − lg 4
Gi¶i ra b»ng ph−¬ng ph¸p ®Þnh thøc ta ®−îc:
 u = − lg 4  x = 1/ 4
⇒

 v = − lg 3  y = 1/ 3
13
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

33.Bµi 33 (§HQG TPHCM 97).
 log 1+ x ( 1 − 2 y + y 2 ) + log 1− y ( 1 + 2 x + x 2 ) = 4


 log 1+ x ( 1 + 2 y ) + log 1− y ( 1 + 2 x ) = 2


(1)
(2)

§iÒu kiÖn:x > −1/2, x ≠ 0, −1/2 < y < 1, y ≠ 0.
( 1 ) ⇔ log 1+ x ( 1 − y ) + log 1− y ( 1 + x ) = 2 ⇔ log 1+ x ( 1 − y ) +

1
=2
log 1+ x ( 1 − y )

⇔ log 1+ x ( 1 − y ) = 1 ⇔ 1 + x = 1 − y ⇔ x = − y . Thay vµo (2) ta cã:

log 1+ x ( 1 − 4 x 2 ) = 2 ⇔ 1 − 4 x 2 = ( 1 + x ) 2 ⇔ x =

−2
2
⇒ y=
5
5

34.Bµi 34 (§HTCKT 2000).
 x log 8 y + y log 8 x = 4
(1)

log 4 x − log 4 y = 1

§iÒu kiÖn:x, y > 0.
1
 1 log 2 y
log 2 x
x3
+ y3
=4

(1) ⇔ 
(2)
 log x − log y = 1
2
2


2
u
 u = log 2 x  x = 2

§Æt: 
, thay vµo (2) ta cã:
⇒
v = log 2 y  y = 2 v



1
1

v
u
u 3
v 3
( 2 ) + ( 2 )


u − v = 1


2


1
x=
−3


8

u =

uv
2
1



 uv = 3
3 =2
 y = 2
= 4 2


  v = −2 ⇒  
⇔
⇔
1 ⇔
1
 u = −2  
u − v = 1 u − v = 2
x=





2
2
 −3 

v=


2
 y = 1

8


14
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

35.Bµi 35 (§Ò 56). Cho hÖ ph−¬ng tr×nh:
 log x ( ax + by ) + log y ( ay + bx ) = 4

 log x ( ax + by ).log y ( ay + bx ) = 4
a) Gi¶i hÖ khi a = 3, b = 5.
b) Gi¶i vµ biÖn luËn hÖ khi a, b > 0.

(1)

§iÒu kiÖn: 0 < x, y ≠ 1, ax + by > 0, ay + bx > 0.
 u = log x ( ax + by )
, thay vµo (1) ta cã:
§Æt: 
v = log y ( ay + bx )

 u + v = 4  u = 2  log x ( ax + by ) = 2
⇔
⇒
(2)

u .v = 4
 v = 2  log y ( ay + bx ) = 2
a) Víi a = 3, b = 5:
§iÒu kiÖn: §iÒu kiÖn: 0 < x, y ≠ 1.
Tõ (2) ta cã:
2
3 x + 5 y = x 2
 log x ( 3 x + 5 y ) = 2  3 x + 5 y = x

⇔
⇔

log y ( 3 y + 5 x ) = 2  3 y + 5 x = y 2

 ( x − y )( x + y + 2 ) = 0

x= y
 2
 x =8
 x −8 x =0
⇔
⇔
y=−x−2
 y =8

( VN )
 2
  x + 8 x + 10 = 0


b) Víi a, b > 0:
§iÒu kiÖn: §iÒu kiÖn: 0 < x, y ≠ 1 (*).
Tõ (2) ta cã:
2
 ax + by = x 2
 log x ( ax + by ) = 2  ax + by = x

⇔
⇔

2
 log y ( ay + bx ) = 2  ay + bx = y
 ( x − y )( x + y − a + b ) = 0

  ax + by = x 2
2
(3)
 ax + by = x

x= y


⇔
x= y
 ax + by = x 2

x+ y −a+b=0 
(4)

x+ y −a+b=0


15
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

x= y
x= y
x=a+b

⇔
(3) ⇔  2
⇔  x=a+b
 x − ( a + b ) x = 0   x = 0 ( lo¹i )  y = a + b

NghiÖm cña (3) lµ nghiÖm cña (1) khi vµ chØ khi tho¶ m·n (*), hay a + b ≠1
 y =a −b − x
(4)⇔  2
2
 x + ( b − a ) x − ab + b = 0 ( 5 )
Do 0 < x, y ≠ 1 nªn a − b > x > 0. Khi ®ã nÕu (5) cã:
2
2
2
∆ = ( b − a ) + 4 ( ab − b ) = ( a + 3 b )( a − b ) > 0 , − ab + b < 0 , nªn (5) cã
hai nghiÖm tr¸i dÊu:

a − b + ( a + 3 b )( a − b )
>0
 x1 =
2

⇒ y1 = x 2 < 0 .

a − b − ( a + 3 b )( a − b )
 x2 =
< 0 ( lo ¹ i )

2
VËy hÖ (4) kh«ng cã nghiÖm tho¶ m·n (*).
KÕt luËn:

+ Víi a + b = 1 hÖ v« nghiÖm.
+ Víi a + b ≠1, hÖ cã nghiÖm duy nhÊt x = y = a + b.

36.Bµi 36. Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh:
 2 x + m .3 y = 3 m

(1)

x
y
 m .2 + 3 = 2 m + 1

x
u = 2
 u + mv = 3 m

§Æt: 
, u , v > 0 (*) .Thay vµo (1) ta cã: 
( 2)
y
mu + v = 2 m + 1
v =3


2
2
2
D = 1 − m , D u = −2 m + 2 m , D v = −3 m + 2 m + 1
+ NÕu D ≠ 0 ⇔ m ≠ 1 vµ m ≠ −1: HÖ (2) cã nghiÖm duy nhÊt:
2

−2m + 2m
2m

u =
u=
2



1− m
m +1
⇔

2
 − 3 m + 2 m +1  v = 3 m +1

v =

1+ m
2

1− m
V× ®iÒu kiÖn (*) nªn ®Ó u, v lµ nghiÖm cña (2) ta ph¶i cã:

16
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

  m < −1
 2m
m>0
 m +1 > 0
 m < −1


. Khi ®ã (1) cã nghiÖm:
⇔
⇔

3 m +1
 m < −1
m>0


 1 + m > 0   m > −1/ 3



2m

x = log 2


m +1

 y = log 3 m + 1
2


1+ m

 m =1
+ NÕu D = 0 ⇔ 1 − m 2 = 0 ⇔ 
 m = −1
+ Víi m = 1: Dx ≠ 0 nªn hÖ (2) v« nghiÖm.
+ Víi m = −1: D = Du = Dv = 0: Mäi cÆp (u, v) tho¶ m·n u + v = 3 lµ
nghiÖm cña (2), suy ra mäi cÆp (x, y) tho¶ m·n x + y = 3 lµ nghiÖm cña (1).
KÕt luËn:
2m

x = log 2

 m < −1

m +1
∗ Víi 
, hÖ cã nghiªm duy nhÊt: 
m>0
 y = log 3 m + 1
2


1+ m
∗ Víi m = −1: mäi cÆp (x, y) tho¶ m·n x + y = 3 lµ nghiÖm cña (1).
∗ Víi −1 < m < 0: hÖ (1) v« nghiÖm.

37.Bµi 37. Cho hÖ ph−¬ng tr×nh:
 m .3 x +1 + 2 y = 2 m


 3 x +1 + m .2 y = m + 1


(1)

a) T×m m ®Ó hÖ cã nghiÖm duy nhÊt. (−2≤ m < −1)
b) T×m m nguyªn ®Ó nghiÖm duy nhÊt cña hÖ lµ nghiÖm nguyªn. (m = −2)
38.Bµi 38. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh:
 2 2 x + y .2 x +1 = m .2 x + y  2 2 x + 2 y .2 x = m .2 x + y


⇔
 2
 y + y .2 x +1 = my + 2 x
 y 2 + 2 y .2 x = my + 2 x


x
§Æt: t = 2 , t > 0 (*). Thay vµo (1) ta cã:

17
www.mathvn.com

(1)
www.MATHVN.com

H phương trình mũ và logarit

 t 2 + 2 yt = mt + y
 t 2 + 2 yt = mt + y

⇔
 2
 y + 2 yt = my + t  ( t − y )( t + y − m + 1 ) = 0

  t 2 + 2 yt = mt + y
2
(2)
 t + 2 yt = mt + y  
t=y


⇔ t = y
⇔
2

  t + 2 yt = mt + y
(3)

  y = − t + m −1
  y = − t + m −1

t = y
 t = 0 ( lo¹i )
t = y

(2)⇔  2
⇔ 

 3 t − ( m + 1) t = 0   t = m + 1

3

m +1
m +1
Do t > 0 nªn:
> 0 ⇔ m > −1 , khi ®ã x = log 2
3
3
 y = − t + m −1
(3) ⇔  2
 t − ( m − 1) t + m − 1 = 0 ( 4 )
Gi¶i ph−¬ng tr×nh (4):
2
2
∆ = ( m − 1 ) − 4 ( m − 1 ) = m − 6 m + 5 = ( m − 1 )( m − 5 )
m>5
+ NÕu ∆ > 0 ⇔ ( m − 1 )( m − 5 ) > 0 ⇔ 
, ph−¬ng tr×nh (4) cã 2 nghiªm
 m <1
ph©n biÖt:
2

m −1+ m − 6 m + 5
 t1 =
 y1 = t 2
2

⇒

2
 y 2 = t1
 t = m −1− m − 6 m + 5
 2

2
Víi m < 1, ph−¬ng tr×nh (4) cã hai nghiªm tr¸i dÊu, nªn t1 > 0, t2 < 0. Do ®ã
hÖ (3) cã nghiÖm duy nhÊt:
2
 m −1+ m 2 − 6 m + 5

m −1 + m − 6 m + 5
t =
 x = log 2


2
2
⇒


m −1 − m 2 − 6 m + 5 
m −1− m 2 − 6 m + 5
y=
y=


2
2
Víi m > 5, ph−¬ng tr×nh (4) cã hai nghiÖm t1, t2 tho¶ m·n:

18
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

 t1 + t 2 = m −1> 0  t1 > 0
⇒
, nªn hÖ (3) cã c¸c cÆp nghiÖm:

 t1 .t 2 = m −1> 0
t 2 > 0
t = t1
t = t 2
vµ 

 y =t2
 y = t1
m=5
+ NÕu ∆ = 0 ⇔ ( m − 1 )( m − 5 ) = 0 ⇔ 
 m =1

Víi m = 5, ph−¬ng tr×nh (4) cã nghiÖm duy nhÊt t = 4 ⇒ y = 4 ⇒ hÖ (3) cã
nghiªm duy nhÊt x = log 2 4 = 2 , y = 4 .
Víi m = 1, ph−¬ng tr×nh (4) cã nghiÖm duy nhÊt t = 0 (kh«ng tho¶ m·n (*))
⇒ hÖ (3) v« nghiÖm.
+ NÕu ∆ < 0 ⇔ ( m − 1 )( m − 5 ) < 0 ⇔ 1 < m < 5 , ph−¬ng tr×nh (4) v« nghiÖm
⇒ hÖ (3) v« nghiÖm.

KÕt luËn:

m −1+ m 2 − 6 m + 5
 x = log 2

2
NÕu m ≤ −1, hÖ cã nghiÖm duy nhÊt: 
2

m −1 − m − 6 m + 5
y=

2
NÕu −1 < m < 1 hÖ cã 2 nghiÖm:
2
m +1 
m −1 + m − 6 m + 5

 x = log 2
x = log 2



3
2
vµ 

 y = m +1

m −1− m 2 − 6 m + 5

y=


3

2
m +1

x = log 2


3
NÕu 1 < m < 5, hÖ cã nghiÖm duy nhÊt: 
 y = m +1


3

 x =1
x=2
NÕu m = 5, hÖ cã hai nghiÖm: 
vµ 
 y=2
 y=4

19
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

m +1

x = log 2


3
NÕu m > 5, hÖ ph−¬ng tr×nh cã 3 nghiÖm: 
 y = m +1


3


m −1+ m 2 − 6 m + 5
m −1 − m 2 − 6 m + 5
 x = log 2
 x = log 2


2
2
vµ 

2
2


m −1 − m − 6 m + 5
m −1+ m − 6 m + 5
y=
y=




2
2

39.Bµi 39. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh:
x− y
 x− y
m 2 −m 4 =m 2 −m

(1)
 x+ y
x+ y
 3
2
n
−n 6 =n −n

XÐt víi m, n > 0.
x− y

u = m 4

(*). Thay vµo (1) ta cã:
§Æt: 
x+ y

v = n 6

u 2 − u = m 2 − m

(2)
 2
v − v = n 2 − n

XÐt hµm sè: f ( x ) = x 2 − x lµ hµm ®ång biÕn trªn (0, +∞), nªn víi x≠y th×
f ( x ) ≠ f ( y ) . Do ®ã
u = m
. Thay vµo (*) ta cã:
(2)⇔ 
v = n
x− y
 4 =1
 x− y

 m =1
x− y
x− y
m 4 =m  x + y
=1
=1




⇔
= 1 hoÆc  4
hoÆc  6
hoÆc  n = 1
 x− y
 6
 6
 m ≠ 1, n = 1
 m = 1, n ≠ 1
 x , y ∈R



n
=n
 m ≠ 1, n ≠ 1




20
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

x=5
 m =1
x− y=4
x− y=6


⇔  y =1
hoÆc 
hoÆc 
hoÆc  n = 1
 m ≠ 1, n = 1
 m = 1, n ≠ 1
 m ≠ 1, n ≠ 1
 x , y ∈r



KÕt luËn: XÐt víi m, n > 0
+ Víi m = n = 1: Mäi x, y ∈ R lµ nghiÖm cña hÖ.
+ Víi m = 1, n ≠ 1: Mäi (x, y) tho¶ m·n x − y = 6 lµ nghiÖm cña hÖ.
+ Víi m ≠ 1, n = 1: Mäi (x, y) tho¶ m·n x − y = 4 lµ nghiÖm cña hÖ.
+ Víi 0 < m, n ≠ 1: HÖ cã nghiªm duy nhÊt (5,1).

40.Bµi 40. Cho hÖ ph−¬ng tr×nh:
 2 x +1 = y −


 y −1 = 2 2


y −1 + m +1
x+2

−2

x +1

+m

(1)

a) Gi¶i hÖ ph−¬ng tr×nh víi m = 0.
b) T×m m ®Ó hÖ cã nghiªm.
c) T×m m ®Ó hÖ coa nghiªm duy nhÊt.

Gi¶i.
 u = 2 x +1

§Æt: 
, u ≥ 2 , v ≥ 0 (*), thay vµo (1) ta cã:
 v = y −1

u = v 2 − v + m u = v 2 − v + m

⇔

 v = u 2 − u + m  u − v = − ( u − v )( u + v ) + ( u − v )

 u = v 2 − v + m
( 2)

u = v 2 − v + m
 u = v
⇔
⇔
( u − v )( u + v ) = 0   u = v 2 − v + m


( kh«ng cã nghiÖm t/m (*))
 u = − v

a) Víi m = 0, (2) trë thµnh:
u = v
u = v
 u = v = 0 ( lo¹i )
⇔
⇔

2
u = v − v u (u − 2 ) = 0 u = v = 2
Thay u = v = 2 vµo (*) ta cã:

21
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

 x ≥ 0 , y ≥1  x ≥ 0 , y ≥1
 2 x +1 = 2 
 x =1


⇔  x =1
⇔  x =1
⇔

 y −1 = 2 
 y =5
 y =5

y −1= 4


u = v
u = v
b) ( 2 ) ⇔  2
⇔
2
v − v + m = v  f ( v ) = v − 2 v + m = 0 (3)
HÖ cã nghiÖm khi vµ chØ khi (3) cã nghiÖm v ≥ 2
 f (2)≤0


  ∆ '≥ 0
⇔ m≤0
  f ( 2 ) > 0 ( VN )


  − b =1 > 2
2a

VËy víi m ≤ 0 th× hÖ cã nghiÖm.
u = v
u = v
⇔
c) ( 2 ) ⇔  2
2
v − v + m =v  f (v) =v − 2v + m = 0 ( 4)
HÖ cã nghiÖm duy nhÊt khi vµ chØ khi (3) chØ cã 1 nghiÖm v ≥ 2
 f (2)=0
−b


=1≤ 2 ⇔ m ≤ 0
2a
 f (2)<0

VËy víi m ≤ 0 th× hÖ cã nghiÖm duy nhÊt.

41.Bµi 41. Cho hÖ ph−¬ng tr×nh:
22 x + 42 y =m
 ( 2 x + 4 y ) 2 − 2.2 x .4 y = m


⇔
 x
y
x+2 y
x
y
x
y
2 + 4 + 2
= m  2 + 4 + 2 .4 = m



a) Gi¶i hÖ víi m = 1.
b) T×m m ®Ó hÖ cã nghiÖm.

Gi¶i.
u = 2 x + 4 y

§Æt: 
, u , u > 0 (*).Thay vµo (1) ta cã:
 v = 2 x .4 y


22
www.mathvn.com

(1)
www.MATHVN.com

H phương trình mũ và logarit

 ( u + v ) 2 − 2 uv = m  2 uv = m 2 − m  2 v ( − v + m ) = m 2 − m
⇔
⇔

u+v=m
u =−v+ m


u = − v + m
 f ( v ) = 2 v 2 − 2 mv + m 2 − m = 0 ( 2 )
⇔
u = − v + m
a) Víi m = 1 ta cã:
  v = 0 ( lo¹i )
2v 2 − 2v =0 
 v =1
⇔   v =1
⇔
( lo¹i )

u =0
u = − v +1


u = − v +1

VËy víi m = 1, hÖ v« nghiÖm.
b) NhËn xÐt: Víi m ≤ 0, ph−¬ng tr×nh thø hai cña (1) v« nghiÖm nªn hÖ v«
nghiÖm. Ta xÐt víi m > 0. Khi ®ã hÖ (1) cã nghiªm khi vµ chØ khi ph−¬ng
tr×nh (2) cã nghiªm v tho¶ m·n 0 < v < m
 f ( 0 ). f ( m ) < 0
(m 2 −m) 2 <0
 ∆ '> 0
m 2 − m<0


2
2
m − 2(m − m) >0  2
 f (0)>0

⇔ 
⇔  2
⇔  m − m > 0 ( vn )

m −m>0
 m > 1/ 2
 f (m)>0

  m > 1/ 2



0 < −b = 1 < m



 2a 2
VËy kh«ng cã gi¸ trÞ cña m ®Ó ph−¬ng tr×nh cã nghiÖm.

42.Bµi 42. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh:
 4 lg x − m lg y = − m − 1

 ( m + 6 ) lg x + 2 lg y = m + 3
Gi¶i b»ng ph−¬ng ph¸p ®Þnh thøc.

(1)

43.Bµi 43.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm duy nhÊt:
 lg 2 x + lg y = 1
 lg 2 x + lg y = 1

⇔
 x
 lg x − lg y = m
 lg y = m

§iÒu kiÖn: x, y > 0.
 u = lg x
§Æt: 
, thay vµo (1) ta cã:
v = lg y


(1)

23
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

 u 2 + v 2 =1  ( − v + m ) 2 + v 2 =1  2 v 2 − 2 v + m 2 −1 = 0 ( 2 )
⇔
⇔

u −v=m
u =−v+ m


u = − v + m
HÖ cã nghiÖm duy nhÊt khi vµ chØ khi ph−¬ng tr×nh (2) cã nghiªm duy nhÊt
2
2
2
⇔ ∆ ' = 0 ⇔ m − 2 ( m − 1 ) = 0 ⇔ − m + 4 m − 2 = 0 ⇔ m = −2 ± 2
Bµi 43.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm:
 ln( xy ) = ln 2 x + m  ln x + ln y = ln 2 x + m


⇔
(1)

 ln( xy ) = ln 2 y + m  ln x + ln y = ln 2 y + m


§iÒu kiÖn: x, y > 0
 u = lg x
§Æt: 
, thay vµo (1) ta cã:
 v = lg y
 u = v
(I)
u + v = u 2 + m   2
u + v = u 2 + m 

 u − 2u + m = 0 ( 2 )
⇔ u = v
⇔

u =−v
u + v = v 2 + m  


( II )
u = −v
 2

 u = − m (3)

 ( i ) cã nghiÖm
 (2) cã nghiÖm
HÖ (1) cã nghiªm khi vµ chØ khi 
⇔
 (Ii ) cã nghiÖm  ( 3 ) cã nghiÖm
 ∆ ' ( 2 ) ≥ 0 1 − m ≥ 0  m ≤ 1
⇔
⇔
⇔
⇔ m ≤1
m≤0
m≤0
m≤0

44.Bµi 44.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã 2 nghiÖm:
 log 2 ( x + y ) ( x 2 + y 2 ) = 1


( x + y ) 2 = m

 0 < x + y ≠ 1/ 2
§iÒu kiÖn:  2
2
x + y >0

(1)

 x 2 + y 2 = 2 ( x + y )  ( x + y ) 2 − 2 xy − 2 ( x + y ) = 0


(1) ⇔ 
⇔
( x + y ) 2 = m
( x + y ) 2 = m


+ Víi m ≤ 0, (2) v« nghiÖm, suy ra (1) v« nghiÖm.
+ Víi m > 0:

24
www.mathvn.com

(2)
www.MATHVN.com

H phương trình mũ và logarit

2 m−m

 xy =
(2)⇔ 
(3)
2
x+ y= m

(1) cã nghiªm khi vµ chØ khi (3) cã nghiÖm
 ( x + y ) 2 ≥ 2 xy  m ≥ 4 m − 2 m  3 m − 4 m ≥ 0
16
⇔
⇔
⇔
⇔m>
9
m>0
m >0
m >0

C. Gi¶i hÖ ph−¬ng tr×nh b»ng ph−¬ng ph¸p hµm sè.
Ph−¬ng ph¸p:

B−íc 1: §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa.
B−íc 2: Rót ra tõ hÖ mét ph−¬ng tr×nh d¹ng f(x) = f(y).
B−íc 3: Sö dông ph−¬ng ph¸p hµm sè: NÕu f(x) lµ hµm sè lu«n
®ång biÕn hoÆc nghÞch biÕn th× tõ ph−¬ng tr×nh f(x) = f(y) ta cã
x = y.
B−íc 4: Sö dông kÕt qu¶ trªn ®Ó gi¶i hÖ.
Bµi tËp: Gi¶i hÖ ph−¬ng tr×nh:
45.Bµi 45.
2 x + 2 x =3+ y 2 x + 2 x =3+ y
2 x + 2 x =3+ y



(I )
⇔
⇔
 y
x
y
x
y
2 + 2 y =3+ x 2 − 2 + 2 x − 2 y = − x + y 2 + 3 x = 2 +3 y ( 2)



x
XÐt hµm sè: f ( x ) = 2 + 3 x lµ hµm sè ®ång biÕn trªn R, nªn tõ ph−¬ng
tr×nh (2) ta cã: f(x) = f(y) ⇔ x = y.
Khi ®ã hÖ (I) trë thµnh:
2 x + 2 x =3+ y  x = y
x= y
⇔ x
⇔ x
( II )

x= y
 2 + 2 x = 3 + x  2 = − x + 3(3)
Gi¶i ph−¬ng tr×nh (3):
NhËn xÐt: + x = 1 lµ nghiªm cña (3).
+ Víi x > 1: VT(3) > 2, TP(3) < 2 nªn ph−¬ng tr×nh (3) kh«ng cã
nghiÖm x > 1.
+ Víi x < 1: VT(3) < 2, TP(3) > 2 nªn ph−¬ng tr×nh (3) kh«ng cã
nghiÖm x < 1.
VËy ph−¬ng tr×nh (3) cã nghiÖm duy nhÊt x = 1, do ®ã tõ hÖ ph−¬ng tr×nh (II)
ta cã (1, 1) lµ nghiªm cña hÖ (1).
25
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

46.Bµi 46.
3 x − 3 y = y − x
3 x + x = 3 y + y
(1)


⇔
 2
 x + xy + y 2 = 12  x 2 + xy + y 2 = 12 ( 2 )


x
XÐt hµm sè: f ( x ) = 3 + x lµ hµm sè ®ång biÕn trªn R, nªn tõ ph−¬ng tr×nh
(1) ta cã: f(x) = f(y) ⇔ x = y.
Khi ®ã hÖ (1) vµ (2) trë thµnh:

x= y
x= y
x= y
⇔
⇔ 2
 2
2
 x + xy + y = 12  3 x = 12  x = ±2
VËy nghiªm cña hÖ ph−¬ng tr×nh lµ (2, 2) vµ −2, −2).

47.Bµi 47.
2 x = 2 y 2 x = 2 y
(1)


⇔
 y
2 = 2 x 2 x + 2 x = 2 y + 2 y (2)


x
XÐt hµm sè f ( x ) = 2 + 2 x lµ hµm sè ®ång biÕn trªn R, nªn tõ (2) ta cã:
f ( x ) = f ( y ) ⇔ x = y . KÕt hîp víi (1) ta cã hÖ:
x= y
x= y
x= y

⇔ x
⇔   x =1 (
do
hµm
sè
 x
2 = 2 y 2 − 2 x =0  x = 2

x
f ( x ) = 2 − 2 x lµ hµm låi, nªn ph−¬ng tr×nh: 2 x − 2 x = 0 cã ®óng hai
nghiÖm.

D. Gi¶i hÖ ph−¬ng tr×nh b»ng ph−¬ng ph¸p ®iÒu kiÖn cÇn vµ ®ñ.
Ph−¬ng ph¸p:
¸p dông co c¸c bµi to¸n:

1. T×m ®iÒu kiÖn ®Ó hÖ ph−¬ng tr×nh cã nghiÖm duy nhÊt.
2. T×m ®iÒu kiÖn ®Ó hÖ ph−¬ng tr×nh cã nghiÖm víi mäi gi¸ trÞ
cña mét tham sè.
C¸c b−íc:
B−íc 1. §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa.
B−íc 2. T×m ®iÒu kiÖn cÇn cho hÖ dõa vµo tÝnh ®èi xøng hoÆc ®¸nh gi¸.
26
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

B−íc 3. KiÓm tra ®iÒu kiªn ®ñ.
Bµi tËp.
48.Bµi 48. T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt.
 2 x − 2 y = y − x ( m + 1)

(1)
 2
2
x + y=m

NhËn xÐt: NÕu x0 lµ nghiÖm cña hÖ th× − x0 còng µ nghiÖm cña hÖ. Do ®ã ®Ó
hÖ cã nghiÖm duy nhÊt th× x0 = − x0 ⇔ x0 = 0.
Víi x = 0, thay vµo hÖ ta cã:
1 − 2 y = y ( 2 )  y = 0

⇔
( do VP(2) d«ng biÕn, VT(2) nghÞch biÕn )

 y=m2
m =0

Víi m = 0 thay vµo (1) ta cã:
2 x −2 y = y − x
 2 x + x = 2 y + y ( 3)


⇔

y=x2
x2 + y =0
(4)


XÐt hµm sè: f ( t ) = 2 t + t lµ hµm sè ®ång biÕn trªn R. Nªn tõ (3) ta cã:
f ( x ) = f ( y ) ⇔ x = y , kÕt hîp (4) ta cã:
 x =y

⇔ x = y =0.
 2
x + y =0

VËy víi m = 0 hÖ cã nghiÖm duy nhÊt.

49.Bµi 49. T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt:
2 x + x = y + x 2 + m

(1)
 2
2
 x + y =1

NhËn xÐt: NÕu x0 lµ nghiÖm cña hÖ th× − x0 còng µ nghiÖm cña hÖ. Do ®ã ®Ó
hÖ cã nghiÖm duy nhÊt th× x0 = − x0 ⇔ x0 = 0.
Víi x = 0, thay vµo hÖ ta cã:
m=0

1 = y + m   y = 1
⇔
 2
m=2
 y =1

  y = −1
Víi m = 0 thay vµo (1) ta cã:
27
www.mathvn.com
www.MATHVN.com

H phương trình mũ và logarit

2 x + x = y + x 2

 2
 x + y 2 =1


(2)
(3)

2
 0 ≤ x ≤1  x ≥ x

⇒
⇒2
Tõ (3) ta cã: 
−1≤ y ≤1  2 x ≥1≥ y



x

+ x ≥ y + x 2 . Do ®ã:

 x =x2
x=0

(2)⇔ 
⇔
, tho¶ m·n (3), suy ra m = 0 tho¶ m·n.
 2 x = y =1  y =1

Víi m = 2 thay vµo (1) ta cã:
2 x + x = y + x 2 + 2

 2
 x + y 2 =1


28
www.mathvn.com

Copy of hpt mu va logarit www.mathvn.com

  • 1. www.MATHVN.com H phương trình mũ và logarit HÖ ph−¬ng tr×nh mò vµ l«garit A. Ph−¬ng ph¸p biÕn ®æi t−¬ng ®−¬ng. Ph−¬ng ph¸p: B−íc 1: §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa. B−íc 2: Dïng c¸c phÐp biÕn ®æi ®Ó nhËn ®−îc mét ph−¬ng tr×nh mét Èn. B−íc 3: Gi¶i ph−¬ng tr×nh mét Èn nhËn ®−îc tõ hÖ. B−íc 4: KÕt luËn. Bµi tËp: Gi¶i c¸c hÖ sau: 1. Bµi 1. x + y = 2  (1)  2 ( y + 1) x +x + 2 = 1  Gi¶i. §iÒu kiÖn y > −1. x + y = 2  x + y = 2 x = 2  y + 1 = 1 ⇔ ⇔ (1) ⇔  y +1 > 0 y = 0 y = 0   2  x + x + 2 = 0  2. Bµi 2.  x x + x − 2 = x − 2( x − x − 2 ) (1)  x x+ y = y x− y   ( § K : x , y > 0) ⇔   2 x y = 1  y = x −2 ( 2)   x = 1 x = 1 x = 1 (1) ⇔  ⇔ ⇔ −2 −2 3  x + x = −2( x − x ) 3 + 3x = 0  x = −1 (lo¹i )   Thay x = 1 vµo (2) ta cã cÆp nghiÖm (1,1). 3. Bµi 3. 2 x + 2 y = 3 2 x + 21− x = 3 2 2 x − 3.2 x + 2 = 0    ⇔ ⇔  x + y = 1 y = 1 − x y = 1 − x    1 www.mathvn.com
  • 2. www.MATHVN.com H phương trình mũ và logarit  x = 0 2 x = 1    x y =1 ⇔ 2 = 2 ⇔    x = 1   y =1 − x   y = 0  4. Bµi 4.  2( 4 − 2 x + 4 − 2 y ) = 1   x + y = 1  5. Bµi 5. x 9 x+ y = y 9 x− y  (1)  2 x y = 1  §iÒu kiÖn: x, y > 0.  x 9 x + x −2 = x −2(9 x − x −2 ) x 9 x+ y = y 9 x− y   (1) ⇔  ⇔  y = x −2  y = x −2   x = 1 x = 1 ( 2) ⇔  ⇔ . x = 1/ 3 9 x + x − 2 = −2(9 x − x − 2 )    Thay vµo (3) ta ®−îc c¸c cÆp nghiÖm: (1,1); (1/3,9). (2) (3) 6. Bµi 6. log (2 x .3 y ) = log 12 2 x .3 y = 12  x + y log 2 3 = 2 + log 2 3   2 ⇔ 2 ⇔  x y  x. log 2 3 + y = 1 + 2 log 2 3 3 .2 = 18 log 2 (3 x .2 y ) = log 2 18   Gi¶i hÖ trªn b»ng ph−¬ng ph¸p ®Þnh thøc ta cã cÆp nghiªm: (2,1). 7. Bµi 7 (HVNH 99). 2 x + y = 2  2 x ( 2 x − 2) = 2 2 x = 1 + 3  x + y = 1    ⇔ ⇔ ⇔  x 2 − 2 y = 2 2 x − 2 y = 2 2 y = 2 x − 2 2 y = −1 + 3      x = log 2 (1 + 3 )  ⇔  y = log 2 (−1 + 3 )  2 www.mathvn.com
  • 3. www.MATHVN.com H phương trình mũ và logarit 8. Bµi 8 (§HSP II 98). 2 3 x +1 + 2 y −2 = 3.2 y +3 x    3 x 2 + 1 + xy = x + 1  (1) ( 2) x = 0 x + 1 ≥ 0  x ≥ −1   ⇔ ⇔  x ≥ −1 ( 2) ⇔  2 3x + 1 + xy = x + 1  x(3x + y − 1) = 0   y = 1 − 3 x  8 Víi x = 0 thay vµo (1) ta cã cÆp nghiÖm: (0, log 2 ) 11  x ≥ −1 , thay vµo (1) ta cã: Víi  y = 1 − 3x  2 3 x +1 + 2 −1−3 x = 3.2 (1−3 x )+31 1 Gi¶i ra ta ®−îc cÆp nghiÖm: ( [log 2 (3 + 8 ) − 1, 2 − log 2 (3 + 8 )) 3 9. Bµi 9 (§HKTQD 99). x  5( y − ) x y+4 x = y 3 (1)   x 3 = y −1 ( 2)  §iÒu kiÖn: x, y > 0. Tõ (2) ta cã: y = x− 3, thÕ vµo (1) ta ®−îc: x x = 1 −15( x −3 − ) x = 1 x −3 + 4 x 3 ⇔ x =x x ⇔  x −3 + 4 x = −15( x −3 − ) x = 2 3  Thay vµo (2) ta ®−îc c¸c cÆp nghiÖm: (1, 1) vµ (2, 1/8). 10.Bµi 10 (§HQG 95). 2 x − 2 y = ( x − y )( xy + 2) (1)   2 x + y 2 = 2 ( 2)  Th¸y (2) vµo (1) ta ®−îc: 2 x − 2 y = ( x − y )( x 2 + y 2 + xy) ⇔ 2 x − 2 y = x 3 − y 3 ⇔ 2 x − x 3 = 2 y − y 3 Nh©n xÐt: x = y tho¶ m·n ph−¬ng tr×nh trªn. NÕu x > y cã: 2 x + x 3 > 2 y + y 3 3 www.mathvn.com
  • 4. www.MATHVN.com H phương trình mũ và logarit NÕu x < y cã: 2 x + x 3 < 2 y + y 3 Nh− vËy, tõ ph−¬ng tr×nh trªn ta cã x = y. x = y = 1 Thay vµo (2) ta cã   x = y = −1 11.Bµi 11.  x 2 + y 2 = 17  x 2 + y 2 = 17 x 2 + y 2    ⇔ ⇔   xy log 2 x + log 2 y = 2 log 2 ( x. y ) = 2    Gi¶i ra ta ®−îc c¸c cÆp nghiÖm (1, 4); (4, 1). = 17 =4 12.Bµi 12. x 2 = y 4  (1)  x log 2 = log y x  y  §iÒu kiÖn: x > 0, 0 < y ≠ 1. log x 2 = log y 4 log 2 x = 2 log 2 y 2  2  (1) ⇔  2 log 2 y log 2 x ⇔  log 2 x − log 2 y = 2 log 2 y − log 2 y = log y log 2 y  2    x =1  log 2 x = 2 log 2 y     log 2 x = 2 log 2 y   y =1 ⇔ ⇔   y =1 ⇔   x = 16  log 2 y − 2 log 2 y = 0    2   y=4  y =4  13.Bµi 13. 4 x 2 − y 2 = 2  (1)  log 2 (2 x + y ) − log 2 (2 x − y ) = 1  §iÒu kiÖn: 2x+y > 0, 2x − y > 0. log (2 x + y ) + log 2 (2 x − y ) = 1 (1) ⇔  2 log 2 (2 x + y ) − log 2 (2 x − y ) = 1 2. log 2 (2 x + y ) = 2 2 x + y = 2 x = 3 / 4 ⇔ ⇔ ⇔ 2 x − y = 1 y = 1/ 2 2. log 2 (2 x − y ) = 0 4 www.mathvn.com
  • 5. www.MATHVN.com H phương trình mũ và logarit 14.Bµi 14 (§HM§C 99). log ( x 2 + y 2 ) − log (2 x) + 1 = log ( x + 3 y ) 4 4  4 (1)  x log 4 ( xy + 1) − log 4 (4 y 2 + 2 y − 2 x + 4) = log 4 − 1  y  §iÒu kiÖn: x > 0  x + 3 y > 0  (*)  xy + 1 > 0  2 4 y + 2 y − 2 x + 4 > 0 y > 0    4( x 2 + y 2 ) 4( x 2 + y 2 ) = log 4 ( x + 3 y ) = x + 3y log 4    2x 2x (1) ⇔  ⇔ xy + 1 xy + 1 x x log 4  = log 4 =  4 y 2 + 2 y − 2x + 4 4 y 4y 4 y 2 + 2 y − 2x + 4   x = y x = y  x 2 − 3xy + 2 y 2 = 0 ( x − y )( x − 2 y ) = 0    ⇔ ⇔ ⇔  x = 2 y ⇔  x = 2 ( x − y )( x − 2) = 0  x 2 − 2 xy + 4 y − 4 x = 0  x = 2  y = 1    KiÓm tra l¹i ®iÒu kiÖn (*) ta cã nghiÖm: x = y ∈ R   x = 2   y = 1  15.Bµi 15 (§HQG Khèi −D 95).  x+ y  y x = 32 4 log ( x − y ) = 1 − log ( x + y )  3 3 §iÒu kiÖn: x − y > 0  x + y > 0  xy ≠ 0  5 www.mathvn.com (1)
  • 6. www.MATHVN.com H phương trình mũ và logarit  x y  x y ( x − 2 y )(2 y − x) = 0  2( y + x ) = 5  2( + ) = 5  (1) ⇔  ⇔ y x ⇔ 2 x − y 2 = 3 log ( x 2 − y 2 ) = 1  2  2 x − y = 3  3  x = 2 y   2 3 y = 3 x = 2  ⇔ ⇔ y = 1   y = 2 x (V« nghiÖm)   − 3 y 2 = 3  (do (*)) 16.Bµi 16 (§HBK 94).  x + log 3 y = 3  (1)  (2 y 2 − y + 12).3 x = 81y  §iÒu kiÖn: y > 0.  x = − log3 y + 3 x = − log3 y + 3   (1) ⇔  ⇔ (2 y 2 − y + 12).27. y −1 = 81y  y 2 + y − 12 = 0    x = − log 3 y + 3 x = 2  ⇔  y = 3 ⇔ y = 3  y = −4 < 0 (lo¹i )  17.Bµi 17 (§HTL 2000). 3x   x. log 2 3 + log 2 y = y + log 2 2    x. log 2 + log x = y + log 2 y 3 3 3  3  (1) §iÒu kiÖn: x, y > 0.  x 3x y 2 y.3 x = 3x.2 y 2 y.3 x = 3x.2 y  y.3 = 2 .2    (1) ⇔  ⇔ ⇔ 2 y.3 y = 3x.2 x 3 x − y = 2 y − x  x.2 x = 2 y .3 y    3  6 www.mathvn.com
  • 7. www.MATHVN.com H phương trình mũ và logarit  3  x 3 2 y.3 x = 3x.2 y x = 1   = ⇔ ⇔  2  2⇔   y =1 6 x − y = 1   x = y 18.Bµi 18 (§HTCKT 2000).  x log8 y + y log8 x = 4   log 4 x − log 4 y = 1  (1) §iÒu kiÖn: x, y > 0.  x log8 y + y log8 x = 4  x log8 y + y log8 x = 4   (1) ⇔  ⇔ x x = 4 y log 4 = 1  y  1 x = 2 3  x log8 x = 2   log 2 x = log x 2  ⇔ ⇔ 3 ⇔ x = 4 y x = 4 y  y = 2 3 −2    ( do x = 1 kh«ng lµ nghiÖm) 19.Bµi 19. x x 2 x 1 − x x  1 −1  x 9 2y =  =9  x 3 x = 3 y y= y  3    ⇔ ⇔ ⇔  1− x   x+3 y 2x  3 y = 2 x − 5  3 y = 2 x − 5  3 x = 2 (1 − x ) − 5 1 − x  x = y −4  x  x y y   x   20.Bµi 20 (§HXD 94). Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh: (1)  x+2 y=a  2 y=a− x  2 y=a− x  2 y=a− x ⇔ x ⇔ x ⇔ x  x y 2y a− x a −x =1  2 + 2 2 =1 ( 2 )  2 + 4 =1  2 + 2 =1  2 + 2 §Æt t = 2 x , t > 0 thay vµo (2) ta cã: t 2 − t + 2 a = 0 (3) ∆ =1− 4.2 a . NÕu ∆ < 0 ⇔1− 4.2 a < 0 ⇔ a > −2 : Ph−¬ng tr×nh(3) v« nghiªm ⇔ hÖ v« nghiÖm. 7 www.mathvn.com
  • 8. www.MATHVN.com H phương trình mũ và logarit NÕu ∆ = 0 ⇔1− 4.2 a = 0 ⇔ a = −2 : Ph−¬ng tr×nh (3) cã nghiÖm t = 1/2, suy ra x = −1, y= −1/2. NÕu ∆ > 0 ⇔1− 4.2 a > 0 ⇔ a > −2 : Ph−¬ng tr×nh (3) cã 2 nghiÖm:  1 − 1 − 4. 2 a  t= 2 x 2  ⇒   a 1+ 1− 4.2 2 x t=     2 1− 1− 4.2 = 2 a 1+ 1− 4.2 = 2 a a  1 − 1 − 4. 2  x = log 2 2 ⇔  a  x = log 1+ 1− 4.2 2   2 Thay vµo (1) ta tÝnh ®−îc y. 21.Bµi 21 (§HM§C 2000). Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh:  x + y + a =1  y =1 − a − x   ⇔  a 2 x + y − xy 2 2 ( x +1− a − x − x ( 1− a − x )) 1− a  2 .4 =2 2 =2    y = 1− a − x  ⇔  2 ( x +1− a − x − x ( 1− a − x )) = 1− a 2  (1) (2) 22.Bµi 22 (§Ò 135). Cho hÖ ph−¬ng tr×nh: 1 2  2 log 3 x − log 3 y = 0 (1)  3 2  x + y − my = 0  a) Gi¶i hÖ víi m = 2. b) T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm. x ≠ 0 §iÒu kiÖn:  (*) y > 0  log 3 x = log 3 y (2)  x =y   (1) ⇔  3 ⇔ 2 2  x + y − my = 0  f ( y ) = y + y − m = 0 ( do (*)) ( 3 )   a) Víi m = 2, gi¶i ra ta cã c¸c cÆp nghiÖm (1, 1); (−1, 1). b) (1) cã nghiÖm khi vµ chØ khi (3) cã nghiÖm y > 0. Do (3) cã −b/a= −1 nªn (3) cã nghiÖm d−¬ng khi vµ chØ khi f(0) < 0 ⇔ −m < 0 ⇔ m > 0. 8 www.mathvn.com
  • 9. www.MATHVN.com H phương trình mũ và logarit 23.Bµi 23. log x (3x + ky) = 2  log y (3 y + kx) = 2 (1) §iÒu kiÖn:0 <x, y ≠ 1, 3x + ky > 0, 3y + kx > 0 (*). 3x + ky = x 2 3x + ky = x 2   (1) ⇔  ⇔ ( x − y )(3 − k − x − y ) = 0 3y + kx = y 2   3x + ky = x 2  2 ( 2)  3x + ky = x x = y   ⇔  x = y ⇔   3x + ky = x 2 y =3−k − x (3)   y = 3 − k − x   a) Víi k = 2.  x = 5  x 2 − 5x = 0 (2) ⇔  ⇔ x = y y = 5   x = −1 x 2 − x − 2 = 0   (3) ⇔  ⇔  x = 2 (lo¹i)  y =1 − y y =1 − x   b) BiÖn luËn:  x = 0 (lo¹i )  x( x − 3 − k ) = 0 x = 3 + k  (2) ⇔  ⇔  x = 3 + k ⇔   x = y x = y x = y  lµ nghiÖm cña hÖ khi vµ chØ khi tho¶ m·n (*), hay 0 < 3+k ≠ 1⇔ −3 < k ≠ −2.   x 2 + (k − 3) x + (k − 3)k = 0 ( 4) (3) ⇔  y = 3 − k − x (5)  XÐt ph−¬ng tr×nh (4) f ( x) = x 2 + (k − 3) x + k (k − 3) = 0 cã: ’ = −3(k − 3)(k + 1). + NÕu ’< 0 ⇔ k > 3 ho¨c k < −1: (4) v« nghiÖm ⇔ (3) v« nghiÖm. + NÕu ’= 0 ⇔ k = 3 ho¨c k = −1: + k = 3: (4) cã nghiÖm x = 0 kh«ng tho¶ m·n (*) ⇔ (3) v« nghiÖm. + k = −1: (4) cã nghiÖm x = 2, thay vµo (5) cã y = 2 ⇔ (2,2) lµ nghiÖm cña (3). 9 www.mathvn.com
  • 10. www.MATHVN.com + NÕu H phương trình mũ và logarit ’> 0 ⇔ −1 < k < 3 (**): (4) cã 2:  3 − k + − 3(k − 3)(k + 1)  x = x1 = 2   3 − k − − 3(k − 3)(k + 1)  x = x2 =  2 Víi x = x1, thay vµo (5) ta cã y1 = x2. Víi x = x2, thay vµo (5) ta cã y1 = x1. Do ®ã, (3) cã nghiÖm tho¶ m·n 0 < x, y ≠ 1 khi vµ chØ khi:  x1 x 2 > 0 k (k − 3) > 0 k < 0   x1 + x 2 > 0 ⇔ 3 − k > 0 ⇔  k ≠ 1 − 3  f (1) ≠ 0 1 − 3 + k + k (k − 3) ≠ 0   − 1 < k < 0 KÕt hîp (**) ta cã  k ≠ 1 − 3 KÕt luËn: + Víi k ≤ −3 hoÆc k = −2 hÖ v« nghiÖm. + Víi k ∈ (−3,−1] ∪ {1 − 3} ∪ [0,+∞) {−2} hÖ cã nghiÖm x=y=3+k. + Víi k ∈ (−1,0) {1 − 3} hÖ cã 3 nghiÖm: x = x2  x = 3 + k  x = x1 ; vµ    y = 3 + k  y = x2  y = x1 10 www.mathvn.com
  • 11. www.MATHVN.com H phương trình mũ và logarit B. Ph−¬ng ph¸p ®Æt Èn phô I. Ph−¬ng ph¸p: B−íc 1: §Æt ®iÖu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa. B−íc 2: Lùa chän Èn phô ®Ó biÕn ®æi hÖ ban ®Çu vÒ hÖ ®¹i sè ®· biÕt (hÖ ®èi xøng, hÖ ®¼ng cÊp, ...). B−íc 3: Gi¶i hÖ. B−íc 4: KÕt luËn. II. Bµi tËp. Gi¶i c¸c hÖ ph−¬ng tr×nh sau: 24.Bµi 24.  3 2 x + 2 + 2 2 y + 2 = 17    2.3 x +1 + 3.2 y = 8  (1) u = 3 x  §Æt:  , u , v > 0 ( 2 ) ,thay vµo (1) ta cã: v = 2 y   9 u 2 + 4 v 2 = 17 , gi¶i ra ta ®−îc:  6u + 3v = 8  u = 1/ 3  x = −1 ⇒  v=2   y =1 25.Bµi 25.  2 2 x +1 − 3.2 x = y 2 − 2   2 2 x 2 y −3 y =2 −2  x §Æt u = 2 , u ≥ 1 , thay vµo hÖ ta cã:  2 u 2 − 3u = y 2 − 2  , gi¶i ra ta ®−îc y = u = 2, suy ra hÖ cã c¸c cÆp  2 y 2 −3 y =u 2 − 2  nghiÖm: (0, 1); (1, 2); (−1, 2). 26.Bµi 26.  4 2 x 2 − 2 − 2 2 x 2 + y + 4 y = 1  4 2 ( x 2 −1 ) − 4.4 x 2 −1 .2 y + 2 2 y = 1   ⇔ (1)  2 y+2 2 x2 +y 2y x 2 −1 y 2  2 − 3.4 − 3.2 = 16 .2 = 4   11 www.mathvn.com
  • 12. www.MATHVN.com  x 2 −1 u = 4 §Æt:  , v = 2 y  H phương trình mũ và logarit u , v > 0 (*) , thay vµo (1) ta cã: 2 2 2 4 2  2  u 2 − 4 uv + v 2 = 1  ( v − 4 ) − 12 v ( v − 4 ) + 9 v − 9 v = 0  2 ⇔  2 v −4  v − 3 uv = 4 u =  3v  4 2  2 v − 31 v − 16 = 0  v 2 = 16 v = 4   2 2 ⇔ ⇔ ⇔ v −4 v −4  u =1 u = u = 3v 3v   Thay vµo (*) ta ®−îc c¸c cÆp nghiÖm: (1, 2); (−1, 2). 27.Bµi 27.  9 log 2 ( xy ) − 3 = 2 ( xy ) log 2 3 (1)    ( x + 1 ) 2 + ( y +1 ) 2 = 1 (2)  §iÒu kiªn: xy > 0. §Æt: log 2 ( xy ) = t ⇒ xy = 2 t , thay vµo (1) ta cã: 9 − 3 = 2.( 2 ) t t log 2 3 ⇔3 2t − 2.3 − 3 = 0 ⇔ 3 = 3 ⇔ t = 1 ⇒ xy = 2 (3) t t ( 2 ) ⇔ ( x + y ) + 2 ( x + y ) − 2 xy +1 = 0 ⇔ ( x + y ) + 2 ( x + y ) − 3 = 0  x + y =1 (4) ⇔  x + y = −3 KÕt hîp (3) vµ (4) ta cã c¸c cÆp nghiÖm: 1, 2); (2, 1). 2 2 28.Bµi 28.  4 log 3 ( xy ) = 2 + ( xy ) log 3 2 (1)   2  x + y 2 −3 x −3 y = 2 (2)  §iÒu kiªn: xy > 0. t §Æt: log 3 ( xy ) = t ⇒ xy = 3 , thay vµo (1) ta cã: 4 = 2+ (3 ) t t log 3 2 ⇔2 2t − 2 − 2 = 0 ⇔ 2 = 2 ⇔ t = 1 ⇒ xy = 3 ( 3 ) t t ( 2 ) ⇔ ( x + y ) − 3 ( x + y ) − 2 xy −12 = 0 ⇔ ( x + y ) − 3 ( x + y ) −18 = 0  x+ y =6 ⇔ (4)  x + y = −3 Tõ (3) vµ (4) ta cã c¸c cÆp nghiÖm ( 3 + 6 , 3 − 6 ) , ( 3 − 6 , 3 + 6 ) . 2 2 12 www.mathvn.com
  • 13. www.MATHVN.com H phương trình mũ và logarit 29.Bµi 29. 3 x − 2 y 2 = 7  2  x y  2 2 =7 3 − 2 30.Bµi 30.  9 2 cot gx + sin y = 3  9 2 cot gx .9 sin y = 3   ⇔  sin y cot gx sin y 2 cot gx 9 − 81 = 2 9 −9 =2   (1)  u = 9 2 cot gx  §Æt:  , u , v > 0 , thay vµo (1) ta cã:  v = 9 sin y  u .v = 3  u ( u + 2 ) = 3  u = 1  cot gx = 0 ⇔ ⇔ ⇒  v −u = 2 v =u + 2  v = 3  sin y = 1/ 2 31.Bµi 21 (§HDL TL 98).  x + 2 lg y = 3  x + 2 lg y = 3  ⇔ ( 1 ) ®iÒu kiÖn:x ≥ 0, y > 0.  2 x − 6 lg y = 1  x − 3 lg y = 1   §Æt Èn phô, gi¶i ra ta ®−îc cÆp nghiÖm: ( 4 , 10 ) . 32.Bµi 32 (§HNN I 98).  3 lg x = 4 lg y  (1)  lg 4 lg y ( 4 x) =(3 y )  §iÒu kiÖn: x, y > 0.  lg( 3 lg x ) = lg( 4 lg y )  lg x .lg 3 − lg y .lg 4 = 0  (1) ⇔  (2) ⇔ 2 2 lg x .lg 4 − lg y .lg 3 = lg 3 − lg 4  lg( 4 x ) lg 4 = lg( 3 y ) lg 3    u = lg x §Æt:  , thay vµo (2) ta cã:  v = lg y  u .lg 3 − v .lg 4 = 0 .  2 2  u .lg 4 − v .lg 3 = lg 3 − lg 4 Gi¶i ra b»ng ph−¬ng ph¸p ®Þnh thøc ta ®−îc:  u = − lg 4  x = 1/ 4 ⇒   v = − lg 3  y = 1/ 3 13 www.mathvn.com
  • 14. www.MATHVN.com H phương trình mũ và logarit 33.Bµi 33 (§HQG TPHCM 97).  log 1+ x ( 1 − 2 y + y 2 ) + log 1− y ( 1 + 2 x + x 2 ) = 4    log 1+ x ( 1 + 2 y ) + log 1− y ( 1 + 2 x ) = 2  (1) (2) §iÒu kiÖn:x > −1/2, x ≠ 0, −1/2 < y < 1, y ≠ 0. ( 1 ) ⇔ log 1+ x ( 1 − y ) + log 1− y ( 1 + x ) = 2 ⇔ log 1+ x ( 1 − y ) + 1 =2 log 1+ x ( 1 − y ) ⇔ log 1+ x ( 1 − y ) = 1 ⇔ 1 + x = 1 − y ⇔ x = − y . Thay vµo (2) ta cã: log 1+ x ( 1 − 4 x 2 ) = 2 ⇔ 1 − 4 x 2 = ( 1 + x ) 2 ⇔ x = −2 2 ⇒ y= 5 5 34.Bµi 34 (§HTCKT 2000).  x log 8 y + y log 8 x = 4 (1)  log 4 x − log 4 y = 1  §iÒu kiÖn:x, y > 0. 1  1 log 2 y log 2 x x3 + y3 =4  (1) ⇔  (2)  log x − log y = 1 2 2   2 u  u = log 2 x  x = 2  §Æt:  , thay vµo (2) ta cã: ⇒ v = log 2 y  y = 2 v   1 1  v u u 3 v 3 ( 2 ) + ( 2 )   u − v = 1   2  1 x= −3   8  u =  uv 2 1     uv = 3 3 =2  y = 2 = 4 2     v = −2 ⇒   ⇔ ⇔ 1 ⇔ 1  u = −2   u − v = 1 u − v = 2 x=      2 2  −3   v=   2  y = 1  8  14 www.mathvn.com
  • 15. www.MATHVN.com H phương trình mũ và logarit 35.Bµi 35 (§Ò 56). Cho hÖ ph−¬ng tr×nh:  log x ( ax + by ) + log y ( ay + bx ) = 4   log x ( ax + by ).log y ( ay + bx ) = 4 a) Gi¶i hÖ khi a = 3, b = 5. b) Gi¶i vµ biÖn luËn hÖ khi a, b > 0. (1) §iÒu kiÖn: 0 < x, y ≠ 1, ax + by > 0, ay + bx > 0.  u = log x ( ax + by ) , thay vµo (1) ta cã: §Æt:  v = log y ( ay + bx )   u + v = 4  u = 2  log x ( ax + by ) = 2 ⇔ ⇒ (2)  u .v = 4  v = 2  log y ( ay + bx ) = 2 a) Víi a = 3, b = 5: §iÒu kiÖn: §iÒu kiÖn: 0 < x, y ≠ 1. Tõ (2) ta cã: 2 3 x + 5 y = x 2  log x ( 3 x + 5 y ) = 2  3 x + 5 y = x  ⇔ ⇔  log y ( 3 y + 5 x ) = 2  3 y + 5 x = y 2   ( x − y )( x + y + 2 ) = 0  x= y  2  x =8  x −8 x =0 ⇔ ⇔ y=−x−2  y =8  ( VN )  2   x + 8 x + 10 = 0  b) Víi a, b > 0: §iÒu kiÖn: §iÒu kiÖn: 0 < x, y ≠ 1 (*). Tõ (2) ta cã: 2  ax + by = x 2  log x ( ax + by ) = 2  ax + by = x  ⇔ ⇔  2  log y ( ay + bx ) = 2  ay + bx = y  ( x − y )( x + y − a + b ) = 0    ax + by = x 2 2 (3)  ax + by = x  x= y   ⇔ x= y  ax + by = x 2  x+ y −a+b=0  (4)  x+ y −a+b=0  15 www.mathvn.com
  • 16. www.MATHVN.com H phương trình mũ và logarit x= y x= y x=a+b  ⇔ (3) ⇔  2 ⇔  x=a+b  x − ( a + b ) x = 0   x = 0 ( lo¹i )  y = a + b  NghiÖm cña (3) lµ nghiÖm cña (1) khi vµ chØ khi tho¶ m·n (*), hay a + b ≠1  y =a −b − x (4)⇔  2 2  x + ( b − a ) x − ab + b = 0 ( 5 ) Do 0 < x, y ≠ 1 nªn a − b > x > 0. Khi ®ã nÕu (5) cã: 2 2 2 ∆ = ( b − a ) + 4 ( ab − b ) = ( a + 3 b )( a − b ) > 0 , − ab + b < 0 , nªn (5) cã hai nghiÖm tr¸i dÊu:  a − b + ( a + 3 b )( a − b ) >0  x1 = 2  ⇒ y1 = x 2 < 0 .  a − b − ( a + 3 b )( a − b )  x2 = < 0 ( lo ¹ i )  2 VËy hÖ (4) kh«ng cã nghiÖm tho¶ m·n (*). KÕt luËn: + Víi a + b = 1 hÖ v« nghiÖm. + Víi a + b ≠1, hÖ cã nghiÖm duy nhÊt x = y = a + b. 36.Bµi 36. Gi¶i vµ biÖn luËn hÖ ph−¬ng tr×nh:  2 x + m .3 y = 3 m  (1)  x y  m .2 + 3 = 2 m + 1  x u = 2  u + mv = 3 m  §Æt:  , u , v > 0 (*) .Thay vµo (1) ta cã:  ( 2) y mu + v = 2 m + 1 v =3   2 2 2 D = 1 − m , D u = −2 m + 2 m , D v = −3 m + 2 m + 1 + NÕu D ≠ 0 ⇔ m ≠ 1 vµ m ≠ −1: HÖ (2) cã nghiÖm duy nhÊt: 2  −2m + 2m 2m  u = u= 2    1− m m +1 ⇔  2  − 3 m + 2 m +1  v = 3 m +1  v =  1+ m 2  1− m V× ®iÒu kiÖn (*) nªn ®Ó u, v lµ nghiÖm cña (2) ta ph¶i cã: 16 www.mathvn.com
  • 17. www.MATHVN.com H phương trình mũ và logarit   m < −1  2m m>0  m +1 > 0  m < −1   . Khi ®ã (1) cã nghiÖm: ⇔ ⇔  3 m +1  m < −1 m>0    1 + m > 0   m > −1/ 3   2m  x = log 2   m +1   y = log 3 m + 1 2   1+ m  m =1 + NÕu D = 0 ⇔ 1 − m 2 = 0 ⇔   m = −1 + Víi m = 1: Dx ≠ 0 nªn hÖ (2) v« nghiÖm. + Víi m = −1: D = Du = Dv = 0: Mäi cÆp (u, v) tho¶ m·n u + v = 3 lµ nghiÖm cña (2), suy ra mäi cÆp (x, y) tho¶ m·n x + y = 3 lµ nghiÖm cña (1). KÕt luËn: 2m  x = log 2   m < −1  m +1 ∗ Víi  , hÖ cã nghiªm duy nhÊt:  m>0  y = log 3 m + 1 2   1+ m ∗ Víi m = −1: mäi cÆp (x, y) tho¶ m·n x + y = 3 lµ nghiÖm cña (1). ∗ Víi −1 < m < 0: hÖ (1) v« nghiÖm. 37.Bµi 37. Cho hÖ ph−¬ng tr×nh:  m .3 x +1 + 2 y = 2 m    3 x +1 + m .2 y = m + 1  (1) a) T×m m ®Ó hÖ cã nghiÖm duy nhÊt. (−2≤ m < −1) b) T×m m nguyªn ®Ó nghiÖm duy nhÊt cña hÖ lµ nghiÖm nguyªn. (m = −2) 38.Bµi 38. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh:  2 2 x + y .2 x +1 = m .2 x + y  2 2 x + 2 y .2 x = m .2 x + y   ⇔  2  y + y .2 x +1 = my + 2 x  y 2 + 2 y .2 x = my + 2 x   x §Æt: t = 2 , t > 0 (*). Thay vµo (1) ta cã: 17 www.mathvn.com (1)
  • 18. www.MATHVN.com H phương trình mũ và logarit  t 2 + 2 yt = mt + y  t 2 + 2 yt = mt + y  ⇔  2  y + 2 yt = my + t  ( t − y )( t + y − m + 1 ) = 0    t 2 + 2 yt = mt + y 2 (2)  t + 2 yt = mt + y   t=y   ⇔ t = y ⇔ 2    t + 2 yt = mt + y (3)    y = − t + m −1   y = − t + m −1  t = y  t = 0 ( lo¹i ) t = y  (2)⇔  2 ⇔    3 t − ( m + 1) t = 0   t = m + 1  3  m +1 m +1 Do t > 0 nªn: > 0 ⇔ m > −1 , khi ®ã x = log 2 3 3  y = − t + m −1 (3) ⇔  2  t − ( m − 1) t + m − 1 = 0 ( 4 ) Gi¶i ph−¬ng tr×nh (4): 2 2 ∆ = ( m − 1 ) − 4 ( m − 1 ) = m − 6 m + 5 = ( m − 1 )( m − 5 ) m>5 + NÕu ∆ > 0 ⇔ ( m − 1 )( m − 5 ) > 0 ⇔  , ph−¬ng tr×nh (4) cã 2 nghiªm  m <1 ph©n biÖt: 2  m −1+ m − 6 m + 5  t1 =  y1 = t 2 2  ⇒  2  y 2 = t1  t = m −1− m − 6 m + 5  2  2 Víi m < 1, ph−¬ng tr×nh (4) cã hai nghiªm tr¸i dÊu, nªn t1 > 0, t2 < 0. Do ®ã hÖ (3) cã nghiÖm duy nhÊt: 2  m −1+ m 2 − 6 m + 5  m −1 + m − 6 m + 5 t =  x = log 2   2 2 ⇒   m −1 − m 2 − 6 m + 5  m −1− m 2 − 6 m + 5 y= y=   2 2 Víi m > 5, ph−¬ng tr×nh (4) cã hai nghiÖm t1, t2 tho¶ m·n: 18 www.mathvn.com
  • 19. www.MATHVN.com H phương trình mũ và logarit  t1 + t 2 = m −1> 0  t1 > 0 ⇒ , nªn hÖ (3) cã c¸c cÆp nghiÖm:   t1 .t 2 = m −1> 0 t 2 > 0 t = t1 t = t 2 vµ    y =t2  y = t1 m=5 + NÕu ∆ = 0 ⇔ ( m − 1 )( m − 5 ) = 0 ⇔   m =1 Víi m = 5, ph−¬ng tr×nh (4) cã nghiÖm duy nhÊt t = 4 ⇒ y = 4 ⇒ hÖ (3) cã nghiªm duy nhÊt x = log 2 4 = 2 , y = 4 . Víi m = 1, ph−¬ng tr×nh (4) cã nghiÖm duy nhÊt t = 0 (kh«ng tho¶ m·n (*)) ⇒ hÖ (3) v« nghiÖm. + NÕu ∆ < 0 ⇔ ( m − 1 )( m − 5 ) < 0 ⇔ 1 < m < 5 , ph−¬ng tr×nh (4) v« nghiÖm ⇒ hÖ (3) v« nghiÖm. KÕt luËn:  m −1+ m 2 − 6 m + 5  x = log 2  2 NÕu m ≤ −1, hÖ cã nghiÖm duy nhÊt:  2  m −1 − m − 6 m + 5 y=  2 NÕu −1 < m < 1 hÖ cã 2 nghiÖm: 2 m +1  m −1 + m − 6 m + 5   x = log 2 x = log 2    3 2 vµ    y = m +1  m −1− m 2 − 6 m + 5  y=   3  2 m +1  x = log 2   3 NÕu 1 < m < 5, hÖ cã nghiÖm duy nhÊt:   y = m +1   3  x =1 x=2 NÕu m = 5, hÖ cã hai nghiÖm:  vµ   y=2  y=4 19 www.mathvn.com
  • 20. www.MATHVN.com H phương trình mũ và logarit m +1  x = log 2   3 NÕu m > 5, hÖ ph−¬ng tr×nh cã 3 nghiÖm:   y = m +1   3   m −1+ m 2 − 6 m + 5 m −1 − m 2 − 6 m + 5  x = log 2  x = log 2   2 2 vµ   2 2   m −1 − m − 6 m + 5 m −1+ m − 6 m + 5 y= y=     2 2 39.Bµi 39. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh: x− y  x− y m 2 −m 4 =m 2 −m  (1)  x+ y x+ y  3 2 n −n 6 =n −n  XÐt víi m, n > 0. x− y  u = m 4  (*). Thay vµo (1) ta cã: §Æt:  x+ y  v = n 6  u 2 − u = m 2 − m  (2)  2 v − v = n 2 − n  XÐt hµm sè: f ( x ) = x 2 − x lµ hµm ®ång biÕn trªn (0, +∞), nªn víi x≠y th× f ( x ) ≠ f ( y ) . Do ®ã u = m . Thay vµo (*) ta cã: (2)⇔  v = n x− y  4 =1  x− y   m =1 x− y x− y m 4 =m  x + y =1 =1     ⇔ = 1 hoÆc  4 hoÆc  6 hoÆc  n = 1  x− y  6  6  m ≠ 1, n = 1  m = 1, n ≠ 1  x , y ∈R    n =n  m ≠ 1, n ≠ 1    20 www.mathvn.com
  • 21. www.MATHVN.com H phương trình mũ và logarit x=5  m =1 x− y=4 x− y=6   ⇔  y =1 hoÆc  hoÆc  hoÆc  n = 1  m ≠ 1, n = 1  m = 1, n ≠ 1  m ≠ 1, n ≠ 1  x , y ∈r   KÕt luËn: XÐt víi m, n > 0 + Víi m = n = 1: Mäi x, y ∈ R lµ nghiÖm cña hÖ. + Víi m = 1, n ≠ 1: Mäi (x, y) tho¶ m·n x − y = 6 lµ nghiÖm cña hÖ. + Víi m ≠ 1, n = 1: Mäi (x, y) tho¶ m·n x − y = 4 lµ nghiÖm cña hÖ. + Víi 0 < m, n ≠ 1: HÖ cã nghiªm duy nhÊt (5,1). 40.Bµi 40. Cho hÖ ph−¬ng tr×nh:  2 x +1 = y −    y −1 = 2 2  y −1 + m +1 x+2 −2 x +1 +m (1) a) Gi¶i hÖ ph−¬ng tr×nh víi m = 0. b) T×m m ®Ó hÖ cã nghiªm. c) T×m m ®Ó hÖ coa nghiªm duy nhÊt. Gi¶i.  u = 2 x +1  §Æt:  , u ≥ 2 , v ≥ 0 (*), thay vµo (1) ta cã:  v = y −1  u = v 2 − v + m u = v 2 − v + m  ⇔   v = u 2 − u + m  u − v = − ( u − v )( u + v ) + ( u − v )   u = v 2 − v + m ( 2)  u = v 2 − v + m  u = v ⇔ ⇔ ( u − v )( u + v ) = 0   u = v 2 − v + m   ( kh«ng cã nghiÖm t/m (*))  u = − v  a) Víi m = 0, (2) trë thµnh: u = v u = v  u = v = 0 ( lo¹i ) ⇔ ⇔  2 u = v − v u (u − 2 ) = 0 u = v = 2 Thay u = v = 2 vµo (*) ta cã: 21 www.mathvn.com
  • 22. www.MATHVN.com H phương trình mũ và logarit  x ≥ 0 , y ≥1  x ≥ 0 , y ≥1  2 x +1 = 2   x =1   ⇔  x =1 ⇔  x =1 ⇔   y −1 = 2   y =5  y =5  y −1= 4   u = v u = v b) ( 2 ) ⇔  2 ⇔ 2 v − v + m = v  f ( v ) = v − 2 v + m = 0 (3) HÖ cã nghiÖm khi vµ chØ khi (3) cã nghiÖm v ≥ 2  f (2)≤0     ∆ '≥ 0 ⇔ m≤0   f ( 2 ) > 0 ( VN )     − b =1 > 2 2a  VËy víi m ≤ 0 th× hÖ cã nghiÖm. u = v u = v ⇔ c) ( 2 ) ⇔  2 2 v − v + m =v  f (v) =v − 2v + m = 0 ( 4) HÖ cã nghiÖm duy nhÊt khi vµ chØ khi (3) chØ cã 1 nghiÖm v ≥ 2  f (2)=0 −b   =1≤ 2 ⇔ m ≤ 0 2a  f (2)<0  VËy víi m ≤ 0 th× hÖ cã nghiÖm duy nhÊt. 41.Bµi 41. Cho hÖ ph−¬ng tr×nh: 22 x + 42 y =m  ( 2 x + 4 y ) 2 − 2.2 x .4 y = m   ⇔  x y x+2 y x y x y 2 + 4 + 2 = m  2 + 4 + 2 .4 = m   a) Gi¶i hÖ víi m = 1. b) T×m m ®Ó hÖ cã nghiÖm. Gi¶i. u = 2 x + 4 y  §Æt:  , u , u > 0 (*).Thay vµo (1) ta cã:  v = 2 x .4 y  22 www.mathvn.com (1)
  • 23. www.MATHVN.com H phương trình mũ và logarit  ( u + v ) 2 − 2 uv = m  2 uv = m 2 − m  2 v ( − v + m ) = m 2 − m ⇔ ⇔  u+v=m u =−v+ m   u = − v + m  f ( v ) = 2 v 2 − 2 mv + m 2 − m = 0 ( 2 ) ⇔ u = − v + m a) Víi m = 1 ta cã:   v = 0 ( lo¹i ) 2v 2 − 2v =0   v =1 ⇔   v =1 ⇔ ( lo¹i )  u =0 u = − v +1   u = − v +1  VËy víi m = 1, hÖ v« nghiÖm. b) NhËn xÐt: Víi m ≤ 0, ph−¬ng tr×nh thø hai cña (1) v« nghiÖm nªn hÖ v« nghiÖm. Ta xÐt víi m > 0. Khi ®ã hÖ (1) cã nghiªm khi vµ chØ khi ph−¬ng tr×nh (2) cã nghiªm v tho¶ m·n 0 < v < m  f ( 0 ). f ( m ) < 0 (m 2 −m) 2 <0  ∆ '> 0 m 2 − m<0   2 2 m − 2(m − m) >0  2  f (0)>0  ⇔  ⇔  2 ⇔  m − m > 0 ( vn )  m −m>0  m > 1/ 2  f (m)>0    m > 1/ 2    0 < −b = 1 < m     2a 2 VËy kh«ng cã gi¸ trÞ cña m ®Ó ph−¬ng tr×nh cã nghiÖm. 42.Bµi 42. Gi¶i vµ biªn luËn hÖ ph−¬ng tr×nh:  4 lg x − m lg y = − m − 1   ( m + 6 ) lg x + 2 lg y = m + 3 Gi¶i b»ng ph−¬ng ph¸p ®Þnh thøc. (1) 43.Bµi 43.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm duy nhÊt:  lg 2 x + lg y = 1  lg 2 x + lg y = 1  ⇔  x  lg x − lg y = m  lg y = m  §iÒu kiÖn: x, y > 0.  u = lg x §Æt:  , thay vµo (1) ta cã: v = lg y  (1) 23 www.mathvn.com
  • 24. www.MATHVN.com H phương trình mũ và logarit  u 2 + v 2 =1  ( − v + m ) 2 + v 2 =1  2 v 2 − 2 v + m 2 −1 = 0 ( 2 ) ⇔ ⇔  u −v=m u =−v+ m   u = − v + m HÖ cã nghiÖm duy nhÊt khi vµ chØ khi ph−¬ng tr×nh (2) cã nghiªm duy nhÊt 2 2 2 ⇔ ∆ ' = 0 ⇔ m − 2 ( m − 1 ) = 0 ⇔ − m + 4 m − 2 = 0 ⇔ m = −2 ± 2 Bµi 43.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã nghiÖm:  ln( xy ) = ln 2 x + m  ln x + ln y = ln 2 x + m   ⇔ (1)   ln( xy ) = ln 2 y + m  ln x + ln y = ln 2 y + m   §iÒu kiÖn: x, y > 0  u = lg x §Æt:  , thay vµo (1) ta cã:  v = lg y  u = v (I) u + v = u 2 + m   2 u + v = u 2 + m    u − 2u + m = 0 ( 2 ) ⇔ u = v ⇔  u =−v u + v = v 2 + m     ( II ) u = −v  2   u = − m (3)   ( i ) cã nghiÖm  (2) cã nghiÖm HÖ (1) cã nghiªm khi vµ chØ khi  ⇔  (Ii ) cã nghiÖm  ( 3 ) cã nghiÖm  ∆ ' ( 2 ) ≥ 0 1 − m ≥ 0  m ≤ 1 ⇔ ⇔ ⇔ ⇔ m ≤1 m≤0 m≤0 m≤0 44.Bµi 44.T×m m ®Ó hÖ ph−¬ng tr×nh sau cã 2 nghiÖm:  log 2 ( x + y ) ( x 2 + y 2 ) = 1   ( x + y ) 2 = m   0 < x + y ≠ 1/ 2 §iÒu kiÖn:  2 2 x + y >0 (1)  x 2 + y 2 = 2 ( x + y )  ( x + y ) 2 − 2 xy − 2 ( x + y ) = 0   (1) ⇔  ⇔ ( x + y ) 2 = m ( x + y ) 2 = m   + Víi m ≤ 0, (2) v« nghiÖm, suy ra (1) v« nghiÖm. + Víi m > 0: 24 www.mathvn.com (2)
  • 25. www.MATHVN.com H phương trình mũ và logarit 2 m−m   xy = (2)⇔  (3) 2 x+ y= m  (1) cã nghiªm khi vµ chØ khi (3) cã nghiÖm  ( x + y ) 2 ≥ 2 xy  m ≥ 4 m − 2 m  3 m − 4 m ≥ 0 16 ⇔ ⇔ ⇔ ⇔m> 9 m>0 m >0 m >0 C. Gi¶i hÖ ph−¬ng tr×nh b»ng ph−¬ng ph¸p hµm sè. Ph−¬ng ph¸p: B−íc 1: §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa. B−íc 2: Rót ra tõ hÖ mét ph−¬ng tr×nh d¹ng f(x) = f(y). B−íc 3: Sö dông ph−¬ng ph¸p hµm sè: NÕu f(x) lµ hµm sè lu«n ®ång biÕn hoÆc nghÞch biÕn th× tõ ph−¬ng tr×nh f(x) = f(y) ta cã x = y. B−íc 4: Sö dông kÕt qu¶ trªn ®Ó gi¶i hÖ. Bµi tËp: Gi¶i hÖ ph−¬ng tr×nh: 45.Bµi 45. 2 x + 2 x =3+ y 2 x + 2 x =3+ y 2 x + 2 x =3+ y    (I ) ⇔ ⇔  y x y x y 2 + 2 y =3+ x 2 − 2 + 2 x − 2 y = − x + y 2 + 3 x = 2 +3 y ( 2)    x XÐt hµm sè: f ( x ) = 2 + 3 x lµ hµm sè ®ång biÕn trªn R, nªn tõ ph−¬ng tr×nh (2) ta cã: f(x) = f(y) ⇔ x = y. Khi ®ã hÖ (I) trë thµnh: 2 x + 2 x =3+ y  x = y x= y ⇔ x ⇔ x ( II )  x= y  2 + 2 x = 3 + x  2 = − x + 3(3) Gi¶i ph−¬ng tr×nh (3): NhËn xÐt: + x = 1 lµ nghiªm cña (3). + Víi x > 1: VT(3) > 2, TP(3) < 2 nªn ph−¬ng tr×nh (3) kh«ng cã nghiÖm x > 1. + Víi x < 1: VT(3) < 2, TP(3) > 2 nªn ph−¬ng tr×nh (3) kh«ng cã nghiÖm x < 1. VËy ph−¬ng tr×nh (3) cã nghiÖm duy nhÊt x = 1, do ®ã tõ hÖ ph−¬ng tr×nh (II) ta cã (1, 1) lµ nghiªm cña hÖ (1). 25 www.mathvn.com
  • 26. www.MATHVN.com H phương trình mũ và logarit 46.Bµi 46. 3 x − 3 y = y − x 3 x + x = 3 y + y (1)   ⇔  2  x + xy + y 2 = 12  x 2 + xy + y 2 = 12 ( 2 )   x XÐt hµm sè: f ( x ) = 3 + x lµ hµm sè ®ång biÕn trªn R, nªn tõ ph−¬ng tr×nh (1) ta cã: f(x) = f(y) ⇔ x = y. Khi ®ã hÖ (1) vµ (2) trë thµnh: x= y x= y x= y ⇔ ⇔ 2  2 2  x + xy + y = 12  3 x = 12  x = ±2 VËy nghiªm cña hÖ ph−¬ng tr×nh lµ (2, 2) vµ −2, −2). 47.Bµi 47. 2 x = 2 y 2 x = 2 y (1)   ⇔  y 2 = 2 x 2 x + 2 x = 2 y + 2 y (2)   x XÐt hµm sè f ( x ) = 2 + 2 x lµ hµm sè ®ång biÕn trªn R, nªn tõ (2) ta cã: f ( x ) = f ( y ) ⇔ x = y . KÕt hîp víi (1) ta cã hÖ: x= y x= y x= y  ⇔ x ⇔   x =1 ( do hµm sè  x 2 = 2 y 2 − 2 x =0  x = 2  x f ( x ) = 2 − 2 x lµ hµm låi, nªn ph−¬ng tr×nh: 2 x − 2 x = 0 cã ®óng hai nghiÖm. D. Gi¶i hÖ ph−¬ng tr×nh b»ng ph−¬ng ph¸p ®iÒu kiÖn cÇn vµ ®ñ. Ph−¬ng ph¸p: ¸p dông co c¸c bµi to¸n: 1. T×m ®iÒu kiÖn ®Ó hÖ ph−¬ng tr×nh cã nghiÖm duy nhÊt. 2. T×m ®iÒu kiÖn ®Ó hÖ ph−¬ng tr×nh cã nghiÖm víi mäi gi¸ trÞ cña mét tham sè. C¸c b−íc: B−íc 1. §Æt ®iÒu kiÖn cho c¸c biÓu thøc trong hÖ cã nghÜa. B−íc 2. T×m ®iÒu kiÖn cÇn cho hÖ dõa vµo tÝnh ®èi xøng hoÆc ®¸nh gi¸. 26 www.mathvn.com
  • 27. www.MATHVN.com H phương trình mũ và logarit B−íc 3. KiÓm tra ®iÒu kiªn ®ñ. Bµi tËp. 48.Bµi 48. T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt.  2 x − 2 y = y − x ( m + 1)  (1)  2 2 x + y=m  NhËn xÐt: NÕu x0 lµ nghiÖm cña hÖ th× − x0 còng µ nghiÖm cña hÖ. Do ®ã ®Ó hÖ cã nghiÖm duy nhÊt th× x0 = − x0 ⇔ x0 = 0. Víi x = 0, thay vµo hÖ ta cã: 1 − 2 y = y ( 2 )  y = 0  ⇔ ( do VP(2) d«ng biÕn, VT(2) nghÞch biÕn )   y=m2 m =0  Víi m = 0 thay vµo (1) ta cã: 2 x −2 y = y − x  2 x + x = 2 y + y ( 3)   ⇔  y=x2 x2 + y =0 (4)   XÐt hµm sè: f ( t ) = 2 t + t lµ hµm sè ®ång biÕn trªn R. Nªn tõ (3) ta cã: f ( x ) = f ( y ) ⇔ x = y , kÕt hîp (4) ta cã:  x =y  ⇔ x = y =0.  2 x + y =0  VËy víi m = 0 hÖ cã nghiÖm duy nhÊt. 49.Bµi 49. T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt: 2 x + x = y + x 2 + m  (1)  2 2  x + y =1  NhËn xÐt: NÕu x0 lµ nghiÖm cña hÖ th× − x0 còng µ nghiÖm cña hÖ. Do ®ã ®Ó hÖ cã nghiÖm duy nhÊt th× x0 = − x0 ⇔ x0 = 0. Víi x = 0, thay vµo hÖ ta cã: m=0  1 = y + m   y = 1 ⇔  2 m=2  y =1    y = −1 Víi m = 0 thay vµo (1) ta cã: 27 www.mathvn.com
  • 28. www.MATHVN.com H phương trình mũ và logarit 2 x + x = y + x 2   2  x + y 2 =1  (2) (3) 2  0 ≤ x ≤1  x ≥ x  ⇒ ⇒2 Tõ (3) ta cã:  −1≤ y ≤1  2 x ≥1≥ y   x + x ≥ y + x 2 . Do ®ã:  x =x2 x=0  (2)⇔  ⇔ , tho¶ m·n (3), suy ra m = 0 tho¶ m·n.  2 x = y =1  y =1  Víi m = 2 thay vµo (1) ta cã: 2 x + x = y + x 2 + 2   2  x + y 2 =1  28 www.mathvn.com