SlideShare a Scribd company logo
1 of 4
Download to read offline
iQyu
                                                                                                        Qyu & f : A → B esa Qyu gS ;k ugha bldh tkap ds fy, fuEufyf[kr ijh{k.k
                                                                                                     djrs gSa&
                                                                                                        (i) A ds çR;sd vo;o dk f- ds vUrxZr B esa çfrfcEc fo|eku gS ;k ughaA
                                                                                                        (ii) A ds çR;sd vo;o dk f- ds vUrxZr B esa ,d vksj dsoy ,d çfrfcEc


                                    xf.kr                                                                     fo|eku gksuk pkfg,A
                                                                                                        Qyu&Øfer ;qXeksa ds leqPp; ds :i esa & Qyu f Øfer ;qXeksa (a, b) dk leqPp;
                                                                                                     gSA tcfd
                                                                                                        (i) a leqPp; A dk vo;o gksA
                                                                                                        (ii) b leqPp; B dk vo;o gksA
                                                                                                        (ii) f ds fdlh Hkh nks Øfer ;qXeksa esa çFke lnL; ,d ls ugha gksA
                                                                                                        (iii) A dk çR;sd lnL; fdlh u fdlh ;qXe dk çFke lnL; vo'; gksA
                                                                                                        Qyu ds çdkj & Qyu f : X → Y ,dSdh Qyu dgykrk gS ;fn X ds
                             egÙoiw.kZ lw=k                                                          fHkUu&fHkUu vo;oksa ds Y esa fHkUu&fHkUu çfrfcEc fo|eku gksA ;fn x1, x2, X ds
                                                                                                     dksbZ nks vo;o gks vkSj
                                                                                                             x1 ≠ x2 ⇒ f(x1) ≠ f(x2), f(x1) = f(x2) ⇒ x1 = x2 rc Qyu ,dSdh gksxkA
                                                                                                        (i) cgq,dSdh Qyu & Qyu f : X → Y cgq,dSdh Qyu dgykrk gS ;fn X
                                                                                                     ds fdUgha nks vo;oksa ds çfrfcEc Y esa leku gks] vFkkZr~ f : X → Y cgq,dSdh gksxk
                                                                                                     ;fn x1 ≠ x2 ⇒ f(x1) ≠ f(x2)
                                                                                                        (ii) vkPNknd Qyu & Qyu f : X → Y ,d vkPNknd Qyu dgykrk gS
                                                                                                     ;fn Y ds çR;sd vo;o dk X esa çfrfcEc fo|eku gksA nwljs 'kCnksa esa f dk
                                                                                                     ifjlj = f dk lgçkUrA
                                                                                                        (iii) vUr{ksZih Qyu & Qyu f : X → Y vUr{ksZih Qyu dgykrk gS ;fn Y
                          Rajasthan Knowledge                                                        esa de ls de ,d vo;o ,slk gks ftldk çfrfcEc X esa fo|eku ugha gks vFkkZr~
           IT shapes future CorporationLimited                                                       Y esa de ls de ,d vo;o ,slk gks ftlds fy, f–1(y) = φ rc Qyu vUr{ksZih
                               (A Public Limited Company Promoted by Govt. of Rajasthan)
                                                                                                     gksrk gS] nwljs 'kCnksa esa f dk ifjlj ≠ f dk lgçkUrA
                                                                                                                                                      (2)




  çfrykse Qyu & ;fn f : X → Y ,dSdh vkPNknd gks rks f dk çfrykse f–1                                                    dqN egÙoiw.kZ dks.kksa ds f=kdks.kferh; vuqikr
: X → Y esa Qyu gS tks fd çR;sd vo;o y ∈ Y ds laxr x ∈ X ftlds fy,                                                     (Trigonometrical Ratios for Some Special Angles)
f(x) = y çfrykse Qyu dgykrk gSA                                                                                             1º                                1º
                                                                                                                       7                   15º          22                18º          36º
  fo"ke ,oa le Qyu                                                                                                          2                                 2
  (i) fo"ke Qyu & ,d Qyu f(x) fo"ke Qyu dgykrk gSA ;fn f(–x) =                                                       4 2 6                 3 1 1                        5 1      1
                                                                                                        sin                                        2 2                               10  2 5
–f(x) lHkh x ds fy, fo"ke Qyu dk xzkQ foijhr iknksa esa lefer gksrk gSA                                                 2 2                 2 2   2                         4        4
  (ii) le Qyu & ,d Qyu f(x) le Qyu dgykrk gSA ;fn f(–x) = –f(x)                                                      4 2 6                 3 1 1                1                    5 1
                                                                                                        cos                                        2 2             10  2 5
lHkh x ds fy,A le Qyu dk xzkQ y-v{k ikfjr lefer gksrk gSA                                                               2 2                 2 2   2                4                     4
                                                                                                                                                                    125  10 15
           f=kdks.kehfr; iQyu ,oa f=kdks.kferh; vuqikr                                                  tan       3  2   2  1 2  3               2 1                          52 5
                                                                                                                                                                         5
                      ,d nwljs ds inksa esa f=kdks.kferh; vuqikr
                    (Trigonometrical Ratios in Terms of each Other)                                                              lacaf/kr dks.kksa ds f=kdks.kferh; vuqikr
                                                                                                                             (Trigonometrical Ratios of Allied Angles)
              sin          cos          tan           cot            sec              cosec 
                                                                                                                        f=kdks.kferh; vuqikr
  sin        sin        1  cos 2 
                                          tan             1           sec2   1             1                                                           sin     cos      tan 
                                        1  tan  2
                                                       1  cos  2      sec               cosec                       lacaf/kr dks.k
                                            1            cot              1                                                                         sin  cos   tan 
  cos      1  sin 2      cos 
                                                                                                                                       ;k     
                                        1  tan 2     1  cot 2        sec 
                                                                                                                             90                     cos     sin      cot 
                                                                                                                                          2      
              sin        1  cos 2                      1
  tan                                    tan                         sec2   1                                                         
            1  sin 2      cos                         cot                                                                90    ;k            cos   sin   cot 
                                                                                                                                          2      
  cot 
            1  sin 2      cos            1
                                                         cot 
                                                                           1                   2
                                                                                       cosec  1                            180    ;k            sin   cos   tan 
              sin        1  cos 2      tan                         sec2   1                                           180    ;k            sin   cos  tan 
                                                       1  cot 2                          cosec 
                                                                                                                                         ;k  3   
                1             1
  sec                                  1  tan 2                       sec                                            270                   cos   sin  cot 
                                                                                                                                                     
            1  sin 2      cos                          cot                        cosec2   1                                       2      
                1             1         1  tan 2                       sec                                                            3     
                                                                                                                         270    ;k      cos  sin   cot 
 cosec                                                1  cot 2                          cosec 
              sin                        tan                                                                                           2      
                          1  cos 2                                    sec2   1
                                                                                                                          360    ;k  2     sin  cos   tan 



                                               (3)                                                                                                    (4)
f=kdks.kferh; vuqikrksa ds dks.kksa ds eku                                       (ii) lg[k.M & vo;o aij dk lg[k.M çk;% Fij ls O;Dr fd;k tkrk gS]
                         (Trigonometrical Ratios for Various Angles)                                         tksfd (–1)i+j Mij ds cjkcj gksrk gS tgka M vo;o aij dk milkjf.kd gSA
                                                                                                                              a11     a12     a13
                                                                                                               ;fn          a21     a22     a23
                                                                                                                              a31     a32     a33

                                                                                                                                                         a     a23
                                                                                                               rks        F   1
                                                                                                                           11       11     M11  M11  22
                                                                                                                                                         a32   a33
                                                  lkjf.kd                                                                 F   1
                                                                                                                                     1 2                    a
                                                                                                                                             M12   M12   21
                                                                                                                                                                     a23
                                                                                                                           12
 r`rh; dksfV ds lkjf.kd dk eku                                                                                                                               a31     a33

       a11       a12      a13
                                                                                                              lkjf.kd ds xq.k/keZ &
                                                                                                              (i) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dks fdlh la[;k ls xq.kk djus ij
    a21       a22      a23
      a31       a32      a33                                                                                 lkjf.kd dk eku Hkh ml la[;k ls xq.kk gks tkrk gS vFkkZr~
                                                                                                                            ka kb kc   a b c   ka b c
                  11      a           a23        1 2 a              a23        13 a21        a22                          p q r  k p q r  kp q r
         1         a11 22               1 a12 21                   1
                           a32         a33             a31            a33            a31        a32                         u v w      u v w ku v w
           a            a23      a                a23 a21      a22                                             (ii) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dk çR;sd vo;o ;fn nks inksa dk
       a11 22               a12 21                 
           a32          a33      a31              a33 a31      a32                                           ;ksx gks rks ml lkjf.kd dks mlh dksfV dh nks lkjf.kdksa ds ;ksxQy ds :i esa
 milkjf.kd ,oa lg[k.M                                                                                        O;Dr fd;k tk ldrk gS vFkkZr~
 (i) milkjf.kd                                                                                                              a b c  a b c     
                    a11         a12    a13                                                                                   p   q   r  p q r  p q r
                                                                                     a           a23
      ;fn         a21         a22    a23    rks   a11   dk milkjf.kd          M11  22               blh                   u   v   w   u v w u v w
                                                                                     a32         a33
                       a31      a32    a33
                                                                                                                            a b c   a b            c  b c
           a              a23                                                                                               p q r  p q            r   q r
rjg   M12  21                    lkjf.kd dk eku fuEu çdkj Kkr fd;k tkrk gSA                                   rFkk
           a31            a33                                                                                               u v w u v              w  v w
      Δ = a11 M11 – a12 M12 + a13 M13
 ;k   Δ = –a21 M21 + a22 M22 – a23 M23                                                                         (iii) ;fn fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ ds çR;sd vo;o esa fdlh
 ;k   Δ = a31 M31 – a32 M32 + a33 M33                                                                        nwljh iafDr ¼LrEHk½ ds laxr vo;oksa dks fdlh ,d dh jkf'k ls xq.kk djds tksM+s
                                                      (5)                                                                                              (6)




;k ?kVk;sa rks lkjf.kd dk eku ugh cnyrkA vFkkZr~
                a b c   a  b   c b c                                                                      vFkkZr~
                p q r  p  q   r q r
                u v w u  v   w v w
                                                                                                                                                     eSfVªDl
 nks lkjf.kdksa dk xq.kuQy                                                                                      eSfVªDl ds çdkj
 nks lkjf.kd ftudh dksfV nks gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS&
                                                                                                                (i) iafDr eSfVªDl & A=[aij]m×n ,d iafDr eSfVªDl gS ;fn m = 1
       a1    b1 1            m1   a  b                 a1m1  b1m2                                          (ii) LrEHk eSfVªDl & A=[aij]m×n ,d LrEHk eSfVªDl gS ;fn n = 1
                                 1 1 1 2
       a2    b2  2           m2  a2 1  b2  2           a2 m1  b2 m2                                        (iii) oxZ eSfVªDl & A=[aij]m×n ,d oxZ eSfVªDl gS ;fn m = n
 nks lkjf.kd ftudh dksfV rhu gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS&                                             (iv) ,dy eSfVªDl & A=[aij]m×n ,d ,dy eSfVªDl gS ;fn m = n = 1
                                                                                                                (v) 'kwU; eSfVªDl & A=[aij]m×n ,d 'kwU; eSfVªDl gS ;fn aij = 0 lHkh i rFkk j
       a1    b1        c1 1          m1     n1
                                                                                                             ds fy,
       a2    b2        c2   2       m2     n2
                                                                                                                (vi) fod.kZ eSfVªDl & ,d oxZ eSfVªDl A–[aij]m×n ,d fod.kZ eSfVªDl gS ;fn
       a3    b3        c3  3         m3     n3
                                                                                                             aij = 0 tc i ≠ j
                                                                                                                                                                              0 i  j
        a11  b1 2  c1 3               a1m1  b1m2  c1m3          a1n1  b1n2  c1n3                       (vii) vfn'k eSfVªDl & A= [aij] ,d vfn'k eSfVªDl gSA ;fn aij          tgka
                                                                                                                                                                              k i  j
       a2 1  b2  2  c2  3            a2 m1  b2 m2  c2 m3       a2 n1  b2 n2  c2 n3                 K vpj gSA
           a31  b3 2  c3 3            a3 m1  b3 m2  c3 m3       a3 n1  b3 n2  c3 n3                    (viii) bdkbZ eSfVªDl & ,d oxZ eSfVªDl A=[aij] ,d bdkbZ eSfVªDl gSA ;fn

 lefer lkjf.kd                                                                                                                1 i  j
                                                                                                                        aij  
 ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = aji ∀ i, j gks rks mls lefer                                                  0 i  j
lkjf.kd dgrs gSA                                                                                              (ix)  f=kHkqtkdkj eSfVªDl
            a     h      g                                                                                    (a)   Åijh f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] Åijh f=kHkqtkdkj
 vFkkZr~    h     b      f                                                                                   eSfVªDl dgykrk gS ;fn aij = 0 tcfd i > j.
            g     f      c                                                                                     (b) fuEu f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] fuEu f=kHkqtkdkj eSfVªDl
 fo"ke lefer lkjf.kd                                                                                         dgykrk gS ;fn aij = 0 tcfd i < j.
 ;fn fdl lkjf.kd ds çR;sd vo;o ds                           aij fy, aij = – aji ∀ i, j gks   rks mls fo"ke     (x) vO;qRØe.kh; vkSj O;qRØe.kh; eSfVªDl&
lefer lkjf.kd dgrs gSA                                                                                              ;fn lkjf.kd |A| = 0 ⇒ vO;qRØe.kh;
                                                                                                                    ;fn lkjf.kd |A| ≠ 0 ⇒ O;qRØe.kh;

                                                      (7)                                                                                              (8)
eSfVªDl dk ;ksx ,oa O;odyu                                                                                                                   1                1          ax
                              ;fn A[aij]m×n rFkk [bij]m×n nks leku dksfV dh eSfVªDl gks rks mudk ;ksx A + B                                            (xvii)     a 2  x 2 dx  2a log a  x  c  x  a 
                             og eSfVªDl gS ftldk çR;sd vo;o eSfVªDl A rFkk B ds laxr vo;oksa ds ;ksx                                                                           1                    x                 x
                                                                                                                                                                                       dx  sin 1    c   cos 1    c
                             ds cjkcj gSA vFkkZr~ A + B = [aij + bij]m×n                                                                               (xviii)
                                                                                                                                                                          a 2  x2                  a                a
                                                                               vfuf'pr lekdyu                                                                                  1                                            x
                                                                                                                                                                                      dx  log x  x 2  a 2  c  sinh 1    c
                                ekud lw=k                                                                                                              (xix)
                                                                                                                                                                          x2  a 2                                          a

                                                          xn 1                                        1                                                                                                                     x
                                                                                                       x dx  loge x  c
                                                                                                                                                                           1
                                         x                      c  n  1                                                                                                         dx  log x  x 2  a 2  c  sinh 1    c
                                              n
                                (i)               dx                                         (ii)
                                                          n 1                                                                                         (xx)
                                                                                                                                                                         x2  a2                                            a

                                                                                                                        ax
                                                                                                      a                                                                                    x 2 2 a 2 1 x
                                                                                                           x
                                                                                                               dx             c  a x log e e  c
                                         e
                                              x
                                                  dx  e x  c
                                (iii)                                                         (iv)
                                                                                                                      log e a                          (xxi)            a 2  x 2 dx 
                                                                                                                                                                                            2
                                                                                                                                                                                              a  x  sin
                                                                                                                                                                                                     2    a
                                                                                                                                                                                                            c

                                (v)       sin xdx   cos x  c                              (vi)     sin xdx  sin x  c                                                                     x 2        a2     x
                                                                                                                                                       (xxii)            x2  a 2 dx            x  a 2  sin 1  c
                                (vii)  tan xdx  log sec x  c   log cos x  c                                                                                                               2          2      a

                                (viii)  cot xdx  log sin x  c                                                                                                                                x 2 2 a2          x
                                                                                                                                                       (xxiii)            x2  a 2 dx           x  a  cos h 1  c
                                                                                                                                                                                                2        2        a
                                                                                                                                              x
                                (ix)      sec xdx  log sec  tan x  c   log sec x  tan x  c  log tan  4  2   c                                                         1          1      x
                                                                                                                                                                                          dx  sec 1  c
                                                                                                                                                     (xxiv)                                a      a
                                                                                                                                                                         x x 2  a2
                                                                                                                                              x
                                (x)       cosec dx   log cosec x  cot x  log cosecx  cot x  c  log tan  2   c
                                                                                                                                                                                        eax                                          eax                        b 
                                                                                                                                                       (xxv)  eax sin bxdx                        a sin bx  b cos bx   c                   sin bx  tan 1     c
                                                                                                                                                                                        a2  b2                                       a 2  b2                    a 
                                (xi)      sec x tan xdx   sec x  c                        (xii)  cosec x cot xdx   cosec x  c
                                                                                                                                                                                            eax                                          eax                       b 
                                (xiii)  sec2 xdx  tan x  c                                                                                                        e
                                                                                                                                                                          ax                           a cos bx  b sin bx   c                cos bx  tan 1     c
                                                                                                        co sec
                                                                                                                  2
                                                                                              (xiv)                   xdx   cot x  c                (xxvi)                  cos bxdx
                                                                                                                                                                                          a 2  b2                                                                 a 
                                                                                                                                                                                                                                       a 2  b2
                                                    2                  1       1 
                                                                                  x
                                (xv)       x2  a 2 dx  a tan                   c
                                                                                 a                                                                   (xxvii)
                                                                                                                                                                                                  1
                                                                                                                                                                         f  ax  b  dx  a   ax  b   c
                                                    1                  1         xa
                                (xvi)      x2  a 2 dx  2a log x  a  c  x  a                                                                                                                           lekdyu
                                                                                                                                                       fuf'pr lekdyu ds xq.k/keZ
                                                                                                (9)                                                                                                                 (10)




     f  x, y 
dy
    1            ;k dy F  y  
                           
                                       dv
                                               
                                                 dx
dx f 2  x, y       dx  x        F v   v    x




                                         b                    b                   b                                                                                      h x 
                                                                                                                                                                           f  t  dt  h  x  f  h  x    g   x  f  g  x  
                                                                                                                                                                   d
                                (i)        f  x  dx   f  t  dt  f  u  du                                                                    (ix)        dx  
                                         a                    a                   a                                                                                  g x
                                         b                         b
                                           f  x  dx    f  x  dx
                                                                                                                                                                                                      vody lehdj.k
                                (ii)
                                          a                        a                                                                                   vody lehdj.k dh dksfV rFkk ?kkr& vodyu lehdj.k esa fo|+eku
                                         b                    c                       b                                                               vodytksa dk mPpre Øe gh ml lehdj.k dh dksfV dgykrk gS rFkk vody
                                (iii)      f  x  dx   f  x  dx   f  x  dx                  a  c  b                                     lehdj.k esa mPpre vodyt dh ?kkr gh ml vody lehdj.k dh ?kkr
                                         a                    a                       c
                                                                                                                                                                                                                             2
                                                                                                                                                                                                           d3y        dy 
                                         a                    a                                                                                       dgykrh gSA vody lehdj.k                                      3   y  ex              dh dksfV 3 rFkk 1 ?kkr gSA
                                                                                                                                                                                                           dx 3       dx 
                                (iv)       f  x  dx   f  a  x  dx
                                          0                   0                                                                                        çFke dksfV o çFke ?kkr vody lehdj.k
                                          a                            
                                                                       a                                                                                        dy            dy
                                                                                                                                                                    f  x      f  x   dy  f  x  dx
                                           f  x  dx  2 f  x  dx  ;fn f   x   f  x  ¼le Qyu½
                                                                       
                                                                       
                                                                                                                                                       (i)
                                                                                                                                                                dx            dx
                                                                                                                                                                                                                                      nksuksa rjQ lekdyu djus ij
                                         a
                                (v)                       0
                                                                        vkSj ;fn f   x    f  x  ¼fo"ke Qyu½
                                         0                             
                                                                                                                                                               dy   f  x  dx  c ;k y   f  x  dx  c
                                                                                                                                                                dy                   dy                      dy
                                                                                                                                                                    f  x g  y      f  x g  y  
                                         2a                        a                      a
                                                                                                                                                                                                                   f  x  dx  c
                                (vi)             f  x  dx   f  x  dx   f  2a  x  dx                 ¼lkekU; :i ls½                         (ii)     dx                   dx                     g  y 
                                          0                        0                      0
                                                                                                                                                                dy                             dv
                                                                                                                                                                    f  ax  by  c   
                                                                                                                                                                                           a  bf  v  
                                            a                                                                                                         (iii)                                            dx
                                          2 f  x  dx  if f  2a  x   f  x 
                                          
                                                                                                                                                                dx
                                                       
                                                       
                                            0
                                                        if f  2a  x    f  x 
                                          0            
                                                                                                                                                      (iv)
                                         an T                             T
                                (vii)                  f  x  dx  n  f  x  dx ¼;fn f  x  T   f  x  vkSj n  N ½                                     dy
                                                                                                                                                                    P y  Q  y e
                                                                                                                                                                                    pdx
                                                                                                                                                                                          Q e
                                                                                                                                                                                                 pdx
                                                                                                                                                                                                     dx  c
                                                                                                                                                       (v)
                                              a                            0                                                                                    dx
                                         b                     b                                                                                                                                                  lfn'k
                                (viii)     f  x  dx   f  a  b  x  dx                                                                           lfn'k ;k ØkWl xq.kuQy& ekuk a rFkk b nks lfn'k gS rFkk θ muds e/; dks.k
                                         a                     a
                                                                                                                                                      gS rc a × b = |a||b| sin θ n ;gka n, a rFkk b ds yEcor~ bdkbZ lfn'k gSA

                                                                                               (11)                                                                                                                 (12)
lfn'k xq.kuQy ds xq.kuQy                                                                                                            f=kfofe; funsZ'kkad T;kfefr
                                
  (i)      a  b  b  a  i.e. a  b  b  a                                                              funsZ'kkad& nks fcUnqvksa rFkk ds e/; nwjh
  (ii)
                                                                                                                   PQ       x2  x1 2   y2  y1 2   z2  z1 2
  (iii)
                  
                                                                                                             ewy fcUnq ls fcUnq  x1 , y1 , z1  dh nwjh
  (iv)     ;fn    a  a1iˆ  a2 ˆ  a3 k
                                j      ˆ   rFkk                        rks
                                                                                                            ;fn fcUnq     P  x1 , y1 , z1    rFkk               dks feykus okyh js[kk dks fcUnq
  (v) a       rFkk      nksuksa ds yEcor~ lfn'k              gksrk gSA
                                                                                                                        vuqikr                             esa foHkkftr djrk gS] rks
                                                                                              
  (vi)        rFkk      ds ry ds yEcor~ bdkbZ lfn'k                          gksrk gSA rFkk ¼ a rFkk
                                                                                                                    m x  m2 x1     m y  m2 y1     m z  m2 z1
                                                                                            
                                                                                                                  x 1 2        ;y  1 2        ;z  1 2
                                                                                                                   m1  m2         m1  m2         m1  m2
      ;k         rFkk    ½ ds ry ds yEcor~             ifjek.k dk ,d lfn'k   a b gksrk
                                                                                       ab                 ¼vUr foHkktu½
gSA                                                                                                                     m1 x2  m2 x1     m y  m2 y1     m z  m2 z1
            ˆ j ˆ
                                                                                                             rFkk x      m1  m2
                                                                                                                                      ;y  1 2
                                                                                                                                            m1  m2
                                                                                                                                                      ;z  1 2
                                                                                                                                                            m1  m2
  (vii) ;fn i , ˆ, k     rhu bdkbZ lfn'k rhu ijLij yEcor~ js[kkvksa ds vuqfn'k gS rks
                                    ;k                                                                     ¼cká foHkktu½
  (viii) ;fn            rFkk         lejs[kh; gS rks                                                         ;fn P  x1 , y1 , z1  rFkk                       dks feykus okyh js[kk dks fcUnq
  (ix)     vk?kw.kZ % cy       tks fcUnq A ij fcUnq B ds lksi{k dk;Zjr gS rks lfn'k                                     vuqikr              esa foHkkftr djrk gS] rks
              cyk?kw.kZ gksrk gSA
  (x)      (a) ;fn ,d f=kHkqt dh nks vklUu Hkqtk,a     rFkk gks rks bldk {ks=kQy
                                                                                                             vUr foHkktu ds fy, /kukRed fpUg rFkk cká foHkktu ds fy, _.kkRed
                                                                                                           fpUg ysrs gSA
                                                                         
   (b) ;fn ,d lekukUrj prqHkqZt dh nks vklUu Hkqtk,a                     a   rFkk     gks rks bldk                                        x  x y  y2 z1  z2 
                                                                                                             PQ   dk ek/; fcUnq          1 2. 1      ,        
{ks=kQy                                                                                                                                   2       2       2 
   (c) ;fn ,d lekukUrj prqHkqZt dh nks fod.kZ rFkk                            gks rks bldk {ks=kQy          ,d f=kHkqt ABC ftlds 'kh"kZ                                       rFkk              gS]
                                                                                                           dk dsUæd gSA
                                                  (13)                                                                                                  (14)




                                                                                                             ?kVuk ds fy, la;ksxkuqikr
                                                                                                                 A ds i{k esa la;ksxkuqikr = m : (n – m)
                                                                                                                 A ds foi{k esa la;ksxkuqikr = m : (n – m) : m
  ,d prq"Qyd ABCD ftlds 'kh"kZ                                                                      rFkk     çkf;drk dk ;ksx fl)kar
                     gS] dk dsUæd gSA                                                                        fLFkfr & 1 : tc ?kVuk,a ijLij viothZ gksa
                                                                                                             ;fn A rFkk B ijLij viothZ ?kVuk,a gks rks


  fnDdksT;k,a ,oa ç{ksi& x- v{k dh fnDdksT;k,a cos0, cosπ/2, cosπ/2 vFkkZr~ 1,                               fLFkfr & 2 : tc ?kVuk,a ijLij viothZ ugha gksa
0, 0 gksrh gSA blh çdkj y rFkk z-v{k dh fnDdksT;k,a Øe'k% (0, 1, 0) rFkk (0, 0,
                                                                                                             ;fn A rFkk B ijLij viothZ ?kVuk,a ugha gks rks
1) gksrh gSA                                                                                                             P  A B   P  A   P  B   P  A B 

                               ;k                                                                                 ;k     P  A B  P  A   P  B  P  A B
                                                                                                            çkf;drk dk xq.ku fl)kar
                                                                                                            fLFkfr & 1 : tc ?kVuk,a Lora=k gks
  fdlh js[kk PQ ds fnd~ vuqikr ¼tgka P rFkk Q Øe'k% (x1, y1, z1) rFkk                        (x2, y2,       ;fn A1,A2,…,An Lora=k ?kVuk,a gks rks P(A1,A2,…,An)
z2) gS½ x2 – x1, y2 – y1, z2 – z1 gksrs gSaA                                                                      P  A1   P  A 2   P  A n 
  ;fn a, b, c fnd~ vuqikr rFkk l, m, n fnd~dksT;k,a gS rks
                                                                                                            ;fn A rFkk B nks Lora=k ?kVuk,a gks rks B dk ?kfVr gksuk A ij dksbZ çHkko ugha
                                                                                                           MkyrkA blfy,
                                                                                                                 P  A/ B   P  A  rFkk P  B/ A   P  B

                                             çkf;drk                                                              rc P  A B   P  A   P  B  ;k P  A B  P  A   P  B
  çkf;drk dh xf.krh; ifjHkk"kk& ;fn                    A dksbZ   ?kVuk gS rks                                fLFkfr & 2 : tc ?kVuk,a Lora=k u gks] nks ?kVuk,a A rFkk B ds ,d lkFk ?kfVr
                                                                                                           gksus dh çkf;drk A dh çkf;drk rFkk B dh çfrcaf/kr çkf;drk ¼tc A ?kfVr gks
             m A dh vuqdwy fLFkfr;ksa dh la[;k
      P A                                                                                              pqdh gks½ ds xq.kuQy ds cjkcj gksrh gS ¼;k B dh çkf;drk rFkk A dh çfrcafèkr
             n  A dh dqy fLFkfr;ksa dh la[;k                                                               çkf;drk ds xq.kuQy ds cjkcj gksrh gSA½ vFkkZr~
  0  P  A  1 ]             P A 
                                         nm     m
                                              1  1 P A                                                  P  A B  P  A   P  B/ A  ;k P  A B   P  B   P  A/ B ;k
                                          n      n
                                                                                                              P  A B   P  A   P  B/ A  ;k P  B  P  A/ B                  
  ∴        P A  P A   1
                                                  (15)                                                                                                  (16)

More Related Content

More from Rajasthan Knowledge Corporation Limited

More from Rajasthan Knowledge Corporation Limited (20)

TSP Hostel MoU 2013_2014
TSP Hostel MoU 2013_2014TSP Hostel MoU 2013_2014
TSP Hostel MoU 2013_2014
 
RS-CIT Admission Form
RS-CIT Admission FormRS-CIT Admission Form
RS-CIT Admission Form
 
RS-CIT Promo Ideas
RS-CIT Promo IdeasRS-CIT Promo Ideas
RS-CIT Promo Ideas
 
Effective Counselling in ITGK
Effective Counselling in ITGKEffective Counselling in ITGK
Effective Counselling in ITGK
 
Career Graph by RKCL
Career Graph by RKCLCareer Graph by RKCL
Career Graph by RKCL
 
Basic Computer Book by Intel
Basic Computer Book by IntelBasic Computer Book by Intel
Basic Computer Book by Intel
 
TAD/MADA Training Order
TAD/MADA Training OrderTAD/MADA Training Order
TAD/MADA Training Order
 
RS-CIT for Teachers Order
RS-CIT for Teachers OrderRS-CIT for Teachers Order
RS-CIT for Teachers Order
 
RKCL Road Map
RKCL Road MapRKCL Road Map
RKCL Road Map
 
RKCL Acheivements
RKCL AcheivementsRKCL Acheivements
RKCL Acheivements
 
RS-CIT for Minority Order
RS-CIT for Minority OrderRS-CIT for Minority Order
RS-CIT for Minority Order
 
RS-CIT Fee Revision Circular
RS-CIT Fee Revision CircularRS-CIT Fee Revision Circular
RS-CIT Fee Revision Circular
 
RKCL Corporate Brochure 2012
RKCL Corporate Brochure 2012RKCL Corporate Brochure 2012
RKCL Corporate Brochure 2012
 
ITGK Counselor Training
ITGK Counselor TrainingITGK Counselor Training
ITGK Counselor Training
 
Ideas for RSCIT Marketing 2
Ideas for RSCIT Marketing 2Ideas for RSCIT Marketing 2
Ideas for RSCIT Marketing 2
 
RSCIT Marketing
RSCIT MarketingRSCIT Marketing
RSCIT Marketing
 
"RSCIT for Secretariat Employees" Order
"RSCIT for Secretariat Employees" Order"RSCIT for Secretariat Employees" Order
"RSCIT for Secretariat Employees" Order
 
MoU with TAD Department
MoU with TAD DepartmentMoU with TAD Department
MoU with TAD Department
 
ITI Order for Exam by RKCL
ITI Order for Exam by RKCLITI Order for Exam by RKCL
ITI Order for Exam by RKCL
 
Akshat Kaushal Yojana - RSCIT Fee Revision Notice
Akshat Kaushal Yojana - RSCIT Fee Revision NoticeAkshat Kaushal Yojana - RSCIT Fee Revision Notice
Akshat Kaushal Yojana - RSCIT Fee Revision Notice
 

Class X Maths Formula Guide

  • 1. iQyu Qyu & f : A → B esa Qyu gS ;k ugha bldh tkap ds fy, fuEufyf[kr ijh{k.k djrs gSa& (i) A ds çR;sd vo;o dk f- ds vUrxZr B esa çfrfcEc fo|eku gS ;k ughaA (ii) A ds çR;sd vo;o dk f- ds vUrxZr B esa ,d vksj dsoy ,d çfrfcEc xf.kr fo|eku gksuk pkfg,A Qyu&Øfer ;qXeksa ds leqPp; ds :i esa & Qyu f Øfer ;qXeksa (a, b) dk leqPp; gSA tcfd (i) a leqPp; A dk vo;o gksA (ii) b leqPp; B dk vo;o gksA (ii) f ds fdlh Hkh nks Øfer ;qXeksa esa çFke lnL; ,d ls ugha gksA (iii) A dk çR;sd lnL; fdlh u fdlh ;qXe dk çFke lnL; vo'; gksA Qyu ds çdkj & Qyu f : X → Y ,dSdh Qyu dgykrk gS ;fn X ds egÙoiw.kZ lw=k fHkUu&fHkUu vo;oksa ds Y esa fHkUu&fHkUu çfrfcEc fo|eku gksA ;fn x1, x2, X ds dksbZ nks vo;o gks vkSj x1 ≠ x2 ⇒ f(x1) ≠ f(x2), f(x1) = f(x2) ⇒ x1 = x2 rc Qyu ,dSdh gksxkA (i) cgq,dSdh Qyu & Qyu f : X → Y cgq,dSdh Qyu dgykrk gS ;fn X ds fdUgha nks vo;oksa ds çfrfcEc Y esa leku gks] vFkkZr~ f : X → Y cgq,dSdh gksxk ;fn x1 ≠ x2 ⇒ f(x1) ≠ f(x2) (ii) vkPNknd Qyu & Qyu f : X → Y ,d vkPNknd Qyu dgykrk gS ;fn Y ds çR;sd vo;o dk X esa çfrfcEc fo|eku gksA nwljs 'kCnksa esa f dk ifjlj = f dk lgçkUrA (iii) vUr{ksZih Qyu & Qyu f : X → Y vUr{ksZih Qyu dgykrk gS ;fn Y Rajasthan Knowledge esa de ls de ,d vo;o ,slk gks ftldk çfrfcEc X esa fo|eku ugha gks vFkkZr~ IT shapes future CorporationLimited Y esa de ls de ,d vo;o ,slk gks ftlds fy, f–1(y) = φ rc Qyu vUr{ksZih (A Public Limited Company Promoted by Govt. of Rajasthan) gksrk gS] nwljs 'kCnksa esa f dk ifjlj ≠ f dk lgçkUrA (2) çfrykse Qyu & ;fn f : X → Y ,dSdh vkPNknd gks rks f dk çfrykse f–1 dqN egÙoiw.kZ dks.kksa ds f=kdks.kferh; vuqikr : X → Y esa Qyu gS tks fd çR;sd vo;o y ∈ Y ds laxr x ∈ X ftlds fy, (Trigonometrical Ratios for Some Special Angles) f(x) = y çfrykse Qyu dgykrk gSA 1º 1º  7 15º 22 18º 36º fo"ke ,oa le Qyu 2 2 (i) fo"ke Qyu & ,d Qyu f(x) fo"ke Qyu dgykrk gSA ;fn f(–x) = 4 2 6 3 1 1 5 1 1 sin  2 2 10  2 5 –f(x) lHkh x ds fy, fo"ke Qyu dk xzkQ foijhr iknksa esa lefer gksrk gSA 2 2 2 2 2 4 4 (ii) le Qyu & ,d Qyu f(x) le Qyu dgykrk gSA ;fn f(–x) = –f(x) 4 2 6 3 1 1 1 5 1 cos  2 2 10  2 5 lHkh x ds fy,A le Qyu dk xzkQ y-v{k ikfjr lefer gksrk gSA 2 2 2 2 2 4 4 125  10 15 f=kdks.kehfr; iQyu ,oa f=kdks.kferh; vuqikr tan   3  2   2  1 2  3 2 1 52 5 5 ,d nwljs ds inksa esa f=kdks.kferh; vuqikr (Trigonometrical Ratios in Terms of each Other) lacaf/kr dks.kksa ds f=kdks.kferh; vuqikr (Trigonometrical Ratios of Allied Angles) sin  cos  tan  cot  sec  cosec  f=kdks.kferh; vuqikr sin  sin  1  cos 2  tan  1 sec2   1 1 sin  cos  tan  1  tan  2 1  cos  2 sec  cosec  lacaf/kr dks.k 1 cot  1      sin  cos   tan  cos  1  sin 2  cos  ;k      1  tan 2  1  cot 2  sec   90      cos  sin  cot  2  sin  1  cos 2  1 tan  tan  sec2   1  1  sin 2  cos  cot   90    ;k      cos   sin   cot  2  cot  1  sin 2  cos  1 cot  1 2 cosec  1 180    ;k      sin   cos   tan  sin  1  cos 2  tan  sec2   1 180    ;k       sin   cos  tan  1  cot 2  cosec  ;k  3    1 1 sec  1  tan 2  sec   270      cos   sin  cot   1  sin 2  cos  cot  cosec2   1  2  1 1 1  tan 2  sec   3   270    ;k      cos  sin   cot  cosec  1  cot 2  cosec  sin  tan   2  1  cos 2 sec2   1  360    ;k  2     sin  cos   tan  (3) (4)
  • 2. f=kdks.kferh; vuqikrksa ds dks.kksa ds eku (ii) lg[k.M & vo;o aij dk lg[k.M çk;% Fij ls O;Dr fd;k tkrk gS] (Trigonometrical Ratios for Various Angles) tksfd (–1)i+j Mij ds cjkcj gksrk gS tgka M vo;o aij dk milkjf.kd gSA a11 a12 a13 ;fn   a21 a22 a23 a31 a32 a33 a a23 rks F   1 11 11  M11  M11  22 a32 a33 lkjf.kd F   1 1 2 a  M12   M12   21 a23 12 r`rh; dksfV ds lkjf.kd dk eku a31 a33 a11 a12 a13 lkjf.kd ds xq.k/keZ & (i) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dks fdlh la[;k ls xq.kk djus ij   a21 a22 a23 a31 a32 a33 lkjf.kd dk eku Hkh ml la[;k ls xq.kk gks tkrk gS vFkkZr~ ka kb kc a b c ka b c 11 a a23 1 2 a a23 13 a21 a22 p q r  k p q r  kp q r    1 a11 22   1 a12 21   1 a32 a33 a31 a33 a31 a32 u v w u v w ku v w a a23 a a23 a21 a22 (ii) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dk çR;sd vo;o ;fn nks inksa dk  a11 22  a12 21  a32 a33 a31 a33 a31 a32 ;ksx gks rks ml lkjf.kd dks mlh dksfV dh nks lkjf.kdksa ds ;ksxQy ds :i esa milkjf.kd ,oa lg[k.M O;Dr fd;k tk ldrk gS vFkkZr~ (i) milkjf.kd a b c  a b c    a11 a12 a13 p q r  p q r  p q r a a23 ;fn   a21 a22 a23 rks a11 dk milkjf.kd M11  22 blh u v w u v w u v w a32 a33 a31 a32 a33 a b c a b c  b c a a23 p q r  p q r   q r rjg M12  21 lkjf.kd dk eku fuEu çdkj Kkr fd;k tkrk gSA rFkk a31 a33 u v w u v w  v w Δ = a11 M11 – a12 M12 + a13 M13 ;k Δ = –a21 M21 + a22 M22 – a23 M23 (iii) ;fn fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ ds çR;sd vo;o esa fdlh ;k Δ = a31 M31 – a32 M32 + a33 M33 nwljh iafDr ¼LrEHk½ ds laxr vo;oksa dks fdlh ,d dh jkf'k ls xq.kk djds tksM+s (5) (6) ;k ?kVk;sa rks lkjf.kd dk eku ugh cnyrkA vFkkZr~ a b c a  b   c b c vFkkZr~ p q r  p  q   r q r u v w u  v   w v w eSfVªDl nks lkjf.kdksa dk xq.kuQy eSfVªDl ds çdkj nks lkjf.kd ftudh dksfV nks gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS& (i) iafDr eSfVªDl & A=[aij]m×n ,d iafDr eSfVªDl gS ;fn m = 1 a1 b1 1 m1 a  b  a1m1  b1m2 (ii) LrEHk eSfVªDl & A=[aij]m×n ,d LrEHk eSfVªDl gS ;fn n = 1   1 1 1 2 a2 b2  2 m2 a2 1  b2  2 a2 m1  b2 m2 (iii) oxZ eSfVªDl & A=[aij]m×n ,d oxZ eSfVªDl gS ;fn m = n nks lkjf.kd ftudh dksfV rhu gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS& (iv) ,dy eSfVªDl & A=[aij]m×n ,d ,dy eSfVªDl gS ;fn m = n = 1 (v) 'kwU; eSfVªDl & A=[aij]m×n ,d 'kwU; eSfVªDl gS ;fn aij = 0 lHkh i rFkk j a1 b1 c1 1 m1 n1 ds fy, a2 b2 c2   2 m2 n2 (vi) fod.kZ eSfVªDl & ,d oxZ eSfVªDl A–[aij]m×n ,d fod.kZ eSfVªDl gS ;fn a3 b3 c3  3 m3 n3 aij = 0 tc i ≠ j 0 i  j a11  b1 2  c1 3 a1m1  b1m2  c1m3 a1n1  b1n2  c1n3 (vii) vfn'k eSfVªDl & A= [aij] ,d vfn'k eSfVªDl gSA ;fn aij   tgka k i  j  a2 1  b2  2  c2  3 a2 m1  b2 m2  c2 m3 a2 n1  b2 n2  c2 n3 K vpj gSA a31  b3 2  c3 3 a3 m1  b3 m2  c3 m3 a3 n1  b3 n2  c3 n3 (viii) bdkbZ eSfVªDl & ,d oxZ eSfVªDl A=[aij] ,d bdkbZ eSfVªDl gSA ;fn lefer lkjf.kd 1 i  j aij   ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = aji ∀ i, j gks rks mls lefer 0 i  j lkjf.kd dgrs gSA (ix) f=kHkqtkdkj eSfVªDl a h g (a) Åijh f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] Åijh f=kHkqtkdkj vFkkZr~ h b f eSfVªDl dgykrk gS ;fn aij = 0 tcfd i > j. g f c (b) fuEu f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] fuEu f=kHkqtkdkj eSfVªDl fo"ke lefer lkjf.kd dgykrk gS ;fn aij = 0 tcfd i < j. ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = – aji ∀ i, j gks rks mls fo"ke (x) vO;qRØe.kh; vkSj O;qRØe.kh; eSfVªDl& lefer lkjf.kd dgrs gSA ;fn lkjf.kd |A| = 0 ⇒ vO;qRØe.kh; ;fn lkjf.kd |A| ≠ 0 ⇒ O;qRØe.kh; (7) (8)
  • 3. eSfVªDl dk ;ksx ,oa O;odyu 1 1 ax ;fn A[aij]m×n rFkk [bij]m×n nks leku dksfV dh eSfVªDl gks rks mudk ;ksx A + B (xvii)  a 2  x 2 dx  2a log a  x  c  x  a  og eSfVªDl gS ftldk çR;sd vo;o eSfVªDl A rFkk B ds laxr vo;oksa ds ;ksx 1 x  x  dx  sin 1    c   cos 1    c ds cjkcj gSA vFkkZr~ A + B = [aij + bij]m×n (xviii) a 2  x2 a a vfuf'pr lekdyu 1 x  dx  log x  x 2  a 2  c  sinh 1    c ekud lw=k (xix) x2  a 2 a xn 1 1  x  x dx  loge x  c 1 x  c  n  1  dx  log x  x 2  a 2  c  sinh 1    c n (i) dx  (ii) n 1 (xx) x2  a2 a ax a x 2 2 a 2 1 x x dx   c  a x log e e  c e x dx  e x  c (iii) (iv) log e a (xxi)  a 2  x 2 dx  2 a  x  sin 2 a c (v)  sin xdx   cos x  c (vi)  sin xdx  sin x  c x 2 a2 x (xxii)  x2  a 2 dx  x  a 2  sin 1  c (vii)  tan xdx  log sec x  c   log cos x  c 2 2 a (viii)  cot xdx  log sin x  c x 2 2 a2 x (xxiii)  x2  a 2 dx  x  a  cos h 1  c 2 2 a  x (ix)  sec xdx  log sec  tan x  c   log sec x  tan x  c  log tan  4  2   c 1 1 x dx  sec 1  c   (xxiv)  a a x x 2  a2 x (x)  cosec dx   log cosec x  cot x  log cosecx  cot x  c  log tan  2   c   eax eax   b  (xxv)  eax sin bxdx  a sin bx  b cos bx   c  sin bx  tan 1     c a2  b2 a 2  b2   a  (xi)  sec x tan xdx   sec x  c (xii)  cosec x cot xdx   cosec x  c eax eax   b  (xiii)  sec2 xdx  tan x  c e ax  a cos bx  b sin bx   c  cos bx  tan 1     c  co sec 2 (xiv) xdx   cot x  c (xxvi) cos bxdx a 2  b2   a  a 2  b2 2 1 1  x (xv)  x2  a 2 dx  a tan  c a (xxvii) 1  f  ax  b  dx  a   ax  b   c 1 1 xa (xvi)  x2  a 2 dx  2a log x  a  c  x  a  lekdyu fuf'pr lekdyu ds xq.k/keZ (9) (10) f  x, y  dy  1 ;k dy F  y     dv  dx dx f 2  x, y  dx  x  F v   v x b b b h x  f  t  dt  h  x  f  h  x    g   x  f  g  x   d (i)  f  x  dx   f  t  dt  f  u  du (ix) dx   a a a g x b b  f  x  dx    f  x  dx vody lehdj.k (ii) a a vody lehdj.k dh dksfV rFkk ?kkr& vodyu lehdj.k esa fo|+eku b c b vodytksa dk mPpre Øe gh ml lehdj.k dh dksfV dgykrk gS rFkk vody (iii)  f  x  dx   f  x  dx   f  x  dx a  c  b lehdj.k esa mPpre vodyt dh ?kkr gh ml vody lehdj.k dh ?kkr a a c 2 d3y  dy  a a dgykrh gSA vody lehdj.k  3   y  ex dh dksfV 3 rFkk 1 ?kkr gSA dx 3  dx  (iv)  f  x  dx   f  a  x  dx 0 0 çFke dksfV o çFke ?kkr vody lehdj.k a  a dy dy  f  x   f  x   dy  f  x  dx  f  x  dx  2 f  x  dx  ;fn f   x   f  x  ¼le Qyu½   (i) dx dx nksuksa rjQ lekdyu djus ij a (v) 0  vkSj ;fn f   x    f  x  ¼fo"ke Qyu½ 0    dy   f  x  dx  c ;k y   f  x  dx  c dy dy dy  f  x g  y   f  x g  y   2a a a  f  x  dx  c (vi)  f  x  dx   f  x  dx   f  2a  x  dx ¼lkekU; :i ls½ (ii) dx dx g  y  0 0 0 dy dv  f  ax  by  c    a  bf  v   a  (iii)  dx 2 f  x  dx  if f  2a  x   f  x    dx   0  if f  2a  x    f  x  0   (iv) an T T (vii)  f  x  dx  n  f  x  dx ¼;fn f  x  T   f  x  vkSj n  N ½ dy  P y  Q  y e pdx   Q e pdx dx  c (v) a 0 dx b b lfn'k (viii)  f  x  dx   f  a  b  x  dx lfn'k ;k ØkWl xq.kuQy& ekuk a rFkk b nks lfn'k gS rFkk θ muds e/; dks.k a a gS rc a × b = |a||b| sin θ n ;gka n, a rFkk b ds yEcor~ bdkbZ lfn'k gSA (11) (12)
  • 4. lfn'k xq.kuQy ds xq.kuQy f=kfofe; funsZ'kkad T;kfefr         (i) a  b  b  a  i.e. a  b  b  a  funsZ'kkad& nks fcUnqvksa rFkk ds e/; nwjh (ii)  PQ   x2  x1 2   y2  y1 2   z2  z1 2 (iii)  ewy fcUnq ls fcUnq  x1 , y1 , z1  dh nwjh (iv) ;fn a  a1iˆ  a2 ˆ  a3 k j ˆ rFkk rks  ;fn fcUnq P  x1 , y1 , z1  rFkk dks feykus okyh js[kk dks fcUnq (v) a rFkk nksuksa ds yEcor~ lfn'k gksrk gSA vuqikr esa foHkkftr djrk gS] rks  (vi) rFkk ds ry ds yEcor~ bdkbZ lfn'k gksrk gSA rFkk ¼ a rFkk m x  m2 x1 m y  m2 y1 m z  m2 z1  x 1 2 ;y  1 2 ;z  1 2   m1  m2 m1  m2 m1  m2 ;k rFkk ½ ds ry ds yEcor~ ifjek.k dk ,d lfn'k   a b gksrk ab ¼vUr foHkktu½ gSA m1 x2  m2 x1 m y  m2 y1 m z  m2 z1 ˆ j ˆ rFkk x  m1  m2 ;y  1 2 m1  m2 ;z  1 2 m1  m2 (vii) ;fn i , ˆ, k rhu bdkbZ lfn'k rhu ijLij yEcor~ js[kkvksa ds vuqfn'k gS rks ;k ¼cká foHkktu½ (viii) ;fn rFkk lejs[kh; gS rks ;fn P  x1 , y1 , z1  rFkk dks feykus okyh js[kk dks fcUnq (ix) vk?kw.kZ % cy tks fcUnq A ij fcUnq B ds lksi{k dk;Zjr gS rks lfn'k vuqikr esa foHkkftr djrk gS] rks cyk?kw.kZ gksrk gSA (x) (a) ;fn ,d f=kHkqt dh nks vklUu Hkqtk,a rFkk gks rks bldk {ks=kQy vUr foHkktu ds fy, /kukRed fpUg rFkk cká foHkktu ds fy, _.kkRed fpUg ysrs gSA  (b) ;fn ,d lekukUrj prqHkqZt dh nks vklUu Hkqtk,a a rFkk gks rks bldk  x  x y  y2 z1  z2  PQ dk ek/; fcUnq  1 2. 1 ,  {ks=kQy  2 2 2  (c) ;fn ,d lekukUrj prqHkqZt dh nks fod.kZ rFkk gks rks bldk {ks=kQy ,d f=kHkqt ABC ftlds 'kh"kZ rFkk gS] dk dsUæd gSA (13) (14) ?kVuk ds fy, la;ksxkuqikr A ds i{k esa la;ksxkuqikr = m : (n – m) A ds foi{k esa la;ksxkuqikr = m : (n – m) : m ,d prq"Qyd ABCD ftlds 'kh"kZ rFkk çkf;drk dk ;ksx fl)kar gS] dk dsUæd gSA fLFkfr & 1 : tc ?kVuk,a ijLij viothZ gksa ;fn A rFkk B ijLij viothZ ?kVuk,a gks rks fnDdksT;k,a ,oa ç{ksi& x- v{k dh fnDdksT;k,a cos0, cosπ/2, cosπ/2 vFkkZr~ 1, fLFkfr & 2 : tc ?kVuk,a ijLij viothZ ugha gksa 0, 0 gksrh gSA blh çdkj y rFkk z-v{k dh fnDdksT;k,a Øe'k% (0, 1, 0) rFkk (0, 0, ;fn A rFkk B ijLij viothZ ?kVuk,a ugha gks rks 1) gksrh gSA P  A B   P  A   P  B   P  A B  ;k ;k P  A B  P  A   P  B  P  A B çkf;drk dk xq.ku fl)kar fLFkfr & 1 : tc ?kVuk,a Lora=k gks fdlh js[kk PQ ds fnd~ vuqikr ¼tgka P rFkk Q Øe'k% (x1, y1, z1) rFkk (x2, y2, ;fn A1,A2,…,An Lora=k ?kVuk,a gks rks P(A1,A2,…,An) z2) gS½ x2 – x1, y2 – y1, z2 – z1 gksrs gSaA  P  A1   P  A 2   P  A n  ;fn a, b, c fnd~ vuqikr rFkk l, m, n fnd~dksT;k,a gS rks ;fn A rFkk B nks Lora=k ?kVuk,a gks rks B dk ?kfVr gksuk A ij dksbZ çHkko ugha MkyrkA blfy, P  A/ B   P  A  rFkk P  B/ A   P  B çkf;drk rc P  A B   P  A   P  B  ;k P  A B  P  A   P  B çkf;drk dh xf.krh; ifjHkk"kk& ;fn A dksbZ ?kVuk gS rks fLFkfr & 2 : tc ?kVuk,a Lora=k u gks] nks ?kVuk,a A rFkk B ds ,d lkFk ?kfVr gksus dh çkf;drk A dh çkf;drk rFkk B dh çfrcaf/kr çkf;drk ¼tc A ?kfVr gks m A dh vuqdwy fLFkfr;ksa dh la[;k P A   pqdh gks½ ds xq.kuQy ds cjkcj gksrh gS ¼;k B dh çkf;drk rFkk A dh çfrcafèkr n A dh dqy fLFkfr;ksa dh la[;k çkf;drk ds xq.kuQy ds cjkcj gksrh gSA½ vFkkZr~ 0  P  A  1 ] P A  nm m  1  1 P A P  A B  P  A   P  B/ A  ;k P  A B   P  B   P  A/ B ;k n n P  A B   P  A   P  B/ A  ;k P  B  P  A/ B   ∴ P A  P A   1 (15) (16)