Eeng 360 1
Chapter4
Bandpass Signalling
 Bandpass Filtering and Linear Distortion
 Bandpass Sampling Theorem
 Bandpass Dimensionality Theorem
 Amplifiers and Nonlinear Distortion
 Total Harmonic Distortion (THD)
 Intermodulation Distortion (IMD)
Huseyin Bilgekul
Eeng360 Communication Systems I
Department of Electrical and Electronic Engineering
Eastern Mediterranean University
Eeng 360 2
Bandpass Filtering and Linear Distortion
 Equivalent Low-pass filter: Modeling a bandpass filter by using an equivalent low
pass filter (complex impulse response)
]
)
(
Re[
)
( 1
1
t
jwc
e
t
g
t
v  ]
)
(
Re[
)
( 2
2
t
jwc
e
t
g
t
v 
]
)
(
Re[
)
( 1
1
t
jwc
e
t
k
t
h 
*
1 1
( ) ( ) ( )
2 2
c c
H f K f f K f f
   
   
 
c
c f
f
G
f
f
G
f
V 



 *
2
1
)
(
   
t
j c
e
t
g
t
v 
)
(
Re

)
(
1 t
v
)
(
2 t
v
)
(
1 t
h
)
( f
H
Input bandpass waveform
Output bandpass waveform
Impulse response of the bandpass filter
Frequency response of the bandpass filter
H(f) = Y(f)/X(f)
Bandpass filter
Eeng 360 3
Bandpass Filtering
Eeng 360 4
Bandpass Filtering
     ;
2
1
2
1
2
1
1
2 t
k
t
g
t
g 

     
f
K
f
G
f
G
2
1
2
1
2
1
1
2 
     
f
H
f
V
f
V 1
2 
   
 
c
c f
f
G
f
f
G 


 *
2
2
2
1
   
     
 
c
c
c
c f
f
K
f
f
K
f
f
G
f
f
G 







 *
*
1
1
2
1
2
1
       
       























c
c
c
c
c
c
c
c
f
f
K
f
f
G
f
f
K
f
f
G
f
f
K
f
f
G
f
f
K
f
f
G
*
*
1
*
1
*
1
1
4
1
    ,
0
*
1 


 c
c f
f
K
f
f
G
Theorem:
g1(t) – complex envelope of input
k(t) – complex envelope of impulse response
Also,
Proof: Spectrum of the output is
Spectra of bandpass waveforms are related to that of their complex enveloped
But
    .
0
*
1 


 c
c f
f
K
f
f
G
           


































 c
c
c
c
c
c f
f
K
f
f
G
f
f
K
f
f
G
f
f
G
f
f
G *
*
1
1
*
2
2
2
1
2
1
2
1
2
1
2
1
2
1
The complex envelopes for the input, output, and impulse response of
a bandpass filter are related by
Eeng 360 5
Bandpass Filtering
     
f
K
f
G
f
G
2
1
2
1
2
1
1
2 
Taking inverse fourier transform on both sides
     ;
2
1
2
1
2
1
1
2 t
k
t
g
t
g 

Thus, we see that
 Any bandpass filter may be described and analyzed by using an equivalent low-pass
filter.
 Equations for equivalent LPF are usually much less complicated than those for
bandpass filters & so the equivalent LPF system model is very useful.
Eeng 360 6
Linear Distortion
  A
f
H 
 
g
T
df
f
d




2
1
  0
2 

 

 g
fT
f
For distortionless transmission of bandpass signals, the channel transfer function
H(f) should satisfy the following requirements:
     
f
j
e
f
H
f
H 

 The amplitude response is constant
A- positive constant
 The derivative of the phase response is constant
Tg – complex envelope delay
  d
fT
f
H
f 
 2
)
( 



  )
( f
H
f 


Integrating the above equation, we get
Are these requirements sufficient for distortionless transmission?
constant
shift
phase
0 

Eeng 360 7
Linear Distortion
Eeng 360 8
   
  g
g fT
j
j
fT
j
e
Ae
Ae
f
H



 2
2 0
0 




      t
t
y
t
t
x
t
v c
c 
 sin
cos
1 

g
fT
j
e

2

     
     
 
0
0
2 sin
cos 


 






 g
c
g
g
c
g T
t
T
t
Ay
T
t
T
t
Ax
t
v
     
     
 
c
c
g
c
c
g f
t
T
t
Ay
f
t
T
t
Ax
t
v 


 




 sin
cos
2
  d
c
g
c
c T
f
T
f 


 2
0 





     
     
 
d
c
g
d
c
g T
t
T
t
Ay
T
t
T
t
Ax
t
v 




 
 sin
cos
2
    delay
phase
T
shift
phase
carrier
;
2 d 



 c
d
c
c f
T
f
f 


Linear Distortion
The channel transfer function is
     
f
j
e
f
H
f
H 

If the input to the bandpass channel is
Then the output to the channel (considering the delay Tg due to ) is
Using   0
0
2 



 




 g
g T
fT
f
  d
fT
f
H
f 
 2
)
( 



Modulation on the carrier is delayed by Tg & carrier by Td
Bandpass filter
delays input info by
Tg , whereas the
carrier by Td
Eeng 360 9
Bandpass Sampling Theorem
T
s B
f 2

      t
t
y
t
t
x
t
v c
c 
 sin
cos 

  2
1
2 f
f
fc 

   
 
 
 
 





































n
n b
b
b
b
c
b
c
b f
n
t
f
f
n
t
f
t
f
n
y
t
f
n
x
t
v




sin
sin
cos
 
b
f
n
x  
b
f
n
y
If a waveform has a non-zero spectrum only over the interval , where
the transmission bandwidth BT is taken to be same as absolute BW, BT=f2-f1, then
the waveform may be reproduced by its sample values if the sampling rate is
2
1 f
f
f 

Theorem:
Quadrature bandpass representation
Let fc be center of the bandpass:
x(t) and y(t) are absolutely bandlimited to B=BT/2
The sampling rate required to represent the baseband signal is T
b B
B
f 
2
Quadrature bandpass representation now becomes
Where and samples are independent , two sample values
are obtained for each value of n
Overall sampling rate for v(t): T
b
s B
f
f 2
2 

Eeng 360 10
Bandpass Dimensionality Theorem
0
2 T
N B T

 Assume that a bandpass waveform has a nonzero spectrum only over a frequency
interval , where the transmission bandwidth BT is taken to be the absolute
bandwidth given by BT=f2-f1 and BT<<f1.
The waveform may be completely specified over a T0-second interval by N Independent
pieces of information. N is said to be the number of dimensions required to specify the
information.
2
1 f
f
f 

Eeng 360 11
Received Signal Pulse
   
 
t
j c
e
t
g
t
s 
Re

       
t
n
t
h
t
s
t
r 


     
 
 
 
t
n
e
T
t
Ag
t
r c
c f
t
j
g 

 

Re
   
   
t
n
e
t
g
t
r t
j c

 
Re
The signal out of the transmitter
Transmission
medium
(Channel)
Carrier
circuits
Signal
processing
Carrier
circuits
Signal
processing
Information
m
input m
~
)
(
~ t
g
)
(t
r
)
(t
s
)
(t
g
g(t) – Complex envelope of v(t)
If the channel is LTI , then received signal + noise
n(t) – Noise at the receiver input
Signal + noise at the receiver input
Signal + noise at the receiver input
- carrier phase shift caused by the channel, Tg – channel group delay.
)
( c
f

A – gain of the channel
Eeng 360 12
Amplifiers
Non-linear Linear
Circuits with memory and circuits with no
memory
Memory - Present output value ~ function of present input + previous input values
- contain L & C
No memory - Present output values ~ function only of its present input values.
Circuits : linear + no memory – resistive ciruits
- linear + memory – RLC ciruits (Transfer function)
Nonlinear Distortion
Eeng 360 13
Nonlinear Distortion
Assume no memory  Present output as a function of present input in ‘t’ domain
   
t
Kv
t
v i

0
K- voltage gain of the amplifier
• If the amplifier is linear
• In practice, amplifier output becomes saturated as the amplitude of
the input signal is increased.











0
2
2
1
0
0
n
n
i
n
i
i v
K
v
K
v
K
K
v
output-to-input characteristic (Taylor’s expansion):
Where
0
0
!
1










i
v
n
i
n
n
dv
v
d
n
K
0
K
i
v
K1
2
2 i
v
K
- output dc offset level
- 1st
order (linear) term
- 2nd
order (square law) term
Eeng 360 14
  t
A
t
vi 0
0 sin

   
t
A
K
t
A
K 0
2
0
2
2
0
0
2 2
cos
1
2
sin 
 

      









 3
0
3
2
0
2
1
0
1
0 3
cos
2
cos
)
cos( 




 t
V
t
V
t
V
V
t
vout
100
V
THD(%)
1
2
n
2




 n
V
Nonlinear Distortion
Let the input test tone be represented by
Harmonic Distortion associated with the amplifier output:
Then the second-order output term is
In general, for a single-tone input, the output will be
Vn – peak value of the output at the frequency nf0
2
2 i
v
K =
To the amplifier input
The Percentage Total Harmonic Distortion (THD) of an amplifier is defined
by
2nd
Harmonic
Distortion with 2
2
0
2 A
K
Eeng 360 15
Nonlinear Distortion
Intermodulation distortion (IMD) of the amplifier:
If the input (tone) signals are   t
A
t
A
t
vi 2
2
1
1 sin
sin 
 

Then the second-order output term is
   
t
A
K
t
t
A
A
K
t
A
K
t
A
t
t
A
A
t
A
K
t
sn
A
t
A
K
2
2
2
2
2
2
1
2
1
2
1
2
2
1
2
2
2
2
2
2
1
2
1
1
2
2
1
2
2
2
2
1
1
2
sin
sin
sin
2
sin
sin
sin
sin
2
sin
sin

















IMD
Harmonic distortion at 2f1 & 2f2
Second-order IMD is:
 
   
 
 
2
1
2
1
2
1
2
2
1
2
1
2 cos
cos
sin
sin
2 




 


 t
A
A
K
t
t
A
A
K
Eeng 360 16
Nonlinear Distortion
Third order term is  
)
sin
sin
sin
3
sin
sin
3
sin
(
sin
sin
2
3
3
2
2
2
1
2
2
1
2
1
2
2
2
1
1
3
3
1
3
3
2
2
1
1
3
3
3
t
A
t
t
A
A
t
t
A
A
t
A
K
t
A
t
A
K
v
K i














 
t
t
A
A
K
t
t
A
A
K 1
2
2
2
1
3
2
1
2
2
2
1
3 2
cos
1
sin
2
3
sin
sin
3 


 

   
 










 t
t
t
A
A
K 2
1
2
1
2
2
2
1
3 2
sin
2
sin
2
1
sin
2
3





   
 










 t
t
t
A
A
K
t
t
A
A
K
1
2
1
2
1
2
2
1
3
2
2
1
2
2
1
3
2
sin
2
sin
2
1
sin
2
3
sin
sin
3







The third term is
The second term (cross-product) is
Intermodulation terms at nonharmonic frequencies
For bandpass amplifiers, where f1 & f2 are within the pasband, f1 close to f2,
the distortion products at 2f1+f2 and 2f2+f1 ~ outside the passband
Main Distortion Products

chap4_lecture 2 Bandpass Signals and Systems

  • 1.
    Eeng 360 1 Chapter4 BandpassSignalling  Bandpass Filtering and Linear Distortion  Bandpass Sampling Theorem  Bandpass Dimensionality Theorem  Amplifiers and Nonlinear Distortion  Total Harmonic Distortion (THD)  Intermodulation Distortion (IMD) Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical and Electronic Engineering Eastern Mediterranean University
  • 2.
    Eeng 360 2 BandpassFiltering and Linear Distortion  Equivalent Low-pass filter: Modeling a bandpass filter by using an equivalent low pass filter (complex impulse response) ] ) ( Re[ ) ( 1 1 t jwc e t g t v  ] ) ( Re[ ) ( 2 2 t jwc e t g t v  ] ) ( Re[ ) ( 1 1 t jwc e t k t h  * 1 1 ( ) ( ) ( ) 2 2 c c H f K f f K f f           c c f f G f f G f V      * 2 1 ) (     t j c e t g t v  ) ( Re  ) ( 1 t v ) ( 2 t v ) ( 1 t h ) ( f H Input bandpass waveform Output bandpass waveform Impulse response of the bandpass filter Frequency response of the bandpass filter H(f) = Y(f)/X(f) Bandpass filter
  • 3.
  • 4.
    Eeng 360 4 BandpassFiltering      ; 2 1 2 1 2 1 1 2 t k t g t g         f K f G f G 2 1 2 1 2 1 1 2        f H f V f V 1 2        c c f f G f f G     * 2 2 2 1             c c c c f f K f f K f f G f f G          * * 1 1 2 1 2 1                                        c c c c c c c c f f K f f G f f K f f G f f K f f G f f K f f G * * 1 * 1 * 1 1 4 1     , 0 * 1     c c f f K f f G Theorem: g1(t) – complex envelope of input k(t) – complex envelope of impulse response Also, Proof: Spectrum of the output is Spectra of bandpass waveforms are related to that of their complex enveloped But     . 0 * 1     c c f f K f f G                                                c c c c c c f f K f f G f f K f f G f f G f f G * * 1 1 * 2 2 2 1 2 1 2 1 2 1 2 1 2 1 The complex envelopes for the input, output, and impulse response of a bandpass filter are related by
  • 5.
    Eeng 360 5 BandpassFiltering       f K f G f G 2 1 2 1 2 1 1 2  Taking inverse fourier transform on both sides      ; 2 1 2 1 2 1 1 2 t k t g t g   Thus, we see that  Any bandpass filter may be described and analyzed by using an equivalent low-pass filter.  Equations for equivalent LPF are usually much less complicated than those for bandpass filters & so the equivalent LPF system model is very useful.
  • 6.
    Eeng 360 6 LinearDistortion   A f H    g T df f d     2 1   0 2       g fT f For distortionless transmission of bandpass signals, the channel transfer function H(f) should satisfy the following requirements:       f j e f H f H    The amplitude response is constant A- positive constant  The derivative of the phase response is constant Tg – complex envelope delay   d fT f H f   2 ) (       ) ( f H f    Integrating the above equation, we get Are these requirements sufficient for distortionless transmission? constant shift phase 0  
  • 7.
  • 8.
    Eeng 360 8      g g fT j j fT j e Ae Ae f H     2 2 0 0            t t y t t x t v c c   sin cos 1   g fT j e  2                0 0 2 sin cos             g c g g c g T t T t Ay T t T t Ax t v               c c g c c g f t T t Ay f t T t Ax t v           sin cos 2   d c g c c T f T f     2 0                     d c g d c g T t T t Ay T t T t Ax t v         sin cos 2     delay phase T shift phase carrier ; 2 d      c d c c f T f f    Linear Distortion The channel transfer function is       f j e f H f H   If the input to the bandpass channel is Then the output to the channel (considering the delay Tg due to ) is Using   0 0 2            g g T fT f   d fT f H f   2 ) (     Modulation on the carrier is delayed by Tg & carrier by Td Bandpass filter delays input info by Tg , whereas the carrier by Td
  • 9.
    Eeng 360 9 BandpassSampling Theorem T s B f 2        t t y t t x t v c c   sin cos     2 1 2 f f fc                                                    n n b b b b c b c b f n t f f n t f t f n y t f n x t v     sin sin cos   b f n x   b f n y If a waveform has a non-zero spectrum only over the interval , where the transmission bandwidth BT is taken to be same as absolute BW, BT=f2-f1, then the waveform may be reproduced by its sample values if the sampling rate is 2 1 f f f   Theorem: Quadrature bandpass representation Let fc be center of the bandpass: x(t) and y(t) are absolutely bandlimited to B=BT/2 The sampling rate required to represent the baseband signal is T b B B f  2 Quadrature bandpass representation now becomes Where and samples are independent , two sample values are obtained for each value of n Overall sampling rate for v(t): T b s B f f 2 2  
  • 10.
    Eeng 360 10 BandpassDimensionality Theorem 0 2 T N B T   Assume that a bandpass waveform has a nonzero spectrum only over a frequency interval , where the transmission bandwidth BT is taken to be the absolute bandwidth given by BT=f2-f1 and BT<<f1. The waveform may be completely specified over a T0-second interval by N Independent pieces of information. N is said to be the number of dimensions required to specify the information. 2 1 f f f  
  • 11.
    Eeng 360 11 ReceivedSignal Pulse       t j c e t g t s  Re          t n t h t s t r                t n e T t Ag t r c c f t j g      Re         t n e t g t r t j c    Re The signal out of the transmitter Transmission medium (Channel) Carrier circuits Signal processing Carrier circuits Signal processing Information m input m ~ ) ( ~ t g ) (t r ) (t s ) (t g g(t) – Complex envelope of v(t) If the channel is LTI , then received signal + noise n(t) – Noise at the receiver input Signal + noise at the receiver input Signal + noise at the receiver input - carrier phase shift caused by the channel, Tg – channel group delay. ) ( c f  A – gain of the channel
  • 12.
    Eeng 360 12 Amplifiers Non-linearLinear Circuits with memory and circuits with no memory Memory - Present output value ~ function of present input + previous input values - contain L & C No memory - Present output values ~ function only of its present input values. Circuits : linear + no memory – resistive ciruits - linear + memory – RLC ciruits (Transfer function) Nonlinear Distortion
  • 13.
    Eeng 360 13 NonlinearDistortion Assume no memory  Present output as a function of present input in ‘t’ domain     t Kv t v i  0 K- voltage gain of the amplifier • If the amplifier is linear • In practice, amplifier output becomes saturated as the amplitude of the input signal is increased.            0 2 2 1 0 0 n n i n i i v K v K v K K v output-to-input characteristic (Taylor’s expansion): Where 0 0 ! 1           i v n i n n dv v d n K 0 K i v K1 2 2 i v K - output dc offset level - 1st order (linear) term - 2nd order (square law) term
  • 14.
    Eeng 360 14  t A t vi 0 0 sin      t A K t A K 0 2 0 2 2 0 0 2 2 cos 1 2 sin                      3 0 3 2 0 2 1 0 1 0 3 cos 2 cos ) cos(       t V t V t V V t vout 100 V THD(%) 1 2 n 2      n V Nonlinear Distortion Let the input test tone be represented by Harmonic Distortion associated with the amplifier output: Then the second-order output term is In general, for a single-tone input, the output will be Vn – peak value of the output at the frequency nf0 2 2 i v K = To the amplifier input The Percentage Total Harmonic Distortion (THD) of an amplifier is defined by 2nd Harmonic Distortion with 2 2 0 2 A K
  • 15.
    Eeng 360 15 NonlinearDistortion Intermodulation distortion (IMD) of the amplifier: If the input (tone) signals are   t A t A t vi 2 2 1 1 sin sin     Then the second-order output term is     t A K t t A A K t A K t A t t A A t A K t sn A t A K 2 2 2 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 1 1 2 sin sin sin 2 sin sin sin sin 2 sin sin                  IMD Harmonic distortion at 2f1 & 2f2 Second-order IMD is:           2 1 2 1 2 1 2 2 1 2 1 2 cos cos sin sin 2           t A A K t t A A K
  • 16.
    Eeng 360 16 NonlinearDistortion Third order term is   ) sin sin sin 3 sin sin 3 sin ( sin sin 2 3 3 2 2 2 1 2 2 1 2 1 2 2 2 1 1 3 3 1 3 3 2 2 1 1 3 3 3 t A t t A A t t A A t A K t A t A K v K i                 t t A A K t t A A K 1 2 2 2 1 3 2 1 2 2 2 1 3 2 cos 1 sin 2 3 sin sin 3                        t t t A A K 2 1 2 1 2 2 2 1 3 2 sin 2 sin 2 1 sin 2 3                       t t t A A K t t A A K 1 2 1 2 1 2 2 1 3 2 2 1 2 2 1 3 2 sin 2 sin 2 1 sin 2 3 sin sin 3        The third term is The second term (cross-product) is Intermodulation terms at nonharmonic frequencies For bandpass amplifiers, where f1 & f2 are within the pasband, f1 close to f2, the distortion products at 2f1+f2 and 2f2+f1 ~ outside the passband Main Distortion Products