SlideShare a Scribd company logo
HI in circumstellar envelopes around AGB stars:
                    Observations and modelling

                               Libert Y.1 , Le Bertre T.1 , G´rard E.2
                                                             e

                                        1 LERMA,    Observatoire de Paris
                                         2 GEPI,   Observatoire de Paris


                                            December 14, 2007




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         1 / 24
Introduction
   1
         HR diagram
         The mass-loss process
       HI observations
   1
         The key aspects
         Why HI ?
       A favorable case: Y CVn
   2
         Properties of Y CVn
       Observations
   3
         CO observations
         dust continuum observations
         Neutral Hydrogen observations
       results
   4
          Direct results
          Modelling
       Conclusions & Prospects
   5


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         2 / 24
AGB in HR diagram




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         3 / 24
The mass-loss process




          So considerable that it can govern the evolution of the star
          ∼ 1-5 M → ∼ 0.6-0.8 M
          Produces C, O, He, ... + s-elements (neutron capture)
          Important contribution to the Galactic composition
          ⇒ Important clues for stellar & interstellar physics
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         4 / 24
The mass-loss process




          So considerable that it can govern the evolution of the star
          ∼ 1-5 M → ∼ 0.6-0.8 M
          Produces C, O, He, ... + s-elements (neutron capture)
          Important contribution to the Galactic composition
          ⇒ Important clues for stellar & interstellar physics
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         4 / 24
The mass-loss process




          So considerable that it can govern the evolution of the star
          ∼ 1-5 M → ∼ 0.6-0.8 M
          Produces C, O, He, ... + s-elements (neutron capture)
          Important contribution to the Galactic composition
          ⇒ Important clues for stellar & interstellar physics
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         4 / 24
The mass-loss process




          So considerable that it can govern the evolution of the star
          ∼ 1-5 M → ∼ 0.6-0.8 M
          Produces C, O, He, ... + s-elements (neutron capture)
          Important contribution to the Galactic composition
          ⇒ Important clues for stellar & interstellar physics
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         4 / 24
ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                             e                CfA R & G Lunch Talk                December de 2007         5 / 24
The key aspects




          Produce an accurate set of data for spectral and spatial information
          Use a physical model to fit the line profile
          Access to the properties of the stellar wind and the surrounding local
          matter




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         6 / 24
Why HI observations ?

            High velocity resolution (∼ 0.08 km.s−1 @ 21
            cm)
            70 % of the mass of the object
            Molecules photodissociated near the centre (∼
            1016 cm depending on the mass-loss rate)
            For Teff > 2500 K : H mainly atomic
            (Glassgold & Huggins 1983)
            Flux ∝ Mass :
            MHI = 2.37 10−7 × D 2 (pc) × Stot
            Circumstellar HI shielded by interstellar HI
            ⇒ Probe the furthest part of a
            Circumstellar Shell (CS)



Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         7 / 24
The NRT beam shape




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         8 / 24
The NRT beam shape

                                                        4 in RA
                     FWHM = 0.88 λ =⇒
                                 L
                                                        22 in Dec




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         8 / 24
A favorable case: Y CVn
          Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas)
          Galactic coordinates
          Radial velocity: 21 km.s−1
          Effective temperature: 2700 K

                                                     l=126◦

   b=+72◦




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         9 / 24
A favorable case: Y CVn
          Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas)
          Galactic coordinates
          Radial velocity: 21 km.s−1
          Effective temperature: 2700 K

                                                     l=126◦

   b=+72◦




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         9 / 24
A favorable case: Y CVn
          Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas)
          Galactic coordinates
          Radial velocity: 21 km.s−1
          Effective temperature: 2700 K

                                                     l=126◦

   b=+72◦




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         9 / 24
A favorable case: Y CVn
          Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas)
          Galactic coordinates
          Radial velocity: 21 km.s−1
          Effective temperature: 2700 K

                                                     l=126◦

   b=+72◦




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris )
                              e                CfA R & G Lunch Talk                December de 2007         9 / 24
Jy




ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                             e                CfA R & G Lunch Talk               December 14, Paris      10 / 24
Observations in the CO lines


          Plateau de Bure, 30m IRAM (CO 2→1 & CO 1→0)
          CSO Mauna Kea, Hawaii (CO 2→1 & CO 3→2)
          ...
   Models are used to deduce several properties of the CS, with several input
   parameters such as:
          The envelope expansion velocity
          The distance of the star
          The main beam temperature
     The fractional CO abundance
    ˙ ∼ 1 10−7 M .yr−1 ; rCO ∼ 0.9 1017 cm ≡ 3 10−2 pc
   ⇒M



Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      11 / 24
Size ( )         Vexp             VLSR          Flux
                                                     (km.s−1 )        (km.s−1 )
                                        ()                                            (Jy)

                12 CO    (1→0)           12.8            9.7             19.6          6.4

                12 CO    (2→1)           8.8             7.8             20.7         24.1




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      12 / 24
Size ( )         Vexp             VLSR          Flux
                                                   (km.s−1 )        (km.s−1 )
                                      ()                                            (Jy)

              12 CO    (1→0)           12.8            9.7             19.6          6.4

              12 CO    (2→1)           8.8             7.8             20.7         24.1
            Neri et al. (1998 A&AS, 130,1)




ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                             e                CfA R & G Lunch Talk               December 14, Paris      12 / 24
Observations in the dust continuum
   IRAS results @ 60 and 100 µm (Young et al. 1993a & b)
   ISO results @ 90 and 160 µm (Izumiura et al. 1996)
                                                                                                   N↑ W
                                                                                                    →




                 Y CVn @ 90 µm by ISOPHOT. The field is 8.3 ×34.8



Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      13 / 24
HI observations




             Libert Y., Le Bertre T., G´rard E., 2007, MNRAS, 381, 1161
                                       e

   → quasi-gaussian narrow component (comp. 1) centered at 20.5 km.s−1
   FWHM : 3.8 km.s−1
   → Pedestal (comp.2) centered at 21.1 km.s−1 Half width : 7.8 km.s−1

Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      14 / 24
(CO spectrum: Knapp G.R., Young K., et al., 1998, ApJS, 117, 209)
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      15 / 24
Step in RA:
                                                                               1 beam (4 )
                                                                               Step in Dec:
                                                                               1/2 beam (11 )




ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                             e                CfA R & G Lunch Talk               December 14, Paris      16 / 24
Direct results
          Factor of 4 in velocity between Comp. 1 & Comp. 2
          But: supersonic wind in the freely expanding zone
          ⇒ shock
          From an adiabatic shock:
                                 v1  1         3µmH 2
                                    ∼ and T1 ∼      v0 ∼ 1800K
                                 v0  4          16k
          But: from the HI profile:

                                    FWHM(km.s −1 ) = 0.214                  T (K )

          ⇒ Mean temperature        210 K
          Empirical temperature profile (to be adjusted with the observations):
                                                      T          r
                                                log      = a log
                                                      T1         r1

Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      17 / 24
Direct results
          Factor of 4 in velocity between Comp. 1 & Comp. 2
          But: supersonic wind in the freely expanding zone
          ⇒ shock
          From an adiabatic shock:
                                 v1  1         3µmH 2
                                    ∼ and T1 ∼      v0 ∼ 1800K
                                 v0  4          16k
          But: from the HI profile:

                                    FWHM(km.s −1 ) = 0.214                  T (K )

          ⇒ Mean temperature        210 K
          Empirical temperature profile (to be adjusted with the observations):
                                                      T          r
                                                log      = a log
                                                      T1         r1

Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      17 / 24
Direct results
          Factor of 4 in velocity between Comp. 1 & Comp. 2
          But: supersonic wind in the freely expanding zone
          ⇒ shock
          From an adiabatic shock:
                                 v1  1         3µmH 2
                                    ∼ and T1 ∼      v0 ∼ 1800K
                                 v0  4          16k
          But: from the HI profile:

                                    FWHM(km.s −1 ) = 0.214                  T (K )

          ⇒ Mean temperature        210 K
          Empirical temperature profile (to be adjusted with the observations):
                                                      T          r
                                                log      = a log
                                                      T1         r1

Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      17 / 24
Direct results
          Factor of 4 in velocity between Comp. 1 & Comp. 2
          But: supersonic wind in the freely expanding zone
          ⇒ shock
          From an adiabatic shock:
                                 v1  1         3µmH 2
                                    ∼ and T1 ∼      v0 ∼ 1800K
                                 v0  4          16k
          But: from the HI profile:

                                    FWHM(km.s −1 ) = 0.214                  T (K )

          ⇒ Mean temperature        210 K
          Empirical temperature profile (to be adjusted with the observations):
                                                      T          r
                                                log      = a log
                                                      T1         r1

Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      17 / 24
Direct results
        Factor of 4 in velocity between Comp. 1 & Comp. 2
        But: supersonic wind in the freely expanding zone
        ⇒ shock
        From an adiabatic shock:
                               v1  1         3µmH 2
                                  ∼ and T1 ∼      v0 ∼ 1800K
                               v0  4          16k
        But: from the HI profile:

                                   FWHM(km.s −1 ) = 0.214                  T (K )

        ⇒ Mean temperature        210 K
        Empirical temperature profile (to be adjusted with the observations):
                                                     T          r
                                               log      = a log
                                                     T1         r1

ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                             e                CfA R & G Lunch Talk               December 14, Paris      17 / 24
Modelling HI emission




          Constant mass-loss rate
          Spherical symmetry
          Ideal gas
          Stationary
          Constant velocity in the free expanding zone ( → r1 )
          ∼ 8 km.s−1
Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      18 / 24
Results




   ∼ 1 km.s−1 redshift between modeled pedestal and that from the
   observations
   → Motion of the star with respect to the surrounding matter
   Possibly related to the East-West asymmetry



Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      19 / 24
Results (Cont I)




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      20 / 24
Results (Cont II)




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      21 / 24
Results (Cont III)

                                                                            Constant mass-loss rate:
                                                                            ∼ 1 10−7 M yr−1
                                                                            Age: ∼ 4.5 105 yr




Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      22 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Conclusions & Prospects

          Mass-loss rate constant over 5 105 years
          Velocity profile does not correspond to a brief and intense mass-loss
          event
          Feature dominated by the narrow component



          Ideal tools for studying ISM with different physical conditions and in
          different sites using tenth of other red giants
          High spatial and spectral resolution needed (wind slow and slowed
          down)
          ⇒ Observations obtained with the VLA (4 other objects) with Lynn
          D. Matthews & Mark J. Reid (work in progress)


Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 )
                              e                CfA R & G Lunch Talk               December 14, Paris      23 / 24
Merci !

More Related Content

Similar to Talk for the Center for Astrophysics (Harvard)

GEOtop 2008
GEOtop 2008GEOtop 2008
GEOtop 2008
Riccardo Rigon
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the Sun
AstroAtom
 
ENFPC 2013
ENFPC 2013ENFPC 2013
ENFPC 2013
Leandro da Silva
 
2012 hr8752-void-crossing
2012 hr8752-void-crossing2012 hr8752-void-crossing
2012 hr8752-void-crossing
Kees De Jager
 
Scale Space: The Gaussion Approach
Scale Space: The Gaussion ApproachScale Space: The Gaussion Approach
Scale Space: The Gaussion Approach
bugway
 
13.30 o2 v bubanja
13.30 o2 v bubanja13.30 o2 v bubanja
13.30 o2 v bubanja
NZIP
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
Francisco LePort
 
Eso1148
Eso1148Eso1148

Similar to Talk for the Center for Astrophysics (Harvard) (8)

GEOtop 2008
GEOtop 2008GEOtop 2008
GEOtop 2008
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the Sun
 
ENFPC 2013
ENFPC 2013ENFPC 2013
ENFPC 2013
 
2012 hr8752-void-crossing
2012 hr8752-void-crossing2012 hr8752-void-crossing
2012 hr8752-void-crossing
 
Scale Space: The Gaussion Approach
Scale Space: The Gaussion ApproachScale Space: The Gaussion Approach
Scale Space: The Gaussion Approach
 
13.30 o2 v bubanja
13.30 o2 v bubanja13.30 o2 v bubanja
13.30 o2 v bubanja
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
Eso1148
Eso1148Eso1148
Eso1148
 

Recently uploaded

Discover the Magic of Ibiza An Unforgettable Boat Trip
Discover the Magic of Ibiza An Unforgettable Boat TripDiscover the Magic of Ibiza An Unforgettable Boat Trip
Discover the Magic of Ibiza An Unforgettable Boat Trip
White Island Charter
 
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdfHow Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
Eastafrica Travelcompany
 
Understanding Bus Hire ServicesIN MELBOURNE .pptx
Understanding Bus Hire ServicesIN MELBOURNE .pptxUnderstanding Bus Hire ServicesIN MELBOURNE .pptx
Understanding Bus Hire ServicesIN MELBOURNE .pptx
MELBOURNEBUSHIRE
 
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.pptDiscovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
Imperial Egypt
 
bangalore metro routes, stations, timings
bangalore metro routes, stations, timingsbangalore metro routes, stations, timings
bangalore metro routes, stations, timings
narinav14
 
Nature of the task 1. write a paragraph about your trip to dubai and what ar...
Nature of the task  1. write a paragraph about your trip to dubai and what ar...Nature of the task  1. write a paragraph about your trip to dubai and what ar...
Nature of the task 1. write a paragraph about your trip to dubai and what ar...
solutionaia
 
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
yfuwd
 
How To Change A Name On American Airlines Ticket.pptx
How To Change A Name On American Airlines Ticket.pptxHow To Change A Name On American Airlines Ticket.pptx
How To Change A Name On American Airlines Ticket.pptx
edqour001namechange
 
Un viaje a Argentina updated xxxxxxxxxxx
Un viaje a Argentina updated xxxxxxxxxxxUn viaje a Argentina updated xxxxxxxxxxx
Un viaje a Argentina updated xxxxxxxxxxx
Judy Hochberg
 
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
River Recreation - Washington Whitewater Rafting
 
The Ultimate Travel Guide to Hawaii Island Hopping in 2024
The Ultimate Travel Guide to Hawaii Island Hopping in 2024The Ultimate Travel Guide to Hawaii Island Hopping in 2024
The Ultimate Travel Guide to Hawaii Island Hopping in 2024
adventuressabifn
 
Exploring the Majesty of Nepal: An Unforgettable Tour Experience
Exploring the Majesty of Nepal: An Unforgettable Tour ExperienceExploring the Majesty of Nepal: An Unforgettable Tour Experience
Exploring the Majesty of Nepal: An Unforgettable Tour Experience
Welcome Nepal Treks and Tours
 
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
Parag Goswami
 
Excursions in Tahiti Island Adventure
Excursions in Tahiti Island AdventureExcursions in Tahiti Island Adventure
Excursions in Tahiti Island Adventure
Unique Tahiti
 
Explore Architectural Wonders and Vibrant Culture With Naples Tours
Explore Architectural Wonders and Vibrant Culture With Naples ToursExplore Architectural Wonders and Vibrant Culture With Naples Tours
Explore Architectural Wonders and Vibrant Culture With Naples Tours
Naples Tours
 
What Challenges Await Beginners in Snowshoeing
What Challenges Await Beginners in SnowshoeingWhat Challenges Await Beginners in Snowshoeing
What Challenges Await Beginners in Snowshoeing
Snowshoe Tahoe
 
What Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
What Outdoor Adventures Await Young Adults in Montreal's Surrounding NatureWhat Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
What Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
Spade & Palacio Tours
 
Un viaje a Buenos Aires y sus alrededores
Un viaje a Buenos Aires y sus alrededoresUn viaje a Buenos Aires y sus alrededores
Un viaje a Buenos Aires y sus alrededores
Judy Hochberg
 
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
CIOWomenMagazine
 
Top 10 Tourist Places in South India to Explore.pdf
Top 10 Tourist Places in South India to Explore.pdfTop 10 Tourist Places in South India to Explore.pdf
Top 10 Tourist Places in South India to Explore.pdf
Savita Yadav
 

Recently uploaded (20)

Discover the Magic of Ibiza An Unforgettable Boat Trip
Discover the Magic of Ibiza An Unforgettable Boat TripDiscover the Magic of Ibiza An Unforgettable Boat Trip
Discover the Magic of Ibiza An Unforgettable Boat Trip
 
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdfHow Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
How Do I Plan a Kilimanjaro Climb? 7 Essential Tips Revealed.pdf
 
Understanding Bus Hire ServicesIN MELBOURNE .pptx
Understanding Bus Hire ServicesIN MELBOURNE .pptxUnderstanding Bus Hire ServicesIN MELBOURNE .pptx
Understanding Bus Hire ServicesIN MELBOURNE .pptx
 
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.pptDiscovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
Discovering Egypt A Step-by-Step Guide to Planning Your Trip.ppt
 
bangalore metro routes, stations, timings
bangalore metro routes, stations, timingsbangalore metro routes, stations, timings
bangalore metro routes, stations, timings
 
Nature of the task 1. write a paragraph about your trip to dubai and what ar...
Nature of the task  1. write a paragraph about your trip to dubai and what ar...Nature of the task  1. write a paragraph about your trip to dubai and what ar...
Nature of the task 1. write a paragraph about your trip to dubai and what ar...
 
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
一比一原版(UST毕业证)圣托马斯大学毕业证如何办理
 
How To Change A Name On American Airlines Ticket.pptx
How To Change A Name On American Airlines Ticket.pptxHow To Change A Name On American Airlines Ticket.pptx
How To Change A Name On American Airlines Ticket.pptx
 
Un viaje a Argentina updated xxxxxxxxxxx
Un viaje a Argentina updated xxxxxxxxxxxUn viaje a Argentina updated xxxxxxxxxxx
Un viaje a Argentina updated xxxxxxxxxxx
 
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
Ready for Cold Weather Rafting Here's What to Wear to Stay Comfortable!
 
The Ultimate Travel Guide to Hawaii Island Hopping in 2024
The Ultimate Travel Guide to Hawaii Island Hopping in 2024The Ultimate Travel Guide to Hawaii Island Hopping in 2024
The Ultimate Travel Guide to Hawaii Island Hopping in 2024
 
Exploring the Majesty of Nepal: An Unforgettable Tour Experience
Exploring the Majesty of Nepal: An Unforgettable Tour ExperienceExploring the Majesty of Nepal: An Unforgettable Tour Experience
Exploring the Majesty of Nepal: An Unforgettable Tour Experience
 
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
5-Day Nathdwara Tour Itinerary: From Temples to Traditional Markets
 
Excursions in Tahiti Island Adventure
Excursions in Tahiti Island AdventureExcursions in Tahiti Island Adventure
Excursions in Tahiti Island Adventure
 
Explore Architectural Wonders and Vibrant Culture With Naples Tours
Explore Architectural Wonders and Vibrant Culture With Naples ToursExplore Architectural Wonders and Vibrant Culture With Naples Tours
Explore Architectural Wonders and Vibrant Culture With Naples Tours
 
What Challenges Await Beginners in Snowshoeing
What Challenges Await Beginners in SnowshoeingWhat Challenges Await Beginners in Snowshoeing
What Challenges Await Beginners in Snowshoeing
 
What Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
What Outdoor Adventures Await Young Adults in Montreal's Surrounding NatureWhat Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
What Outdoor Adventures Await Young Adults in Montreal's Surrounding Nature
 
Un viaje a Buenos Aires y sus alrededores
Un viaje a Buenos Aires y sus alrededoresUn viaje a Buenos Aires y sus alrededores
Un viaje a Buenos Aires y sus alrededores
 
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
Golden Gate Bridge: Magnificent Architecture in San Francisco | CIO Women Mag...
 
Top 10 Tourist Places in South India to Explore.pdf
Top 10 Tourist Places in South India to Explore.pdfTop 10 Tourist Places in South India to Explore.pdf
Top 10 Tourist Places in South India to Explore.pdf
 

Talk for the Center for Astrophysics (Harvard)

  • 1. HI in circumstellar envelopes around AGB stars: Observations and modelling Libert Y.1 , Le Bertre T.1 , G´rard E.2 e 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de Paris December 14, 2007 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 1 / 24
  • 2. Introduction 1 HR diagram The mass-loss process HI observations 1 The key aspects Why HI ? A favorable case: Y CVn 2 Properties of Y CVn Observations 3 CO observations dust continuum observations Neutral Hydrogen observations results 4 Direct results Modelling Conclusions & Prospects 5 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 2 / 24
  • 3. AGB in HR diagram Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 3 / 24
  • 4. The mass-loss process So considerable that it can govern the evolution of the star ∼ 1-5 M → ∼ 0.6-0.8 M Produces C, O, He, ... + s-elements (neutron capture) Important contribution to the Galactic composition ⇒ Important clues for stellar & interstellar physics Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 4 / 24
  • 5. The mass-loss process So considerable that it can govern the evolution of the star ∼ 1-5 M → ∼ 0.6-0.8 M Produces C, O, He, ... + s-elements (neutron capture) Important contribution to the Galactic composition ⇒ Important clues for stellar & interstellar physics Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 4 / 24
  • 6. The mass-loss process So considerable that it can govern the evolution of the star ∼ 1-5 M → ∼ 0.6-0.8 M Produces C, O, He, ... + s-elements (neutron capture) Important contribution to the Galactic composition ⇒ Important clues for stellar & interstellar physics Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 4 / 24
  • 7. The mass-loss process So considerable that it can govern the evolution of the star ∼ 1-5 M → ∼ 0.6-0.8 M Produces C, O, He, ... + s-elements (neutron capture) Important contribution to the Galactic composition ⇒ Important clues for stellar & interstellar physics Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 4 / 24
  • 8. ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 5 / 24
  • 9. The key aspects Produce an accurate set of data for spectral and spatial information Use a physical model to fit the line profile Access to the properties of the stellar wind and the surrounding local matter Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 6 / 24
  • 10. Why HI observations ? High velocity resolution (∼ 0.08 km.s−1 @ 21 cm) 70 % of the mass of the object Molecules photodissociated near the centre (∼ 1016 cm depending on the mass-loss rate) For Teff > 2500 K : H mainly atomic (Glassgold & Huggins 1983) Flux ∝ Mass : MHI = 2.37 10−7 × D 2 (pc) × Stot Circumstellar HI shielded by interstellar HI ⇒ Probe the furthest part of a Circumstellar Shell (CS) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 7 / 24
  • 11. The NRT beam shape Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 8 / 24
  • 12. The NRT beam shape 4 in RA FWHM = 0.88 λ =⇒ L 22 in Dec Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 8 / 24
  • 13. A favorable case: Y CVn Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas) Galactic coordinates Radial velocity: 21 km.s−1 Effective temperature: 2700 K l=126◦ b=+72◦ Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 9 / 24
  • 14. A favorable case: Y CVn Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas) Galactic coordinates Radial velocity: 21 km.s−1 Effective temperature: 2700 K l=126◦ b=+72◦ Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 9 / 24
  • 15. A favorable case: Y CVn Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas) Galactic coordinates Radial velocity: 21 km.s−1 Effective temperature: 2700 K l=126◦ b=+72◦ Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 9 / 24
  • 16. A favorable case: Y CVn Distance: ∼ 218±35 pc (Hipparcos parallax: 4.59±0.73 mas) Galactic coordinates Radial velocity: 21 km.s−1 Effective temperature: 2700 K l=126◦ b=+72◦ Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire 14, Paris ) e CfA R & G Lunch Talk December de 2007 9 / 24
  • 17. Jy ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 10 / 24
  • 18. Observations in the CO lines Plateau de Bure, 30m IRAM (CO 2→1 & CO 1→0) CSO Mauna Kea, Hawaii (CO 2→1 & CO 3→2) ... Models are used to deduce several properties of the CS, with several input parameters such as: The envelope expansion velocity The distance of the star The main beam temperature The fractional CO abundance ˙ ∼ 1 10−7 M .yr−1 ; rCO ∼ 0.9 1017 cm ≡ 3 10−2 pc ⇒M Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 11 / 24
  • 19. Size ( ) Vexp VLSR Flux (km.s−1 ) (km.s−1 ) () (Jy) 12 CO (1→0) 12.8 9.7 19.6 6.4 12 CO (2→1) 8.8 7.8 20.7 24.1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 12 / 24
  • 20. Size ( ) Vexp VLSR Flux (km.s−1 ) (km.s−1 ) () (Jy) 12 CO (1→0) 12.8 9.7 19.6 6.4 12 CO (2→1) 8.8 7.8 20.7 24.1 Neri et al. (1998 A&AS, 130,1) ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 12 / 24
  • 21. Observations in the dust continuum IRAS results @ 60 and 100 µm (Young et al. 1993a & b) ISO results @ 90 and 160 µm (Izumiura et al. 1996) N↑ W → Y CVn @ 90 µm by ISOPHOT. The field is 8.3 ×34.8 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 13 / 24
  • 22. HI observations Libert Y., Le Bertre T., G´rard E., 2007, MNRAS, 381, 1161 e → quasi-gaussian narrow component (comp. 1) centered at 20.5 km.s−1 FWHM : 3.8 km.s−1 → Pedestal (comp.2) centered at 21.1 km.s−1 Half width : 7.8 km.s−1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 14 / 24
  • 23. (CO spectrum: Knapp G.R., Young K., et al., 1998, ApJS, 117, 209) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 15 / 24
  • 24. Step in RA: 1 beam (4 ) Step in Dec: 1/2 beam (11 ) ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 16 / 24
  • 25. Direct results Factor of 4 in velocity between Comp. 1 & Comp. 2 But: supersonic wind in the freely expanding zone ⇒ shock From an adiabatic shock: v1 1 3µmH 2 ∼ and T1 ∼ v0 ∼ 1800K v0 4 16k But: from the HI profile: FWHM(km.s −1 ) = 0.214 T (K ) ⇒ Mean temperature 210 K Empirical temperature profile (to be adjusted with the observations): T r log = a log T1 r1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 17 / 24
  • 26. Direct results Factor of 4 in velocity between Comp. 1 & Comp. 2 But: supersonic wind in the freely expanding zone ⇒ shock From an adiabatic shock: v1 1 3µmH 2 ∼ and T1 ∼ v0 ∼ 1800K v0 4 16k But: from the HI profile: FWHM(km.s −1 ) = 0.214 T (K ) ⇒ Mean temperature 210 K Empirical temperature profile (to be adjusted with the observations): T r log = a log T1 r1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 17 / 24
  • 27. Direct results Factor of 4 in velocity between Comp. 1 & Comp. 2 But: supersonic wind in the freely expanding zone ⇒ shock From an adiabatic shock: v1 1 3µmH 2 ∼ and T1 ∼ v0 ∼ 1800K v0 4 16k But: from the HI profile: FWHM(km.s −1 ) = 0.214 T (K ) ⇒ Mean temperature 210 K Empirical temperature profile (to be adjusted with the observations): T r log = a log T1 r1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 17 / 24
  • 28. Direct results Factor of 4 in velocity between Comp. 1 & Comp. 2 But: supersonic wind in the freely expanding zone ⇒ shock From an adiabatic shock: v1 1 3µmH 2 ∼ and T1 ∼ v0 ∼ 1800K v0 4 16k But: from the HI profile: FWHM(km.s −1 ) = 0.214 T (K ) ⇒ Mean temperature 210 K Empirical temperature profile (to be adjusted with the observations): T r log = a log T1 r1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 17 / 24
  • 29. Direct results Factor of 4 in velocity between Comp. 1 & Comp. 2 But: supersonic wind in the freely expanding zone ⇒ shock From an adiabatic shock: v1 1 3µmH 2 ∼ and T1 ∼ v0 ∼ 1800K v0 4 16k But: from the HI profile: FWHM(km.s −1 ) = 0.214 T (K ) ⇒ Mean temperature 210 K Empirical temperature profile (to be adjusted with the observations): T r log = a log T1 r1 ibert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 17 / 24
  • 30. Modelling HI emission Constant mass-loss rate Spherical symmetry Ideal gas Stationary Constant velocity in the free expanding zone ( → r1 ) ∼ 8 km.s−1 Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 18 / 24
  • 31. Results ∼ 1 km.s−1 redshift between modeled pedestal and that from the observations → Motion of the star with respect to the surrounding matter Possibly related to the East-West asymmetry Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 19 / 24
  • 32. Results (Cont I) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 20 / 24
  • 33. Results (Cont II) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 21 / 24
  • 34. Results (Cont III) Constant mass-loss rate: ∼ 1 10−7 M yr−1 Age: ∼ 4.5 105 yr Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 22 / 24
  • 35. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24
  • 36. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24
  • 37. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24
  • 38. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24
  • 39. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24
  • 40. Conclusions & Prospects Mass-loss rate constant over 5 105 years Velocity profile does not correspond to a brief and intense mass-loss event Feature dominated by the narrow component Ideal tools for studying ISM with different physical conditions and in different sites using tenth of other red giants High spatial and spectral resolution needed (wind slow and slowed down) ⇒ Observations obtained with the VLA (4 other objects) with Lynn D. Matthews & Mark J. Reid (work in progress) Libert Y.1 , Le Bertre T.1 , G´rard E.2 ( 1 LERMA, Observatoire de Paris 2 GEPI, Observatoire de 2007 ) e CfA R & G Lunch Talk December 14, Paris 23 / 24