SlideShare a Scribd company logo
Kinematostatic Modelling
of Compliant Parallel Mechanisms

         Cyril Quennouelle

   PhD Thesis - Mechanical Engineering




       Wednesday, April 29th 2009
Outlines


1   Context and objectives of the PhD

2   Kinematostatic Modelling

3   Stiffness Matrix

4   Quasi-static Modelling

5   Conclusion




      C.Quennouelle (   )      Kinematostatic Modelling   29/04/09   2 / 20
Context and objectives   1 - Parallel Mechanisms


Analysis and synthesis of robotic manipulator




  How to keep on improving their performances ?
     Mechanical clearance and wearing
       Complexity and cost of assembly




    C.Quennouelle (   )              Kinematostatic Modelling                29/04/09   3 / 20
Context and objectives   1 - Parallel Mechanisms


Analysis and synthesis of robotic manipulator




  How to keep on improving their performances ?
     Mechanical clearance and wearing
       Complexity and cost of assembly
                Use of compliant joints



    C.Quennouelle (   )              Kinematostatic Modelling                29/04/09   3 / 20
Context and objectives   2 - Compliant Joints


Kinematics properties of compliant joints




        Complex motion
        More than one DOF
        Kinematic / static coupling


    C.Quennouelle (   )              Kinematostatic Modelling             29/04/09   4 / 20
Context and objectives     3 - Objectives of the PhD


Challenges of the modelling of CPMs

                                              l                                                 l               fy
                                                        m0                                                      m0
                                     γl                                          l0   l1                   fx
                                                                                           l2                        b
                                          (1 − γ)l                                                  l3
                                                        θp                                 a                    θp




    Determine additional mobilities
           number of DOF of a joint
           kinematically dependent
           coordinates
    Consider the effet of external loads
    onto the mechanism configuration
         static modelling
         kinematic modelling
         stiffness of the joints
    C.Quennouelle (   )              Kinematostatic Modelling                                            29/04/09    5 / 20
Kinematostatic Modelling   1 - Definition of the challenge


Kinematostatic Modelling




                                            M degrees of mobility
                          A(θ)
                                            Pose of the end-effector F DOF
               x                                     M≥F
                                            A actuators
                                                     M≥A
                             How to determine the M generalized coordinates ψ ?




    C.Quennouelle (   )                Kinematostatic Modelling                       29/04/09   6 / 20
Kinematostatic Modelling   2 - Kinematic Modelling


Recalls


                                               Kinematic modelling
                                                 • C dependent coordinates:            λ = C(ψ)


 Kab (ψ, λ)




                     Kac (ψ, λ)




         C.Quennouelle (   )                   Kinematostatic Modelling                 29/04/09   7 / 20
Kinematostatic Modelling   2 - Kinematic Modelling


Recalls


                                       Kinematic modelling
                                         • C dependent coordinates:            λ = C(ψ)
                                         • End-effector’s pose:                 x = P(ψ)
            x




    C.Quennouelle (   )                Kinematostatic Modelling                 29/04/09   7 / 20
Kinematostatic Modelling   2 - Kinematic Modelling


Recalls


                                       Kinematic modelling
                                         • C dependent coordinates:             λ = C(ψ)
                                         • End-effector’s pose:                  x = P(ψ)
            x

                                       Instaneous kinematic modelling
                                         • λ’s variation:           ˙    ˙
                                                                    λ = Gψ
                                         • End-effector’s variation:            ˙    ˙
                                                                               x = Jψ




    C.Quennouelle (   )                Kinematostatic Modelling                   29/04/09   7 / 20
Kinematostatic Modelling   2 - Kinematic Modelling


Recalls


                                       Kinematic modelling
                                         • C dependent coordinates:             λ = C(ψ)
                                         • End-effector’s pose:                  x = P(ψ)
            x

                                       Instaneous kinematic modelling
                                         • λ’s variation:           ˙    ˙
                                                                    λ = Gψ
                                         • End-effector’s variation:            ˙    ˙
                                                                               x = Jψ



                The inverse models are not determined (M ≥ F)



    C.Quennouelle (   )                Kinematostatic Modelling                   29/04/09   7 / 20
Kinematostatic Modelling   3 - Static Modelling


Static Constraints

Minimization of the potential energy
• Elastic
                                              ψ                     ψ
         ξk = ξψ + ξλ =                           τ T dψ +
                                                    ψ                    τ T Gdψ
                                                                           λ
                                             ψ0                   ψ λ0
• Associate with f
                                ψ
         ξf = −                       f T Jdψ                            dξf = −f T Jdψ
                               ψ x0
• Gravitational
                       n                  ψ
         ξw =                       −         wiT Pi dψ                    with wi = mi g
                  i=1                   ψ0




     C.Quennouelle (       )                       Kinematostatic Modelling                 29/04/09   8 / 20
Kinematostatic Modelling        3 - Static Modelling


Static Constraints

Minimization of the potential energy
• Elastic
                                              ψ                          ψ
         ξk = ξψ + ξλ =                           τ T dψ +
                                                    ψ                         τ T Gdψ
                                                                                λ
                                             ψ0                        ψ λ0
• Associate with f
                                ψ
         ξf = −                       f T Jdψ                                 dξf = −f T Jdψ
                               ψ x0
• Gravitational
                       n                  ψ
         ξw =                       −         wiT Pi dψ                         with wi = mi g
                  i=1                   ψ0


Static Equilibrium
                                                                  n
        dξ
            = τ ψ + GT τ ψ − J T f −                                    PT wi = 0M
                                                                         i
       dψ
                                                                 i=1

     C.Quennouelle (       )                       Kinematostatic Modelling                      29/04/09   8 / 20
Kinematostatic Modelling   3 - Static Modelling


Static Constraints

Minimization of the potential energy
• Elastic
                                              ψ                     ψ
         ξk = ξψ + ξλ =                           τ T dψ +
                                                    ψ                    τ T Gdψ
                                                                           λ
                                             ψ0                   ψ λ0
• Associate with f
                                ψ
         ξf = −                       f T Jdψ                            dξf = −f T Jdψ
                               ψ x0
• Gravitational
                       n                  ψ
         ξw =                       −         wiT Pi dψ                    with wi = mi g
                  i=1                   ψ0


Static Equilibrium
                   τψ                          − JT f                         = 0M


     C.Quennouelle (       )                       Kinematostatic Modelling                 29/04/09   8 / 20
Kinematostatic Modelling   4 - Kinematostatic Modelling


Kinematostatic Modelling

Static Modelling
M independent equations: determination of the configuration
             dξ
                 = S(ψ) = 0M
            dψ
Presence of variable external parameters (f et φ)
                    S(ψ, f, φ) = 0M ⇒ ψ = F(f, φ)

Kinematostatic Modelling

  Model                                        Constraints
                                                                            
                                                             K(λ, ψ) = 0C 
        x = P (F(φ, f))
                                                                 B(θ) = x
                                                            S(ψ, φ, f) = 0M
                                                                            
           x = M(φ, f)


    C.Quennouelle (   )                Kinematostatic Modelling                     29/04/09   9 / 20
Stiffness Matrix   1 - Definition


Stiffness matrix




Definition
    Hessian matrix of the potential energy
    Jacobian matrix of the static equilibrium




    C.Quennouelle (   )       Kinematostatic Modelling      29/04/09   10 / 20
Stiffness Matrix   1 - Definition


Stiffness matrix
                                                             n
                        S = τ ψ + GT τ ψ − J T f −                   PT wi = 0M
                                                                      i
                                                            i=1

Definition
    Hessian matrix of the potential energy
      Jacobian matrix of the static equilibrium

Generalized stiffness matrix
                              KM = Kψ + KI + KE + KW

•   Kψ : Stiffness of the generalized coordinates
•   KI : Internal stiffness
•   KE : Stiffness due to the external loads
•   KW : Stiffness due to the weight

      C.Quennouelle (   )              Kinematostatic Modelling                   29/04/09   10 / 20
Stiffness Matrix   2 - Properties


Generalized stiffness matrix



                          KM = Kψ + KI + KE + KW



     Generalization of the
     preexisting matrices                      KM = Kψ
     if KE = KI = 0, ∃J−1
     Symmetry                                  KC = JT Kψ J (Salisbury, 1980 )
     Stability




    C.Quennouelle (   )          Kinematostatic Modelling               29/04/09   11 / 20
Stiffness Matrix   2 - Properties


Generalized stiffness matrix



                          KM = Kψ + KI + KE + KW



     Generalization of the
     preexisting matrices                      KM = Kψ + KI
      if KI = 0, ∃J−1
                                               KC = JT KM J (Griffis and Duffy,1993 )
     Symmetry
                                                                (Chen and Kao, 2000 )
     Stability




    C.Quennouelle (   )          Kinematostatic Modelling                  29/04/09     11 / 20
Stiffness Matrix   2 - Properties


Generalized stiffness matrix



                          KM = Kψ + KI + KE + KW



     Generalization of the
     preexisting matrices                      KM = Kψ + GT Kλ G
      if KIG = KE = 0                                           (Zhang and Gosselin,2002 )
     Symmetry
     Stability




    C.Quennouelle (   )          Kinematostatic Modelling                    29/04/09   11 / 20
Stiffness Matrix   2 - Properties


Generalized stiffness matrix



                          KM = Kψ + KI + KE + KW



     Generalization of the                     If coordinate basis
     preexisting matrices                      (Schwarz’ Theorem:
     Symmetry                                                    ∂2y        ∂2y
                                                                ∂u∂v   =   ∂v ∂u      )
     Stability




    C.Quennouelle (   )          Kinematostatic Modelling                  29/04/09       11 / 20
Stiffness Matrix   2 - Properties


Generalized stiffness matrix


                          KM = Kψ + KI + KE + KW




                                                                ρ
     Generalization of the
     preexisting matrices                                   φ

     Symmetry
     Stability depending
                                                                    quot;               #
                                                                        1    0
                                                        KC = 2kρ            − 2ρ0
     on the semi-positivity                                             0




    C.Quennouelle (   )          Kinematostatic Modelling                      29/04/09   11 / 20
Quasi-static Modelling   1 - Definition of the QSM


Quasi-static Model



Differentiation of the kinematostatic model
                                 ∂M(φ, f) ˙ ∂M(φ, f) ˙
                          ˙
                          xc =           φ+          f
                                   ∂φ         ∂f
Linear relationship between the variation of the external parameters and
that of the configuration of the mechanism

Simple formulation

                                    ˙       ˙      ˙
                                    xc = JC φ + CC f




    C.Quennouelle (   )               Kinematostatic Modelling                 29/04/09   12 / 20
Quasi-static Modelling   1 - Definition of the QSM


Quasi-static Model



Cartesian Compliance Matrix
                                          ∂xc
                               CC =           = JK−1 JT
                                                  M
                                          ∂f

Quasi-static Jacobian Matrix
                                    ∂xc
                          JC =          = JK−1 Kφ = JT
                                            M
                                    ∂φ




    C.Quennouelle (   )              Kinematostatic Modelling                 29/04/09   13 / 20
Quasi-static Modelling   2 - Transmission Matrix


Transmission Matrix

Definition
Relates the variation of the generalized coordinates with the variation of
the commanded value of the actuators
                                ∂ψ
                           T=               (dimension: M × A)
                                ∂φ

Model of a Compliant Actuator:                         τ φj = kφj ψ j − φj

                φj = ψ0j    ∆ψj
                                                                                      ∆ψj

                                                                               φj = ψ0j ψj
                    ψj
    Prismatic actuator                                            Revolute actuator



     C.Quennouelle (   )               Kinematostatic Modelling                             29/04/09   14 / 20
Quasi-static Modelling   2 - Transmission Matrix


Transmission Matrix

Definition
Relates the variation of the generalized coordinates with the variation of
the commanded value of the actuators
                                ∂ψ
                           T=               (dimension: M × A)
                                ∂φ

Model of a Compliant Actuator:                         τ φj = kφj ψ j − φj

                φj = ψ0j    ∆ψj
                                                              ∂S   ∂τ ψ   ∂τ ψ ∂τ φ
                                                                 =      =
                                                              ∂φ   ∂φ     ∂τ φ ∂φ

                    ψj                                              = A (−Kφ ) = −Kφ
    Prismatic actuator



     C.Quennouelle (   )               Kinematostatic Modelling                  29/04/09   14 / 20
Quasi-static Modelling   3 - Comments on the QSM


Comments on the Quasi-static Model

Transmission Matrix
                                                                     
                           T =                  K−1
                                                    M
                                                                 Kφ 




    C.Quennouelle (   )                  Kinematostatic Modelling                29/04/09   15 / 20
Quasi-static Modelling   3 - Comments on the QSM


Comments on the Quasi-static Model

Transmission Matrix
                                                                       
                             T =                  K−1
                                                      M
                                                                   Kφ 




Equivalency Between Actuators and External Loads

                          xc = JK−1 AKφ φ + JT f = JCM τ e
                          ˙      M
                                        ˙      ˙       ˙




    C.Quennouelle (   )                    Kinematostatic Modelling                29/04/09   15 / 20
Quasi-static Modelling   3 - Comments on the QSM


Comments on the Quasi-static Model

Transmission Matrix
                                                                       
                             T =                  K−1
                                                      M
                                                                   Kφ 




Equivalency Between Actuators and External Loads

                          xc = JK−1 AKφ φ + JT f = JCM τ e
                          ˙      M
                                        ˙      ˙       ˙


Valid for Conventional Mechanisms
           M = A (= F)
                                       ⇒ KM = Kψ + KI + KE ≈ Kψ = Kφ
          Kφ = diag (∞)
                          donc                    T = 1A ⇒ JC = J
    C.Quennouelle (   )                    Kinematostatic Modelling                29/04/09   15 / 20
Conclusion   1 - Examples of application


Simple 2-DOF Mechanism



                                                       Coefficient ∂θ1a /∂φ
                          xp = [xp , yp ]T
                                                                      1.2




                 ρb                                                   1.1




                θ1a                                                   1.0




            φ
                                                                  K
                                                                  1         0   1   2   3    4




   C.Quennouelle (    )                Kinematostatic Modelling                             29/04/09   16 / 20
Conclusion   1 - Examples of application


Simple 2-DOF Mechanism



                                         Coefficient ∂θ1a /∂φ

                                                        1.2




                                                        1.1




                                                        1.0




                                                    K
                                                    1         0   1   2   3    4




   C.Quennouelle (   )   Kinematostatic Modelling                             29/04/09   16 / 20
Conclusion   1 - Examples of application


Compliant Tripteron




                                              2                                   3
                                                   0, 85      −0, 04     −0, 04
                                           6
                                           6      −0, 05       0, 88     −0, 02   7
                                                                                  7
            
          1 0 0
                                          6       0, 00      −0, 00      0, 99   7
                                      Jc = 6                                      7
         0 1 0 
                                           6      −0, 00       0, 01     −0, 00   7
     J=                                    6
                                           4      −0, 03      −0, 01     −0, 01
                                                                                  7
                                                                                  5
          0 0 1                                    0, 03       0, 01      0, 00

                                 (For φ = [0.5; 0; 0]T and f = 0)


    C.Quennouelle (   )       Kinematostatic Modelling                        29/04/09   17 / 20
Conclusion   1 - Examples of application


Sub-centimeter Underactuated Compliant Gripper
                                                                    fq


                                                                                       θq
                                                                        lq
                                                 y                                          φ
                                                                                                  b
                                                     x
                                                                                                         θ3
                                                                                            θ2
                                                                             h
                                                                   fp
                                                                                  a
                                                                                                r (θ1)        c
                                                         lp
                                                                                  θ1
                                                                        g
                                                              e     θp
                                                                             d1             d2 θ4
                                                              ly
                                                                    lx            ρ


                             dθp
                                
                            dρ 
                            dθ1  = CM (fp , fq ) · Kρ
                         T=     

                             dρ
   C.Quennouelle (   )           Kinematostatic Modelling                                                         29/04/09   18 / 20
Conclusion   2 - Conclusion


Contribution and future works




                          Contribution of the thesis

   The formulations of the presented models are general
   The complementarity of kinematics and statics has been used
   Improvement of the precision by taking into account more parameters




    C.Quennouelle (   )        Kinematostatic Modelling      29/04/09   19 / 20
Conclusion   2 - Conclusion


Contribution and future works

                           Future works

   Application to underactuated mechanisms
   Properties of the stiffness matrix
   Prototype
   Dynamic modelling and more




    C.Quennouelle (   )   Kinematostatic Modelling      29/04/09   20 / 20

More Related Content

Viewers also liked

FYP Thesis
FYP ThesisFYP Thesis
Mechanical engineering resources for graduates
Mechanical engineering resources for graduatesMechanical engineering resources for graduates
Mechanical engineering resources for graduates
AUB
 
Gas Turbine Thesis
Gas Turbine ThesisGas Turbine Thesis
Gas Turbine Thesis
Prateek Dhawan
 
Project report
Project reportProject report
Project report
Haidar Roni
 
Id
IdId
Id
IUBAT
 
IUBAT Practicum Report BSME
IUBAT Practicum Report BSMEIUBAT Practicum Report BSME
IUBAT Practicum Report BSME
Md.Mehedi Hasan
 
Final thesis: Technological maturity of future energy systems
Final thesis: Technological maturity of future energy systemsFinal thesis: Technological maturity of future energy systems
Final thesis: Technological maturity of future energy systems
Nina Kallio
 
Power Plant Report
Power Plant ReportPower Plant Report
Power Plant Report
Eslam Ahmed
 
GRADUATION THESIS FINAL
GRADUATION THESIS FINALGRADUATION THESIS FINAL
GRADUATION THESIS FINAL
Thang Vu Dinh
 
IUBAT FINAL PRESENTATION
IUBAT FINAL PRESENTATIONIUBAT FINAL PRESENTATION
IUBAT FINAL PRESENTATION
Md.Mehedi Hasan
 
mechanical or automobile project ideas research thesis
mechanical or automobile project ideas research thesismechanical or automobile project ideas research thesis
mechanical or automobile project ideas research thesis
Shadab Alam
 
Spatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc BarthelemySpatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc Barthelemy
Lake Como School of Advanced Studies
 
Chandna seminar report 1421105031
Chandna seminar report  1421105031Chandna seminar report  1421105031
Chandna seminar report 1421105031
Chandana Mallik
 
VMC investor handout
VMC investor handoutVMC investor handout
VMC investor handout
VulcanMaterials
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
Saifullah Memon
 
Lecture on gear by Arijit Sen (IUBAT)
Lecture on gear by Arijit Sen (IUBAT)Lecture on gear by Arijit Sen (IUBAT)
Lecture on gear by Arijit Sen (IUBAT)
M A Motin Sobuj
 
about international university of business agriculture & technology (iubat)
 about international university of business agriculture & technology (iubat) about international university of business agriculture & technology (iubat)
about international university of business agriculture & technology (iubat)
Mohammad Al Amin Khan
 
1.prallelism
1.prallelism1.prallelism
1.prallelism
Mahesh Kumar Attri
 
Report Writing
Report WritingReport Writing
Report Writing
Adam Heatherington
 
final year project
final year projectfinal year project
final year project
abhishek saurabh
 

Viewers also liked (20)

FYP Thesis
FYP ThesisFYP Thesis
FYP Thesis
 
Mechanical engineering resources for graduates
Mechanical engineering resources for graduatesMechanical engineering resources for graduates
Mechanical engineering resources for graduates
 
Gas Turbine Thesis
Gas Turbine ThesisGas Turbine Thesis
Gas Turbine Thesis
 
Project report
Project reportProject report
Project report
 
Id
IdId
Id
 
IUBAT Practicum Report BSME
IUBAT Practicum Report BSMEIUBAT Practicum Report BSME
IUBAT Practicum Report BSME
 
Final thesis: Technological maturity of future energy systems
Final thesis: Technological maturity of future energy systemsFinal thesis: Technological maturity of future energy systems
Final thesis: Technological maturity of future energy systems
 
Power Plant Report
Power Plant ReportPower Plant Report
Power Plant Report
 
GRADUATION THESIS FINAL
GRADUATION THESIS FINALGRADUATION THESIS FINAL
GRADUATION THESIS FINAL
 
IUBAT FINAL PRESENTATION
IUBAT FINAL PRESENTATIONIUBAT FINAL PRESENTATION
IUBAT FINAL PRESENTATION
 
mechanical or automobile project ideas research thesis
mechanical or automobile project ideas research thesismechanical or automobile project ideas research thesis
mechanical or automobile project ideas research thesis
 
Spatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc BarthelemySpatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc Barthelemy
 
Chandna seminar report 1421105031
Chandna seminar report  1421105031Chandna seminar report  1421105031
Chandna seminar report 1421105031
 
VMC investor handout
VMC investor handoutVMC investor handout
VMC investor handout
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
 
Lecture on gear by Arijit Sen (IUBAT)
Lecture on gear by Arijit Sen (IUBAT)Lecture on gear by Arijit Sen (IUBAT)
Lecture on gear by Arijit Sen (IUBAT)
 
about international university of business agriculture & technology (iubat)
 about international university of business agriculture & technology (iubat) about international university of business agriculture & technology (iubat)
about international university of business agriculture & technology (iubat)
 
1.prallelism
1.prallelism1.prallelism
1.prallelism
 
Report Writing
Report WritingReport Writing
Report Writing
 
final year project
final year projectfinal year project
final year project
 

Recently uploaded

20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Zilliz
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
Matthew Sinclair
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
Daiki Mogmet Ito
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 

Recently uploaded (20)

20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 

Brief presentation of the thesis

  • 1. Kinematostatic Modelling of Compliant Parallel Mechanisms Cyril Quennouelle PhD Thesis - Mechanical Engineering Wednesday, April 29th 2009
  • 2. Outlines 1 Context and objectives of the PhD 2 Kinematostatic Modelling 3 Stiffness Matrix 4 Quasi-static Modelling 5 Conclusion C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 2 / 20
  • 3. Context and objectives 1 - Parallel Mechanisms Analysis and synthesis of robotic manipulator How to keep on improving their performances ? Mechanical clearance and wearing Complexity and cost of assembly C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 3 / 20
  • 4. Context and objectives 1 - Parallel Mechanisms Analysis and synthesis of robotic manipulator How to keep on improving their performances ? Mechanical clearance and wearing Complexity and cost of assembly Use of compliant joints C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 3 / 20
  • 5. Context and objectives 2 - Compliant Joints Kinematics properties of compliant joints Complex motion More than one DOF Kinematic / static coupling C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 4 / 20
  • 6. Context and objectives 3 - Objectives of the PhD Challenges of the modelling of CPMs l l fy m0 m0 γl l0 l1 fx l2 b (1 − γ)l l3 θp a θp Determine additional mobilities number of DOF of a joint kinematically dependent coordinates Consider the effet of external loads onto the mechanism configuration static modelling kinematic modelling stiffness of the joints C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 5 / 20
  • 7. Kinematostatic Modelling 1 - Definition of the challenge Kinematostatic Modelling M degrees of mobility A(θ) Pose of the end-effector F DOF x M≥F A actuators M≥A How to determine the M generalized coordinates ψ ? C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 6 / 20
  • 8. Kinematostatic Modelling 2 - Kinematic Modelling Recalls Kinematic modelling • C dependent coordinates: λ = C(ψ) Kab (ψ, λ) Kac (ψ, λ) C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 7 / 20
  • 9. Kinematostatic Modelling 2 - Kinematic Modelling Recalls Kinematic modelling • C dependent coordinates: λ = C(ψ) • End-effector’s pose: x = P(ψ) x C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 7 / 20
  • 10. Kinematostatic Modelling 2 - Kinematic Modelling Recalls Kinematic modelling • C dependent coordinates: λ = C(ψ) • End-effector’s pose: x = P(ψ) x Instaneous kinematic modelling • λ’s variation: ˙ ˙ λ = Gψ • End-effector’s variation: ˙ ˙ x = Jψ C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 7 / 20
  • 11. Kinematostatic Modelling 2 - Kinematic Modelling Recalls Kinematic modelling • C dependent coordinates: λ = C(ψ) • End-effector’s pose: x = P(ψ) x Instaneous kinematic modelling • λ’s variation: ˙ ˙ λ = Gψ • End-effector’s variation: ˙ ˙ x = Jψ The inverse models are not determined (M ≥ F) C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 7 / 20
  • 12. Kinematostatic Modelling 3 - Static Modelling Static Constraints Minimization of the potential energy • Elastic ψ ψ ξk = ξψ + ξλ = τ T dψ + ψ τ T Gdψ λ ψ0 ψ λ0 • Associate with f ψ ξf = − f T Jdψ dξf = −f T Jdψ ψ x0 • Gravitational n ψ ξw = − wiT Pi dψ with wi = mi g i=1 ψ0 C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 8 / 20
  • 13. Kinematostatic Modelling 3 - Static Modelling Static Constraints Minimization of the potential energy • Elastic ψ ψ ξk = ξψ + ξλ = τ T dψ + ψ τ T Gdψ λ ψ0 ψ λ0 • Associate with f ψ ξf = − f T Jdψ dξf = −f T Jdψ ψ x0 • Gravitational n ψ ξw = − wiT Pi dψ with wi = mi g i=1 ψ0 Static Equilibrium n dξ = τ ψ + GT τ ψ − J T f − PT wi = 0M i dψ i=1 C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 8 / 20
  • 14. Kinematostatic Modelling 3 - Static Modelling Static Constraints Minimization of the potential energy • Elastic ψ ψ ξk = ξψ + ξλ = τ T dψ + ψ τ T Gdψ λ ψ0 ψ λ0 • Associate with f ψ ξf = − f T Jdψ dξf = −f T Jdψ ψ x0 • Gravitational n ψ ξw = − wiT Pi dψ with wi = mi g i=1 ψ0 Static Equilibrium τψ − JT f = 0M C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 8 / 20
  • 15. Kinematostatic Modelling 4 - Kinematostatic Modelling Kinematostatic Modelling Static Modelling M independent equations: determination of the configuration dξ = S(ψ) = 0M dψ Presence of variable external parameters (f et φ) S(ψ, f, φ) = 0M ⇒ ψ = F(f, φ) Kinematostatic Modelling Model Constraints  K(λ, ψ) = 0C  x = P (F(φ, f)) B(θ) = x S(ψ, φ, f) = 0M  x = M(φ, f) C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 9 / 20
  • 16. Stiffness Matrix 1 - Definition Stiffness matrix Definition Hessian matrix of the potential energy Jacobian matrix of the static equilibrium C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 10 / 20
  • 17. Stiffness Matrix 1 - Definition Stiffness matrix n S = τ ψ + GT τ ψ − J T f − PT wi = 0M i i=1 Definition Hessian matrix of the potential energy Jacobian matrix of the static equilibrium Generalized stiffness matrix KM = Kψ + KI + KE + KW • Kψ : Stiffness of the generalized coordinates • KI : Internal stiffness • KE : Stiffness due to the external loads • KW : Stiffness due to the weight C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 10 / 20
  • 18. Stiffness Matrix 2 - Properties Generalized stiffness matrix KM = Kψ + KI + KE + KW Generalization of the preexisting matrices KM = Kψ if KE = KI = 0, ∃J−1 Symmetry KC = JT Kψ J (Salisbury, 1980 ) Stability C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 11 / 20
  • 19. Stiffness Matrix 2 - Properties Generalized stiffness matrix KM = Kψ + KI + KE + KW Generalization of the preexisting matrices KM = Kψ + KI if KI = 0, ∃J−1 KC = JT KM J (Griffis and Duffy,1993 ) Symmetry (Chen and Kao, 2000 ) Stability C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 11 / 20
  • 20. Stiffness Matrix 2 - Properties Generalized stiffness matrix KM = Kψ + KI + KE + KW Generalization of the preexisting matrices KM = Kψ + GT Kλ G if KIG = KE = 0 (Zhang and Gosselin,2002 ) Symmetry Stability C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 11 / 20
  • 21. Stiffness Matrix 2 - Properties Generalized stiffness matrix KM = Kψ + KI + KE + KW Generalization of the If coordinate basis preexisting matrices (Schwarz’ Theorem: Symmetry ∂2y ∂2y ∂u∂v = ∂v ∂u ) Stability C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 11 / 20
  • 22. Stiffness Matrix 2 - Properties Generalized stiffness matrix KM = Kψ + KI + KE + KW ρ Generalization of the preexisting matrices φ Symmetry Stability depending quot; # 1 0 KC = 2kρ − 2ρ0 on the semi-positivity 0 C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 11 / 20
  • 23. Quasi-static Modelling 1 - Definition of the QSM Quasi-static Model Differentiation of the kinematostatic model ∂M(φ, f) ˙ ∂M(φ, f) ˙ ˙ xc = φ+ f ∂φ ∂f Linear relationship between the variation of the external parameters and that of the configuration of the mechanism Simple formulation ˙ ˙ ˙ xc = JC φ + CC f C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 12 / 20
  • 24. Quasi-static Modelling 1 - Definition of the QSM Quasi-static Model Cartesian Compliance Matrix ∂xc CC = = JK−1 JT M ∂f Quasi-static Jacobian Matrix ∂xc JC = = JK−1 Kφ = JT M ∂φ C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 13 / 20
  • 25. Quasi-static Modelling 2 - Transmission Matrix Transmission Matrix Definition Relates the variation of the generalized coordinates with the variation of the commanded value of the actuators ∂ψ T= (dimension: M × A) ∂φ Model of a Compliant Actuator: τ φj = kφj ψ j − φj φj = ψ0j ∆ψj ∆ψj φj = ψ0j ψj ψj Prismatic actuator Revolute actuator C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 14 / 20
  • 26. Quasi-static Modelling 2 - Transmission Matrix Transmission Matrix Definition Relates the variation of the generalized coordinates with the variation of the commanded value of the actuators ∂ψ T= (dimension: M × A) ∂φ Model of a Compliant Actuator: τ φj = kφj ψ j − φj φj = ψ0j ∆ψj ∂S ∂τ ψ ∂τ ψ ∂τ φ = = ∂φ ∂φ ∂τ φ ∂φ ψj = A (−Kφ ) = −Kφ Prismatic actuator C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 14 / 20
  • 27. Quasi-static Modelling 3 - Comments on the QSM Comments on the Quasi-static Model Transmission Matrix       T = K−1 M   Kφ  C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 15 / 20
  • 28. Quasi-static Modelling 3 - Comments on the QSM Comments on the Quasi-static Model Transmission Matrix       T = K−1 M   Kφ  Equivalency Between Actuators and External Loads xc = JK−1 AKφ φ + JT f = JCM τ e ˙ M ˙ ˙ ˙ C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 15 / 20
  • 29. Quasi-static Modelling 3 - Comments on the QSM Comments on the Quasi-static Model Transmission Matrix       T = K−1 M   Kφ  Equivalency Between Actuators and External Loads xc = JK−1 AKφ φ + JT f = JCM τ e ˙ M ˙ ˙ ˙ Valid for Conventional Mechanisms M = A (= F) ⇒ KM = Kψ + KI + KE ≈ Kψ = Kφ Kφ = diag (∞) donc T = 1A ⇒ JC = J C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 15 / 20
  • 30. Conclusion 1 - Examples of application Simple 2-DOF Mechanism Coefficient ∂θ1a /∂φ xp = [xp , yp ]T 1.2 ρb 1.1 θ1a 1.0 φ K 1 0 1 2 3 4 C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 16 / 20
  • 31. Conclusion 1 - Examples of application Simple 2-DOF Mechanism Coefficient ∂θ1a /∂φ 1.2 1.1 1.0 K 1 0 1 2 3 4 C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 16 / 20
  • 32. Conclusion 1 - Examples of application Compliant Tripteron 2 3 0, 85 −0, 04 −0, 04 6 6 −0, 05 0, 88 −0, 02 7 7  1 0 0  6 0, 00 −0, 00 0, 99 7 Jc = 6 7  0 1 0  6 −0, 00 0, 01 −0, 00 7 J= 6 4 −0, 03 −0, 01 −0, 01 7 5 0 0 1 0, 03 0, 01 0, 00 (For φ = [0.5; 0; 0]T and f = 0) C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 17 / 20
  • 33. Conclusion 1 - Examples of application Sub-centimeter Underactuated Compliant Gripper fq θq lq y φ b x θ3 θ2 h fp a r (θ1) c lp θ1 g e θp d1 d2 θ4 ly lx ρ dθp    dρ   dθ1  = CM (fp , fq ) · Kρ T=  dρ C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 18 / 20
  • 34. Conclusion 2 - Conclusion Contribution and future works Contribution of the thesis The formulations of the presented models are general The complementarity of kinematics and statics has been used Improvement of the precision by taking into account more parameters C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 19 / 20
  • 35. Conclusion 2 - Conclusion Contribution and future works Future works Application to underactuated mechanisms Properties of the stiffness matrix Prototype Dynamic modelling and more C.Quennouelle ( ) Kinematostatic Modelling 29/04/09 20 / 20