SlideShare a Scribd company logo
1 of 52
Nanomaterials Based Electrochemical Approaches for
Biosensing and Bacterial Disinfection
Bal Ram Adhikari
PhD candidate Biotechnology
1
o Advisor: Dr. Aicheng Chen
o Co-advisor: Dr. Heidi Schraft
o Committee member: Dr. Neelam Khaper
o External examiner: Dr. Antonella Badia
o Committee chair: Dr. Wely Floriano
PhD Dissertation defense
1. Introduction
2. Background and Rational
3. Research objectives
4. Experimental details
5. Results and Discussions
6. Summary and Future prospectus
7. Acknowledgements
2
Outline of presentation
Introduction
3
 Electrochemical approaches are considered a
physicochemical discipline with wide-
ranging applications that are useful in our
daily life e.g. sensing to disinfection (Ota et
al. 2014)
 Due to their point-of-care applications,
electrochemical approaches are the most
promising candidate technologies.
 Sensors are devices which capture the
physical, chemical and biological changes
and convert changes into measurable signal
 Electrochemical biosensor contain a
biological recognition element (enzymes,
proteins, antibodies, nucleic acids) reacts
with target analytes and produce an electrical
signal.
substrate product
Reporter
(enzyme)
Apply voltage
Measure current prop.
to concentration of substrate
Electrode ( Transducer)
N. Ronkainen, H. Halsall, W Heineman. Electrochemcial biosensors. Chem. Soc. Rev., 2010, 39, 1747-1763
Applications
4
Electrochemical
approaches
 Detection of pathogens
( bacteria, viruses)
 Testing of bloods (
biochemistry)
 Quality control
monitoring
 Contamination detection
 Food and drug process
monitoring
 Diagnosis of plant and
animal diseases
 Monitoring of chemicals
 Quality control of meat
and plant products
Environmental
 Detection of toxic
chemicals in air, water
and soil
 Pollutants degradation
and bacterial
disinfection
R.S. Sethi, Biosens. Bioelectron. 9, 243 (1994).
Clinical/Medical
Industrial
Agriculture
Role of nanomaterials in electrochemistry
5
 Any particle size in between 1-100 nm are
nanomaterials
 Increase the surface/volume ratio
 Reduced distances e.g. between immobilized
biomolecules and electrodes- lower the response
time
 Enhances the production of Reactive oxygen
species (ROSs) sufficient to disinfect bacteria and
organic compounds
 Similar size with biomolecules cause -intracellular
tagging and ideal for bioconjugation
 Y. Wang, Z. Tang, N.A. Kotov. Materials Today. 8, Issue 5, Supplement 1, 20 (2005).
 W. Kulisch, R. Freudenstein (Eds.), p. 3, Springer Verlag, Dordrecht, The Netherlands (2009)
6
Background and Rational of thesis
 Carbon materials, an element in nature, has been
recognised by humans for a long time.
 Diverse allotropes of CNs from zero-dimensional
(0D) to three-dimensional (3D).1,2-nanoscale
 Carbon nanomaterials; graphene, carbon
nanotubes (CNTs), carbon dots (CDs), carbon
nanofibers (CNFs), nanodiamonds (NDs) and
fullerenes (C60) have been extensively used as
electrode materials for sensor design (nanoscale)
 CNs have intrinsic electrochemical activity, high
electrical conductivity, large surface area, ease of
functionalisation and biocompatibility.
(Nanoscale)
 Low cost of fabrication, high stability, fast
response time and specific detection of analytes
are the key requirement of the biosensor design.
7
Contd..
 Graphene is a two-dimensional (2D), single-
layer sheet of Sp2-hybridized carbon atoms that
are closely packed into a hexagonal lattice
structure. (small)
 Chemical reduction methods vs green methods
for preparation of graphene
 Study on nanocomposite behaviour of
graphene materials with single walled carbon
nanotubes- new level of catalytic response
8
Contd..
 Further exploring the application of nanostrucutred materials; the
properties of TiO2 have been investigated extensively for
photoelectrochemical bacterial disinfection. (xin 19-20)
 It is promising photocatalyst due to low cost, high photocatalytic
activity, and chemical stability (17- chen paper)
 A variety of electrocatalysts for anode materials including carbon, Pt,
PbO2, IrO2, SnO2, Pt-Ir, and boron-doped diamond electrodes have
been extensively investigated for electrocatalytic oxidation (Chen
paper)
9
 Quantitative analysis of pharmaceuticals is essential during drug
development and clinical trial phase for monitoring bio-availability,
pharmacokinetics and possible drug abuse
 Acetaminophen (AP) and valacyclovir are the extensively used
analgesic and antiviral drugs.
 Global Analgesics Market of AP US$34.6 billion and valacyclovir
$4.8 billion by 2017.
 The estimated incidence of annual hospitalization for
acetaminophen overdose in Canada is 27 to 46 per 100,000 persons
Contd..
10
Rationale of thesis
 Global Analgesics Market of AP US$34.6 billion and valacyclovir $4.8
billion by 2017
 Pharmacopeia study during drug formulations are time consuming and
expensive.
 The estimated incidence of annual hospitalization for acetaminophen
overdose in Canada is 27 to 46 per 100,000 persons.
 The increasing R & D investment and incidence of acetaminophen induced
hepatotoxicity demand the urgent need of reliable and easy to operate sensor
 One step electrochemical reduction and the deposition of graphene oxide
(GO) on an electrode surface- a very quick and unique sensor fabrication
technique with very small amount of GO.
Patients screening
Pharmaceutical
formulations
Bioavailability
testing
11
Rationale contd..
 The partial reduction of graphene oxide (ERG) is advantageous for enhanced
electrocatalytic activity and the attachment of biomolecules through π-π interactions,
in contrast to CRG
 Entrapment is one of the primary approaches for enzyme immobilization; however, it
suffers from a few critical drawbacks, including leakage and high mass transfer
resistance to substrates. SWCNTs–rGO nanohybrid thin film has been utilized as
platform for the polymer based enzyme immobilization- great biocompatibility with
high activity.
 New level of catalytic activity achieved through the combining approach of
nanomaterials e.g. SWCNTs–rGO nanohybrid for biosensing; photocatalyst
(nanoporous TiO2) and electrocatalyst (RuO2) for bacterial disinfection.
 Bifunctional approach of water disinfection: a very quick and efficient bacterial
disinfection in comparison to existing methods.
12
Research objectives
Objective 1: Study the synthesis, characterization and optimization of
carbon based nanomaterials for electrochemical sensing/biosensing
Objective 2: Study the preparation and analytical performance of
reduced graphene oxide (rGO) towards detection of acetaminophen
Objective 3: Optimize graphene oxide concentration and deposition cycle
for sensitive and simultaneous detection of valacyclovir and
acetaminophen.
Objective 4: Study the biocompatibility behaviour of rGO nanocomposite
in combination with single walled carbon nanotubes (SWCNTs)-alcohol
dehydrogenase (ADH) as model enzyme.
Objective 5: Investigate the synergistic effects of a photocatalyst
(nanoporous TiO2) and electrocatalyst (RuO2) to construct a bifunctional
electrode for a bacterial disinfection strategy.
Experimental set up
 CHI 660D for electrochemical
workstation
 Three electrode system for analytical
measurements
13
Electrochemical Methods
Cyclic Voltammetry Differential pulse voltammetry Chronoamperometry
 A. Chen, B. Shah, Anal. Methods 5 (2013) 2158-2173
14
Tools used for characterization
Scanning electron microscopy (SEM)
 Energy dispersive X-ray spectroscopy (EDS)
 X-ray diffraction (XRD)
 RAMAN spectroscopy
Fourier transform infrared spectroscopy (FTIR)
 Confocal laser microscopy for live dead bacterial analysis
 Non-pyrogenic sterilized 96 well cell culture microtiter plates
LIVE/DEAD® BacLight™ bacterial viability kit
QproteomeTM Bacterial Protein Preparation Kit
Nanodrop instrument
1H NMR
TOC analyzer
15
Project 1: Sensitive Detection of Acetaminophen with
Graphene-Based Electrochemical Sensor
OH
COOH
COOH
COOH
O
O
OH
OH COOH
OH
E vs ( Ag AgCl) / V
-1.5 -1.0 -0.5 0.0 0.5
I
/

-60
-40
-20
0
1st cycle
3rd cycle
5th cycle
Methodology: Sensor design
Graphene oxide
(Commercial)
Electrochemical reduction process ( 10mV/s)
in PBS (pH 7.4)- 0.3mg/mL GO
Reduced Graphene oxide
EDX spectra
SEM image of
deposited rGO 16
Tablet used from Thunder
bay regional hospital
Cyclic voltammetric measurements:AP
17
E / V (Ag/Agcl)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
I
/

-6
-4
-2
0
2
4
6
8
10
12
a.
b.
c.
At 20 mV/s in 250 µM AP + 0.1 M 20 mL PBS (pH 7.4)
a. Bare GCE
b. ERG/GCE
c. ERG/GCE without AP
N-acetyl-p-aminophenol (AP)
oxidized to N-acetyl-p-
benzoquinone imine (NAPQI)-
reversible process
18
Optimization of sensor
(A) CVs - in 0.1 M PBS (pH 7.4) - 250mM AP from 20 to
125 mV/s scan rate
(B) Plots of the anodic and cathodic peak currents versus the
square root of the scan rates ( diffusion-controlled process)
DPVs - two-cycle (a), five-cycle (b) and ten-cycle (c)
electrodeposition of graphene measured in 0.1 M
PBS (pH 7.4) containing 250mM acetaminophen.
Analytical Detection:AP
19
Successive addition (5-800 µM) AP in 0.1 M
PBS
E/V(Ag/AgCl)
0.2 0.3 0.4 0.5 0.6
I/

0
2
4
6
8
10
12
14
16
18
5 
50 
100 
800 
a.
[ Acetaminophen ] / µM
0 200 400 600 800
I
/
µA
0
2
4
6
8
10
12
14
R2=0.9963
b.
Time / Sec
0 200 400 600 800
I
/
A
0.0
0.1
0.2
0.3
0.4
0.5
0.6
5nM
0.2M
2
a.
[Acetaminophen] / nM
0 1000 2000 3000 4000 5000
I
/

0.0
0.1
0.2
0.3
0.4
0.5
0.6
R2= 0.985
b.
 Succesive addition of 5nm, 0.2 µM and 2µM
AP in 0.1 M PBS; Eapp:0.5V
 LOD : 2.013 nM
20
(A) DPVs recorded in 0.1 M PBS (pH 7.4) + 20mM acetaminophen without interferents (a) and
in the presence of 40mM each ascorbic acid (b), uric acid (c), adenine (d), glucose (e), sucrose
(f) and the mixture of all these biomolecules (g). (B) Relative anodic peak current
Interference and real sample analysis of developed sensor on AP detection
Concentration spiked/µM Concentration detected/µM % Recovery
10.00 10.32 103.2
20.00 19.80 98.89
25.00 24.02 96.08
Recovery tests of generic 325 mg acetaminophen tablets in human serum plasma.
21
Conclusion
 Graphene based sensor has
been developed for
acetaminophen detection
 Very low detection limit (2.13
nM) and wide linear range of
detection (5 nM to 800 µM) has
been achieved
 Very high recovery rate in
human plasma sample with
potential of practical application
 Useful in the detection of
acetaminophen induced
hepatotoxicity B.-R. Adhikari, M. Govindhan, A. Chen. Electrochim. Acta,
2015, 162:198-204
22
Project 2: Simultaneous and Sensitive Detection of Acetaminophen and
Valacyclovir Based on Two Dimensional Graphene Nanosheets
Valacyclovir oxidation: two electron transfer process through intermediate (8-
oxovalacyclovir)-non reversible oxidation
23
Electrode fabrication: Methodology
0.3 mg/mL in PBS (pH-9)
Raman shift ( cm-1)
800 1000 1200 1400 1600 1800
Intensity
D
G
rGO
GO
E vs ( Ag AgCl) / V
-1.5 -1.0 -0.5 0.0 0.5
I
/

-60
-40
-20
0
1st cycle
3rd cycle
5th cycle
Valacyclovir obtained
from Thunder bay regional
hospital
24
Optimization of sensor for valacyclovir detection
Electrodeposition cycle
2 4 6 8 10 12 14 16
J
/
cm
-2
1
2
3
4
5
6
7
GO / mg mL-1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
J
/
A
cm
-2
0
20
40
60
80
100
120
Peak
potential
range
1.00
1.02
1.04
1.06
1.08
1.10
Peak current
Peak potential
B
E vs ( Ag / AgCl) / V
0.7 0.8 0.9 1.0 1.1 1.2 1.3
J
/
cm
-2
0
20
40
60
80
100
120
140
160
1 mg / mL
0.5 mg / mL
0.3 mg / mL
0.1 mg / mL
A
/ mV s-1)1/2
2 4 6 8 10 12
J
/
cm
-2
10
20
30
40
50
60
R
2
= 0.995
R
2
= 0.9947
B
b
a
E vs ( Ag / AgCl) / V
0.0 0.2 0.4 0.6 0.8 1.0 1.2
J
/
cm
-2
-20
0
20
40
60
10 mv s
-1
100 mv s
-1
A
At 20 mV/s in 100 µM Valacyclovir + 0.1 M
20 mL PBS (pH 7.4)
 Different concentration of GO -5 cycle
electrodeposition
Anodic peak current of 20
µM valacyclovir in 0.1 M
PBS (pH 7.2) -0.3 mg mL-1
(3, 5, 10 and 15 cycle)
CVs of different scan rate (A);
Plot of anodic response (a) AP and
(b) Valacyclovir
25
E / V ( Ag / AgCl)
0.6 0.7 0.8 0.9 1.0 1.1 1.2
J
/
cm
-2
0
20
40
60
80
0.6 0.7 0.8 0.9 1.0 1.1 1.2
0
10
20
30
40
Performance of rGO/GCE for Valacyclovir detection
CV response at 20 mV/s in 50 µM
Valacyclovir + 0.1 M 20 mL PBS (pH 7.4)
 rGO/GCE vs PBS
 Inset: bare GCE vs PBS
Concentration / 
0 10 20 30 40 50
J
/
A
cm
-2
0
10
20
30
40
R
2
= 0.992
R
2
= 0.985
B
E vs (Ag / AgCl) / V
0.7 0.8 0.9 1.0 1.1
J
/
cm
-2
10
20
30
40
50
10 nM
45.1 
A
Concentration / 
0 10 20 30 40 50
J
/
A
cm
-2
0
10
20
30
40
R
2
= 0.992
R
2
= 0.985
B
E vs (Ag / AgCl) / V
0.7 0.8 0.9 1.0 1.1
J
/
cm
-2
10
20
30
40
50
10 nM
45.1 
A
Calibration plot of current response against
valacyclovir concentration.
DPV responses to the successive addition from 10
nM to 45µM
26
Simultaneous detection of acetaminophen and valacyclovir
E / V ( Ag/AgCl)
0.2 0.4 0.6 0.8 1.0
J
/
cm
-2
10
20
30
40
50 nM
45 
AP
Val
0
J
/
cm
-2
0
5
10
15
20
25
30
35
R
R
Performance of rGO/GCE for
simultaneous detection of 50µM
acetaminophen and valacyclovir. Inset:
bare GCE
Successive addition of 50 nM-45µM
E / V ( Ag / AgCl)
0.2 0.4 0.6 0.8 1.0 1.2
J
/
cm
-2
0
20
40
60
80
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0
10
20
30
40
A
AP
Val
Calibration curve of current response vs
concentration
E / V ( Ag/AgCl)
0.2 0.4 0.6 0.8 1.0
J
/
cm
-2
10
20
30
40
50 nM
45 
AP
Val
Concentration / 
0 10 20 30 40 50
J
/
cm
-2
0
5
10
15
20
25
30
35
R
2
= 0.992
R
2
= 0.984
R
2
= 0.981
R
2
= 0.99
AP
Val
Interference, reproducibility and stability of developed sensor
27
(a) 25 µM AP and val
(b) 50 µM of each ascorbic
acid
(c) Dopamine
(d) Uric acid
(e) Glutathione
in 0.1 M PBS, pH 7.2
Relative anodic peak current response from (A)
̴2.5% for AP and 3.0% for Val-peak variation
Number of days
4 6 8 10 12 14 16 18 20 22
I
/
I
0
0
20
40
60
80
100
120
Stability test
Number of electrodes
1.0 2.0 3.0 4.0
J
/
cm
-2
0
2
4
6
8
10
12
14
Reproducibility test
E vs ( Ag / AgCl) / V
0.0 0.2 0.4 0.6 0.8 1.0
J
/
cm
-2
a
b
c
d
e
50
f
Interference study
A
I
/
I
0
0
20
40
60
80
100
120 Acetaminophen
Valacyclovir
a b c d e f
B
E vs ( Ag / AgCl) / V
0.0 0.2 0.4 0.6 0.8 1.0
J
e
f
B
Analysed through DPV
in 5 µM valacyclovir
A very low RSD of
1.08% (n=4)
5.26% current loss
28
Actual sample analysis in human plasma: simultaneous detection of
acetaminophen (325 mg) and valacyclovir (500 mg) generic tablets.
Added
(µM)
Found (µM) Recovery (%) RSD (%)
Acetaminophen Valacyclovir Acetaminophen Valacyclovir Acetaminophen Valacyclovir
5 5.3 4.96 106 99.33 2.17 5.3
10 10.1 9.43 101 94.33 5.5 0.99
15 14.25 14.55 95 97 1.75 2.75
29
Conclusion
 Graphene nanosheets (rGO) based
sensor has been developed for
simultaneous detection of AP and
valacyclovir
 A very low limit of detection
(LOD)-1.34 nM for valacyclovir;
simultaneous detection: LOD-4.65
nM for AP and 3.1nM for
valacyclovir
 Excellent stability, reproducibility
with no interference
 High recovery in real sample
analysis
 Highly suitable for pharmaceutical
formulation and bioavailability
testing
B.-R. Adhikari, M. Govindhan, H. Schraft, A. Chen. J.
Electroanal. Chem. 2016, 780: 241-248.
30
Exploring electrocatalytic activity of graphene based
nanocomposites with single walled carbon nanotubes (SWCNTs)
B.-R. Adhikari, M. Govindhan , A. Chen. Sensors 2015,
9:22490-22508
Synergistic catalytic behaviour of SWCNTs-rGO nanohybrid film
31
Cyclic voltammetric performance of Acetaminophen
50 µM acetaminophen, at 20 mV/s scan rate,
0.1 M PBS ( pH 7.2)
E vs ( Ag / AgCl) / V
0.0 0.1 0.2 0.3 0.4 0.5 0.6
I
/

-2
-1
0
1
2
rGO
E vs ( Ag / AgCl) / V
0.0 0.1 0.2 0.3 0.4 0.5 0.6
I
/

-60
-40
-20
0
20
40
60
80
SWCNTs
E vs ( Ag / AgCl) / V
0.0 0.1 0.2 0.3 0.4 0.5 0.6
I
/

-100
-50
0
50
100
150
SWCNTs-rGO
Drop casted 0.5 mg/mL SWCNTs and 4 mg/mL GO
on GCE; air dried and electrochemical reduction to
make SWCNTs-rGO nanohybrid thin film
32
Differential Pulse Voltammetric (DPV) performance of
Acetaminophen
E vs ( Ag / AgCl) / V
0.1 0.2 0.3 0.4 0.5
I
/

0
2
4
6
8
80 M
5 M
rGO
E vs ( Ag AgCl) / V
0.1 0.2 0.3 0.4 0.5
I
/

100
150
200
250
300
350
400
5 nM
80 M
SWCNTs
E vs ( Ag / AgCl) / V
0.1 0.2 0.3 0.4 0.5
I
/

100
150
200
250
300
350
400
5 nM
80 M
SWCNTs-rGO
Concentration / 
0 20 40 60 80 100
I

0
1
2
3
4
5
6
7
Concentration / 
0 20 40 60 80 100
I
/

0
50
100
150
200
250
300
Concentration / 
0 20 40 60 80 100
I
/
50
100
150
200
250
300
350
SWCNTs-rGO>SWCNTs >rGO
33
Project 3: A High-performance Enzyme Entrapment Platform Facilitated by
a Cationic Polymer for the Efficient Electrochemical Sensing of Ethanol
Zn2+
Cys Cys
His
 Further explore biocompatibility properties of SWCNTs-rGO
nanohybrid
 Detailed study of enzyme entrapment platform for biosensor design
34
Biosensor fabrication
Graphite oxide
Graphene oxide ( 5
mg/mL) - ultrasonication
SWCNTs
SWCNTs (5 mg/mL) in
DMF- ultrasonication
Graphene nanocompsite-drop casted 2 µL each on GCE
cyclic voltammetry -0.6 to -1.5 V (5 cycles at 20 mVs-1) in
0.1M tris buffer solution- rGO/SWCNTs nanohybrid
Huang, N. M.; Lim, H. N.; Chia, C. H.; Yarmo, M. A.; Muhamad, M. R. Int. J.
Nanomed. 2011, 6, 3443.
MADQUAT 2 µL each for
ADH entrapment
Modified hummer’s method
Air dried
35
Surface characterization
Energy, keV
0.5 1.0 1.5 2.0
Intensity
Oxygen
Carbon
D
A B
C
A B
C
SWCNTs-rGO
SWCNTs
rGO
SEM images of (A) rGO, (B) SWCNTs and (C) SWCNT-rGO nanohybrids; (D) EDX
spectra of rGO (green), SWCNTs (blue) and SWCNTs-rGO nanobybrid (red).
Energy, keV
0.5 1.0 1.5 2.0
Intensity
Oxygen
Carbon
D
A B
C
A B
C
SWCNTs-rGO
SWCNTs
rGO
Energy, keV
0.5 1.0 1.5 2.0
Intensity
Oxygen
Carbon
D
A B
C
A B
C
SWCNTs-rGO
SWCNTs
rGO
Energy, keV
0.5 1.0 1.5 2.0
Intensity
Oxygen
Carbon
D
A B
C
A B
C
SWCNTs-rGO
SWCNTs
rGO
CV responses in a 0.1 M KCl
solution containing 2.5 mM
K3Fe(CN)6 at the scan rate of 20
mVs-1.
36
Wavenumbers ( cm-1)
1600 1620 1640 1660 1680 1700
Absorbance
0.00
0.01
0.02
0.03
0.04
Wavenumbers (cm-1)
1600 1620 1640 1660 1680 1700
Absorbance
0.00
0.01
0.02
0.03
0.04
Biocompatibility study on SWCNTs-rGO nanohybrid thin
film (ADH as model enzyme)
Free ADH ADH immobilized on poly-methyl
chloride(MADQUAT)
Linear association (r) = 0.92
Wavenumber (cm-1)
1000 1200 1400 1600 1800
b
a
(a) Free ADH (b) after
entrapment with polymer
Band assignment Band position Area %
ADH ADH+ Poly-
methylchloride
ADH ADH+ Poly-
methylchloride
Amino acid
absorption
1604,1614 1608,1614 13 10
ß-sheet 1633, 1689 1635 29 23
Random coils 1645 1646 25 23
ɑ-helix 1658 1658 22 21
ß-turns 1677 1675, 1686 11 14
37
Electrocatalytic behaviour of ADH onto SWCNT-rGO
nanohybrid for ethanol detection
CV responses (20 mVs-1); physisorbed ADH (green dashed line) in a 0.1M tris
buffer containing 50 mM ethanol + 10 mM NAD+ and only 10 mM NAD+(blue
dashed line).
E vs (Ag / AgCl) / V
0.0 0.2 0.4 0.6
I
/

-40
-20
0
20
40
60 D
I/
µA
E vs ( Ag / AgCl) / V
0.0 0.2 0.4 0.6
I
/

-20
0
20
40
60
A
I/
µA
E vs ( Ag / AgCl) / V
0.0 0.2 0.4 0.6
I
/

-20
0
20
40
60
B
I/
µA
E vs (Ag / AgCl) / V
0.0 0.2 0.4 0.6
I
/
A
-20
0
20
40
60 C
I/
µA
ADH-rGO ADH-SWCNTs
ADH-SWCNTs-rGO
SWCNTs-rGO
10 mM NADH
38
Optimization of proposed biosensor (ADH-SWCNTs-rGO/GCE)
pH effect
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
I
/

0.01
0.02
0.03
0.04
0.05
B
MADQUAT concentration ( mg mL-1)
0 10 20 30 40 50 60 70
I
/

0.00
0.01
0.02
0.03
0.04
0.05
0.06
A
 On 20 µM ethanol
 50 mg/mL MADQUAT
concentration
 pH 8.2
(A) CVs at scan rates of 20, 40, 50, 60 and 70
mVs-1.
(B) Plot of anodic peak currents versus the scan
rates obtained from A (surface controlled process)
39
Time / Sec
1000 1200 1400 1600 1800 2000 2200
0.8
1.0
1.2
1.4
1.6
1.8
2.0
5 M
100 M
C
I/
µA
Concentration/ M
0 200 400 600 800
1.0
1.2
1.4
1.6
1.8
2.0
R
2
= 0.998
D
I/
µA
R
2
= 0.99
Concentration / mM
0 5 10 15 20 25 30 35
0
2
4
6
8
10
R
2
= 0.986
B
I/
µA
E vs (Ag / AgCl) / V
-0.2 0.0 0.2 0.4 0.6
I
/
A
-40
-20
0
20
40
60
1 mM
30 mM A
Analytical performance of biosensor (ADH-SWCNT-rGO/GCE)
(A) CV responses at 20 mVs-1 (1 – 30 mM ethanol)
(B) Calibration plot of the current responses derived from A
(C)Amperometric responses from 5 - 800 µM (Eapp= 0.5V)
(D) Calibration plot of the current responses derived from C.
0.1M tris buffer (pH 8.2)+ 10 mM NAD+.
40
Time / Sec
600 700 800 900 1000
I
/

0.50
0.55
0.60
0.65
0.70
0.75
a
b c d e
f
B
Time (s)
1000 2000 3000 4000
I
/
I
0
0
20
40
60
80
100
120
Sample Concentration
added (mM)
Concentration
detected (mM)
Recovery (%) RSD (%)
10.00 9.30 93.0 3.3
Wine 20.00 19.80 98.9 2.4
30.00 29.91 99.7 4.1
10.00 9.82 98.2 1.9
Beer 20.00 20.06 100.3 3.6
30.00 29.55 98.5 2.1
10.00 10.40 104.0 4.3
Blood alcohol 20.00 20.30 102.0 4.7
30.00 31.00 105.0 1.6
Interference, stability and real sample analysis of proposed biosensor
Time / Sec
600 700 800 900 1000
I
/

0.50
0.55
0.60
0.65
0.70
0.75
a
b c d e
f
B
Time (s)
1000 2000 3000 4000
0
20
Interference tests- 20 µM ethanol (a),1mM of
each ascorbic acid (b), glutathione (c), glucose
(d), uric acid (e) and 20 µM ethanol (f)
10 mM NAD+ in 0.1 M tris buffer.
Stability test: in 20 µM ethanol
Real sample analysis
Eapp: 0.5 V
41
Conclusion
 Studied biocompatibility behaviour of
SWCNTs-rGO nanohybrid (no alteration in
structure)
MADQUAT entrapped ADH biosensor on
SWCNTs-rGO nanohybrid for ethanol
detection
Different carbon based platforms have
been studied.
The synergistic enhancement of
SWCNTs-rGO nanohybrid has been
revealed with superior activity
B.-R. Adhikari, H. Schraft, A. Chen. Analyst 2017,
142:2595-2602
42
Project 4: Integrated Bifunctional Electrochemcial Approach
for Efficient Bacterial Disinfection
Live E. coli cells
Bifunctional
After 10 minutes
 Attempt to broadening the application of nanostructured materials
 A new approach of combining two nanostructred materials (bifunctional)-
photocatalyst (nanoporous TiO2) and electrocatalyst (RuO2) for highly
synergistic activity for electrochemical water disinfection
43
Fabrication of bifunctional electrode
Ti plate (1.25 cm x 0.8 cm
x 0.5 mm)-anode
Pt coil-cathode
1st anodization
0.3 wt% ammonium fluoride;
NH4F and 2wt% water in
ethylene glycol Eapp 50 V; 5hrs
Rough nanoporous-
removed by masking
tape
Rough nanoporous-
removed by masking
tape
2nd anodization;
2 hrs
Rutile nanoporous TiO2
3rd anodization;
15 min
Anatase nanoporous TiO2
450 0C for 4 hrs
in oven
Working nanoporous TiO2
Electrochemical
reduction
- 5 mA cm-2 for 10
min; 0.1M H2SO4
Ruthenium (III) chloride
hydrate (RuCl3.x H2O) Calcination; 450
oC for 2 h
RuO2
Bifunctional electrode
Electrochemical bacterial disinfection through amperommetry; Eapp 1.2 V; 100
mL of 0.05 Na2SO4
44
Energy (KeV)
Intensity
(a.u.)
Nanoporous TiO2
RuO2
D
Energy (KeV)
0 1 2 3 4
Intensity
(a.u.)
C
TiO
Ru O
Ru
RuO2
Nanoporous TiO2
C
Time (min)
50 100 150 200
j
(mA
cm
-2
)
0
5
10
15
20
25
TiO2/Ti
RuO2/Ti
D TiO2
/Ti/RuO2
Characterization of the bifunctional TiO2/Ti/RuO2 electrode
45
Time / min
0 5 10 15 20 25 30 35
ln
(C/C
0
)
-15
-10
-5
0
5
TiO2/Ti/RuO2
TiO2/Ti
RuO2/Ti
C
Time / min
10 20 30 40 50 60
Log
10
reducti
0
2
4
6
8
RuO2/Ti
TiO2/Ti
TiO2/Ti/RuO2
Control
A
Time / min
10 20 30 40 50 60
Log
10
reduction
0
2
4
6
8
10 B
a
b
c
d
e
RuO2/Ti
RuO2/Ti
Time(min)
Time(min)
Time(min)
TiO2/Ti/RuO2
Time (min)
0 5 10 15 20 25 30 35
ln
(C/C
0
)
-15
-10
-5
0
5
TiO2/Ti/RuO2
TiO2/Ti
RuO2/Ti
C
5
Time / min
10 20 30 40 50 60
Log
10
reduction
0
2
4
6
8
10
RuO2/Ti
TiO2/Ti
TiO2/Ti/RuO2
Control
A
Time / min
10 20 30 40 50 60
Log
10
reduction
0
2
4
6
8
10 B
a
b
c
d
e
TiO2/Ti/RuO2
RuO2/Ti
Time(min)
Time(min)
5
5 min 10 min 15 min
30 min 25 min 20 min
5 min 10 min 15 min
30 min 25 min 20 min
5 min 10 min 15 min
30 min 25 min 20 min
5 min 10 min 15 min
30 min 25 min 20 min
5 min 10 min 15 min
30 min 25 min 20 min
5 min 10 min 15 min
30 min 25 min 20 min
Performance of electrodes for bacterial disinfection
(initial count 2.3 x 108 CFU / mL)
5
Time / min
10 20 30 40 50 60
Log
10
reduction
0
2
4
6
8
10
RuO2/Ti
TiO2/Ti
TiO2/Ti/RuO2
Control
A
Time / min
10 20 30 40 50 60
Log
10
reduction
0
2
4
6
8
10 B
a
b
c
d
e
TiO2/Ti/RuO2
RuO2/Ti
Time(min)
Time(min)
5
TiO2/Ti
(B) ROSs scavenger
experiments in bifunctional : no
scavenging (a), 10 mM of each
sodium azide (b) mannitol (c),
sodium pyruvate (d), sodium
thiosulfate (e); ( major ROS
H2O2)
Culturable cell reduction
(C) Disinfection kinetics: 0.62
min-1 ( TiO2/Ti/RuO2); 0.28
min-1 (TiO2/Ti); 0.14 min-
1(RuO2 /Ti)
46
Time(min)
Time(min)
Time(min)
Time(min)
Time(min)
Time(min)
Bacterial cell viability estimation
LIVE/DEAD® BacLight™ stain through confocal scanning laser
microscopy (A) 0 min; (B) 5 min; (C) 30 min; (D) Biovolume count
SEM analysis (E) 0 min; (F) 30 min
Biomolecule leakage (A) TOC (B)
Protein concentration
The LOD of spread plate method is ˂ 100 CFU/mL for 1/10 dilutions
47
Time of
treatment
(minutes)
Nutrient broth (well) Nutrient broth enriched with 30 mM
sodium pyruvate (well)
Average MPN Standard error (n=3) Average MPN Standard error (n=3)
30 210 6.3 480 6.3
40 8.6 4.1 18.2 4.1
50 0.66 - 5.4 1.6
60 0 - 0 -
70 0 - 0 -
Viable but non culturable (VBNC) state after bifunctional treatment
A
Resuscitated
B
Most probable number (MPN) of E. coli calculated
through American Public Health Association
48
Variables Initial 10 minutes 20 minutes 30 minutes 40 minutes 50 minutes
Initial 1 -0.037 -0.363 -0.439 -0.245 -0.340
10 minutes -0.037 1 0.368 -0.197 -0.144 -0.299
20 minutes -0.363 0.368 1 -0.109 -0.123 -0.248
30 minutes -0.439 -0.197 -0.109 1 0.668 0.162
40 minutes -0.245 -0.144 -0.123 0.668 1 0.325
50 minutes -0.340 -0.299 -0.248 0.162 0.325 1
Metabolomics study through NMR
1H NMR processed through spin works
All the NMR spectra analyses for Principle component
analysis (PCA) correlation matrix- XLSTAT version
2016.5 software
49
• A total of 106 metabolites.
• A total of 38 primary metabolites -
Initial sample
• Major metabolite loss-30 min of
electrochemical treatment,
• 17 vital metabolites lost.
• The lack of key metabolites for
TCA cycle, DNA synthesis,
lipopolysaccharide and
peptidoglycan synthesis- induce
cell death- confirmed by SPM in
NA
The NMR spectra positions used to
search through the Escherichia coli
Metabolome Database (ECMDB,
http://www.ecmdb.ca) for potential
metabolites and verified through
the freely available Biocyc
(http://biocyc.org) database
Confirmation of metabolites through ECMDB database
50
Conclusion
Synergistic behaviour of photocatalyst (TiO2) and electrocatalyst (RuO2) in
one electrode ( bifunctional) have been studied
 Very efficient bacterial disinfection through the bifunctional electrode in
comparision to their individual photocatalyst (TiO2) and electrocatalyst (RuO2)
counterparts
 A high disinfection rate (0.62 min-1) with >99.999% of bacterial removal
within 20 min throughTiO2/Ti/RuO2 bifunctional electrode
 Very low power consumption (1.2V) and evironmemental friendly
technology
 No VBNC state of bacteria found for longer time ( nil within 50 min)
 Studied bacterial mtabolomics of different treated sample with strongly
relates to mass death of E. coli after 30 min of bifunctional treatment
This chapter has been submitted to Water Research (a high impact peer reviewed
journal)
51
Future prospectives
 A combining approach of nanomaterials have great synergistic effect. This
approache can be utilized further for the different electrochemical processes
Further study the synergistic nature of SWCNTs-rGO nanohybrid thin film
for biosensing application through the indepth study of enzyme-substrate
catalysis
Functionalization of these nanohybrid film may further improve the
biocatalytic performance by the formation of stable covalent bond
 Doping with conducting metal nanoparticles on TiO2 nanoporous and then
combining it with electroactive catalyst may further improve the
performance with out using UV- visible light
By reducing band gap of photocatalyst, the performance can be improved in
visible light which my be useful not only for energy efficient bacterial
disinfection but also for electrochemical biosensing application
52
Acknowledgement
 Dr. Aicheng Chen (supervisor)
 Dr Heidi Schraft (Co-supervisor)
 Dr Neelam Khaper (Committee
member)
 Dr Antonella Badia (External
examiner)
 Michale moore and biology lab
members
 Chemistry department
 Instrumentation lab members
 Dr. Chen’s group members
NSERC for PGSD during PhD

More Related Content

Similar to biotechnology of aminophenol PhD defenseppt.ppt

Covid-19 testing using nanoparticles
Covid-19  testing using nanoparticlesCovid-19  testing using nanoparticles
Covid-19 testing using nanoparticlesKirtiSharma159
 
Electrochemical sensor
Electrochemical sensorElectrochemical sensor
Electrochemical sensorPraveen Sagar
 
Current and future techniques for cancer diagnosis
Current and future techniques for  cancer diagnosisCurrent and future techniques for  cancer diagnosis
Current and future techniques for cancer diagnosisNitin Talreja
 
Design and development of nanomaterials for biomolecular detection and cancer...
Design and development of nanomaterials for biomolecular detection and cancer...Design and development of nanomaterials for biomolecular detection and cancer...
Design and development of nanomaterials for biomolecular detection and cancer...Arun kumar
 
Cyclic Voltammetry Application
Cyclic Voltammetry  Application Cyclic Voltammetry  Application
Cyclic Voltammetry Application Halavath Ramesh
 
Label free and reagentless electrochemical detection of micro rn-as using a c...
Label free and reagentless electrochemical detection of micro rn-as using a c...Label free and reagentless electrochemical detection of micro rn-as using a c...
Label free and reagentless electrochemical detection of micro rn-as using a c...hbrothers
 
New approaches for stable isotope ratio measurements iaea tecdoc 1247
New approaches for stable isotope ratio measurements   iaea tecdoc 1247New approaches for stable isotope ratio measurements   iaea tecdoc 1247
New approaches for stable isotope ratio measurements iaea tecdoc 1247Mahbubul Hassan
 
BIOSENSORS FOR ENVIRONMENTAL MONITORING
BIOSENSORS FOR ENVIRONMENTAL MONITORINGBIOSENSORS FOR ENVIRONMENTAL MONITORING
BIOSENSORS FOR ENVIRONMENTAL MONITORINGRUT PARIKH
 
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesAnalysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesIOSR Journals
 
GRDS International ECG proceedings,October 2016,Hongkong
GRDS International ECG proceedings,October 2016,HongkongGRDS International ECG proceedings,October 2016,Hongkong
GRDS International ECG proceedings,October 2016,HongkongGlobal R & D Services
 
Application of nanomaterials in lifescience
Application of nanomaterials in lifescienceApplication of nanomaterials in lifescience
Application of nanomaterials in lifescienceArun kumar
 
Lab on a chip 2013 qian liu
Lab on a chip 2013 qian liuLab on a chip 2013 qian liu
Lab on a chip 2013 qian liuQian Liu, phD
 
Quantum pesticide residue detection
Quantum pesticide residue detectionQuantum pesticide residue detection
Quantum pesticide residue detectionJun Steed Huang
 
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...IJERA Editor
 
electrochemical sesors.ppt
electrochemical sesors.pptelectrochemical sesors.ppt
electrochemical sesors.pptVenuManthrapudi
 
Anal BP102T-unit-1 intro for stu as per PCI syllabus
Anal BP102T-unit-1 intro for stu as per PCI syllabusAnal BP102T-unit-1 intro for stu as per PCI syllabus
Anal BP102T-unit-1 intro for stu as per PCI syllabusMonika Singh
 

Similar to biotechnology of aminophenol PhD defenseppt.ppt (20)

Covid-19 testing using nanoparticles
Covid-19  testing using nanoparticlesCovid-19  testing using nanoparticles
Covid-19 testing using nanoparticles
 
Electrochemical sensor
Electrochemical sensorElectrochemical sensor
Electrochemical sensor
 
Current and future techniques for cancer diagnosis
Current and future techniques for  cancer diagnosisCurrent and future techniques for  cancer diagnosis
Current and future techniques for cancer diagnosis
 
Design and development of nanomaterials for biomolecular detection and cancer...
Design and development of nanomaterials for biomolecular detection and cancer...Design and development of nanomaterials for biomolecular detection and cancer...
Design and development of nanomaterials for biomolecular detection and cancer...
 
Abstract
AbstractAbstract
Abstract
 
Cyclic Voltammetry Application
Cyclic Voltammetry  Application Cyclic Voltammetry  Application
Cyclic Voltammetry Application
 
Label free and reagentless electrochemical detection of micro rn-as using a c...
Label free and reagentless electrochemical detection of micro rn-as using a c...Label free and reagentless electrochemical detection of micro rn-as using a c...
Label free and reagentless electrochemical detection of micro rn-as using a c...
 
New approaches for stable isotope ratio measurements iaea tecdoc 1247
New approaches for stable isotope ratio measurements   iaea tecdoc 1247New approaches for stable isotope ratio measurements   iaea tecdoc 1247
New approaches for stable isotope ratio measurements iaea tecdoc 1247
 
BIOSENSORS FOR ENVIRONMENTAL MONITORING
BIOSENSORS FOR ENVIRONMENTAL MONITORINGBIOSENSORS FOR ENVIRONMENTAL MONITORING
BIOSENSORS FOR ENVIRONMENTAL MONITORING
 
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesAnalysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
 
Nano-Biotechnology
Nano-BiotechnologyNano-Biotechnology
Nano-Biotechnology
 
GRDS International ECG proceedings,October 2016,Hongkong
GRDS International ECG proceedings,October 2016,HongkongGRDS International ECG proceedings,October 2016,Hongkong
GRDS International ECG proceedings,October 2016,Hongkong
 
Application of nanomaterials in lifescience
Application of nanomaterials in lifescienceApplication of nanomaterials in lifescience
Application of nanomaterials in lifescience
 
Lab on a chip 2013 qian liu
Lab on a chip 2013 qian liuLab on a chip 2013 qian liu
Lab on a chip 2013 qian liu
 
Quantum pesticide residue detection
Quantum pesticide residue detectionQuantum pesticide residue detection
Quantum pesticide residue detection
 
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...
Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofi...
 
JEN_Sludge
JEN_SludgeJEN_Sludge
JEN_Sludge
 
Nanotechnology15
Nanotechnology15Nanotechnology15
Nanotechnology15
 
electrochemical sesors.ppt
electrochemical sesors.pptelectrochemical sesors.ppt
electrochemical sesors.ppt
 
Anal BP102T-unit-1 intro for stu as per PCI syllabus
Anal BP102T-unit-1 intro for stu as per PCI syllabusAnal BP102T-unit-1 intro for stu as per PCI syllabus
Anal BP102T-unit-1 intro for stu as per PCI syllabus
 

More from misgana18

beta-lactam antibiotics pharmaceutical chemistry.pptx
beta-lactam antibiotics pharmaceutical chemistry.pptxbeta-lactam antibiotics pharmaceutical chemistry.pptx
beta-lactam antibiotics pharmaceutical chemistry.pptxmisgana18
 
multimineral and multivitamins use-.pptx
multimineral and multivitamins use-.pptxmultimineral and multivitamins use-.pptx
multimineral and multivitamins use-.pptxmisgana18
 
Endocronology.ppt for Nurse students.ppt
Endocronology.ppt for Nurse students.pptEndocronology.ppt for Nurse students.ppt
Endocronology.ppt for Nurse students.pptmisgana18
 
MSc thesis_structure and content.2020.pptx
MSc thesis_structure and content.2020.pptxMSc thesis_structure and content.2020.pptx
MSc thesis_structure and content.2020.pptxmisgana18
 
An overview of hiv drugs past, present and future
An overview of hiv drugs past, present and futureAn overview of hiv drugs past, present and future
An overview of hiv drugs past, present and futuremisgana18
 
antiparasitic drugs pharmacology and pharmacotherapy.ppt
antiparasitic drugs pharmacology and pharmacotherapy.pptantiparasitic drugs pharmacology and pharmacotherapy.ppt
antiparasitic drugs pharmacology and pharmacotherapy.pptmisgana18
 
Asthma management and treatment options.ppt
Asthma management and treatment options.pptAsthma management and treatment options.ppt
Asthma management and treatment options.pptmisgana18
 

More from misgana18 (7)

beta-lactam antibiotics pharmaceutical chemistry.pptx
beta-lactam antibiotics pharmaceutical chemistry.pptxbeta-lactam antibiotics pharmaceutical chemistry.pptx
beta-lactam antibiotics pharmaceutical chemistry.pptx
 
multimineral and multivitamins use-.pptx
multimineral and multivitamins use-.pptxmultimineral and multivitamins use-.pptx
multimineral and multivitamins use-.pptx
 
Endocronology.ppt for Nurse students.ppt
Endocronology.ppt for Nurse students.pptEndocronology.ppt for Nurse students.ppt
Endocronology.ppt for Nurse students.ppt
 
MSc thesis_structure and content.2020.pptx
MSc thesis_structure and content.2020.pptxMSc thesis_structure and content.2020.pptx
MSc thesis_structure and content.2020.pptx
 
An overview of hiv drugs past, present and future
An overview of hiv drugs past, present and futureAn overview of hiv drugs past, present and future
An overview of hiv drugs past, present and future
 
antiparasitic drugs pharmacology and pharmacotherapy.ppt
antiparasitic drugs pharmacology and pharmacotherapy.pptantiparasitic drugs pharmacology and pharmacotherapy.ppt
antiparasitic drugs pharmacology and pharmacotherapy.ppt
 
Asthma management and treatment options.ppt
Asthma management and treatment options.pptAsthma management and treatment options.ppt
Asthma management and treatment options.ppt
 

Recently uploaded

VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Miss joya
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...narwatsonia7
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night EnjoyCall Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoynarwatsonia7
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Servicenarwatsonia7
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...Miss joya
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls ServiceMiss joya
 

Recently uploaded (20)

VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
 
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night EnjoyCall Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
 

biotechnology of aminophenol PhD defenseppt.ppt

  • 1. Nanomaterials Based Electrochemical Approaches for Biosensing and Bacterial Disinfection Bal Ram Adhikari PhD candidate Biotechnology 1 o Advisor: Dr. Aicheng Chen o Co-advisor: Dr. Heidi Schraft o Committee member: Dr. Neelam Khaper o External examiner: Dr. Antonella Badia o Committee chair: Dr. Wely Floriano PhD Dissertation defense
  • 2. 1. Introduction 2. Background and Rational 3. Research objectives 4. Experimental details 5. Results and Discussions 6. Summary and Future prospectus 7. Acknowledgements 2 Outline of presentation
  • 3. Introduction 3  Electrochemical approaches are considered a physicochemical discipline with wide- ranging applications that are useful in our daily life e.g. sensing to disinfection (Ota et al. 2014)  Due to their point-of-care applications, electrochemical approaches are the most promising candidate technologies.  Sensors are devices which capture the physical, chemical and biological changes and convert changes into measurable signal  Electrochemical biosensor contain a biological recognition element (enzymes, proteins, antibodies, nucleic acids) reacts with target analytes and produce an electrical signal. substrate product Reporter (enzyme) Apply voltage Measure current prop. to concentration of substrate Electrode ( Transducer) N. Ronkainen, H. Halsall, W Heineman. Electrochemcial biosensors. Chem. Soc. Rev., 2010, 39, 1747-1763
  • 4. Applications 4 Electrochemical approaches  Detection of pathogens ( bacteria, viruses)  Testing of bloods ( biochemistry)  Quality control monitoring  Contamination detection  Food and drug process monitoring  Diagnosis of plant and animal diseases  Monitoring of chemicals  Quality control of meat and plant products Environmental  Detection of toxic chemicals in air, water and soil  Pollutants degradation and bacterial disinfection R.S. Sethi, Biosens. Bioelectron. 9, 243 (1994). Clinical/Medical Industrial Agriculture
  • 5. Role of nanomaterials in electrochemistry 5  Any particle size in between 1-100 nm are nanomaterials  Increase the surface/volume ratio  Reduced distances e.g. between immobilized biomolecules and electrodes- lower the response time  Enhances the production of Reactive oxygen species (ROSs) sufficient to disinfect bacteria and organic compounds  Similar size with biomolecules cause -intracellular tagging and ideal for bioconjugation  Y. Wang, Z. Tang, N.A. Kotov. Materials Today. 8, Issue 5, Supplement 1, 20 (2005).  W. Kulisch, R. Freudenstein (Eds.), p. 3, Springer Verlag, Dordrecht, The Netherlands (2009)
  • 6. 6 Background and Rational of thesis  Carbon materials, an element in nature, has been recognised by humans for a long time.  Diverse allotropes of CNs from zero-dimensional (0D) to three-dimensional (3D).1,2-nanoscale  Carbon nanomaterials; graphene, carbon nanotubes (CNTs), carbon dots (CDs), carbon nanofibers (CNFs), nanodiamonds (NDs) and fullerenes (C60) have been extensively used as electrode materials for sensor design (nanoscale)  CNs have intrinsic electrochemical activity, high electrical conductivity, large surface area, ease of functionalisation and biocompatibility. (Nanoscale)  Low cost of fabrication, high stability, fast response time and specific detection of analytes are the key requirement of the biosensor design.
  • 7. 7 Contd..  Graphene is a two-dimensional (2D), single- layer sheet of Sp2-hybridized carbon atoms that are closely packed into a hexagonal lattice structure. (small)  Chemical reduction methods vs green methods for preparation of graphene  Study on nanocomposite behaviour of graphene materials with single walled carbon nanotubes- new level of catalytic response
  • 8. 8 Contd..  Further exploring the application of nanostrucutred materials; the properties of TiO2 have been investigated extensively for photoelectrochemical bacterial disinfection. (xin 19-20)  It is promising photocatalyst due to low cost, high photocatalytic activity, and chemical stability (17- chen paper)  A variety of electrocatalysts for anode materials including carbon, Pt, PbO2, IrO2, SnO2, Pt-Ir, and boron-doped diamond electrodes have been extensively investigated for electrocatalytic oxidation (Chen paper)
  • 9. 9  Quantitative analysis of pharmaceuticals is essential during drug development and clinical trial phase for monitoring bio-availability, pharmacokinetics and possible drug abuse  Acetaminophen (AP) and valacyclovir are the extensively used analgesic and antiviral drugs.  Global Analgesics Market of AP US$34.6 billion and valacyclovir $4.8 billion by 2017.  The estimated incidence of annual hospitalization for acetaminophen overdose in Canada is 27 to 46 per 100,000 persons Contd..
  • 10. 10 Rationale of thesis  Global Analgesics Market of AP US$34.6 billion and valacyclovir $4.8 billion by 2017  Pharmacopeia study during drug formulations are time consuming and expensive.  The estimated incidence of annual hospitalization for acetaminophen overdose in Canada is 27 to 46 per 100,000 persons.  The increasing R & D investment and incidence of acetaminophen induced hepatotoxicity demand the urgent need of reliable and easy to operate sensor  One step electrochemical reduction and the deposition of graphene oxide (GO) on an electrode surface- a very quick and unique sensor fabrication technique with very small amount of GO. Patients screening Pharmaceutical formulations Bioavailability testing
  • 11. 11 Rationale contd..  The partial reduction of graphene oxide (ERG) is advantageous for enhanced electrocatalytic activity and the attachment of biomolecules through π-π interactions, in contrast to CRG  Entrapment is one of the primary approaches for enzyme immobilization; however, it suffers from a few critical drawbacks, including leakage and high mass transfer resistance to substrates. SWCNTs–rGO nanohybrid thin film has been utilized as platform for the polymer based enzyme immobilization- great biocompatibility with high activity.  New level of catalytic activity achieved through the combining approach of nanomaterials e.g. SWCNTs–rGO nanohybrid for biosensing; photocatalyst (nanoporous TiO2) and electrocatalyst (RuO2) for bacterial disinfection.  Bifunctional approach of water disinfection: a very quick and efficient bacterial disinfection in comparison to existing methods.
  • 12. 12 Research objectives Objective 1: Study the synthesis, characterization and optimization of carbon based nanomaterials for electrochemical sensing/biosensing Objective 2: Study the preparation and analytical performance of reduced graphene oxide (rGO) towards detection of acetaminophen Objective 3: Optimize graphene oxide concentration and deposition cycle for sensitive and simultaneous detection of valacyclovir and acetaminophen. Objective 4: Study the biocompatibility behaviour of rGO nanocomposite in combination with single walled carbon nanotubes (SWCNTs)-alcohol dehydrogenase (ADH) as model enzyme. Objective 5: Investigate the synergistic effects of a photocatalyst (nanoporous TiO2) and electrocatalyst (RuO2) to construct a bifunctional electrode for a bacterial disinfection strategy.
  • 13. Experimental set up  CHI 660D for electrochemical workstation  Three electrode system for analytical measurements 13 Electrochemical Methods Cyclic Voltammetry Differential pulse voltammetry Chronoamperometry  A. Chen, B. Shah, Anal. Methods 5 (2013) 2158-2173
  • 14. 14 Tools used for characterization Scanning electron microscopy (SEM)  Energy dispersive X-ray spectroscopy (EDS)  X-ray diffraction (XRD)  RAMAN spectroscopy Fourier transform infrared spectroscopy (FTIR)  Confocal laser microscopy for live dead bacterial analysis  Non-pyrogenic sterilized 96 well cell culture microtiter plates LIVE/DEAD® BacLight™ bacterial viability kit QproteomeTM Bacterial Protein Preparation Kit Nanodrop instrument 1H NMR TOC analyzer
  • 15. 15 Project 1: Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor
  • 16. OH COOH COOH COOH O O OH OH COOH OH E vs ( Ag AgCl) / V -1.5 -1.0 -0.5 0.0 0.5 I /  -60 -40 -20 0 1st cycle 3rd cycle 5th cycle Methodology: Sensor design Graphene oxide (Commercial) Electrochemical reduction process ( 10mV/s) in PBS (pH 7.4)- 0.3mg/mL GO Reduced Graphene oxide EDX spectra SEM image of deposited rGO 16 Tablet used from Thunder bay regional hospital
  • 17. Cyclic voltammetric measurements:AP 17 E / V (Ag/Agcl) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 I /  -6 -4 -2 0 2 4 6 8 10 12 a. b. c. At 20 mV/s in 250 µM AP + 0.1 M 20 mL PBS (pH 7.4) a. Bare GCE b. ERG/GCE c. ERG/GCE without AP N-acetyl-p-aminophenol (AP) oxidized to N-acetyl-p- benzoquinone imine (NAPQI)- reversible process
  • 18. 18 Optimization of sensor (A) CVs - in 0.1 M PBS (pH 7.4) - 250mM AP from 20 to 125 mV/s scan rate (B) Plots of the anodic and cathodic peak currents versus the square root of the scan rates ( diffusion-controlled process) DPVs - two-cycle (a), five-cycle (b) and ten-cycle (c) electrodeposition of graphene measured in 0.1 M PBS (pH 7.4) containing 250mM acetaminophen.
  • 19. Analytical Detection:AP 19 Successive addition (5-800 µM) AP in 0.1 M PBS E/V(Ag/AgCl) 0.2 0.3 0.4 0.5 0.6 I/  0 2 4 6 8 10 12 14 16 18 5  50  100  800  a. [ Acetaminophen ] / µM 0 200 400 600 800 I / µA 0 2 4 6 8 10 12 14 R2=0.9963 b. Time / Sec 0 200 400 600 800 I / A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 5nM 0.2M 2 a. [Acetaminophen] / nM 0 1000 2000 3000 4000 5000 I /  0.0 0.1 0.2 0.3 0.4 0.5 0.6 R2= 0.985 b.  Succesive addition of 5nm, 0.2 µM and 2µM AP in 0.1 M PBS; Eapp:0.5V  LOD : 2.013 nM
  • 20. 20 (A) DPVs recorded in 0.1 M PBS (pH 7.4) + 20mM acetaminophen without interferents (a) and in the presence of 40mM each ascorbic acid (b), uric acid (c), adenine (d), glucose (e), sucrose (f) and the mixture of all these biomolecules (g). (B) Relative anodic peak current Interference and real sample analysis of developed sensor on AP detection Concentration spiked/µM Concentration detected/µM % Recovery 10.00 10.32 103.2 20.00 19.80 98.89 25.00 24.02 96.08 Recovery tests of generic 325 mg acetaminophen tablets in human serum plasma.
  • 21. 21 Conclusion  Graphene based sensor has been developed for acetaminophen detection  Very low detection limit (2.13 nM) and wide linear range of detection (5 nM to 800 µM) has been achieved  Very high recovery rate in human plasma sample with potential of practical application  Useful in the detection of acetaminophen induced hepatotoxicity B.-R. Adhikari, M. Govindhan, A. Chen. Electrochim. Acta, 2015, 162:198-204
  • 22. 22 Project 2: Simultaneous and Sensitive Detection of Acetaminophen and Valacyclovir Based on Two Dimensional Graphene Nanosheets Valacyclovir oxidation: two electron transfer process through intermediate (8- oxovalacyclovir)-non reversible oxidation
  • 23. 23 Electrode fabrication: Methodology 0.3 mg/mL in PBS (pH-9) Raman shift ( cm-1) 800 1000 1200 1400 1600 1800 Intensity D G rGO GO E vs ( Ag AgCl) / V -1.5 -1.0 -0.5 0.0 0.5 I /  -60 -40 -20 0 1st cycle 3rd cycle 5th cycle Valacyclovir obtained from Thunder bay regional hospital
  • 24. 24 Optimization of sensor for valacyclovir detection Electrodeposition cycle 2 4 6 8 10 12 14 16 J / cm -2 1 2 3 4 5 6 7 GO / mg mL-1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 J / A cm -2 0 20 40 60 80 100 120 Peak potential range 1.00 1.02 1.04 1.06 1.08 1.10 Peak current Peak potential B E vs ( Ag / AgCl) / V 0.7 0.8 0.9 1.0 1.1 1.2 1.3 J / cm -2 0 20 40 60 80 100 120 140 160 1 mg / mL 0.5 mg / mL 0.3 mg / mL 0.1 mg / mL A / mV s-1)1/2 2 4 6 8 10 12 J / cm -2 10 20 30 40 50 60 R 2 = 0.995 R 2 = 0.9947 B b a E vs ( Ag / AgCl) / V 0.0 0.2 0.4 0.6 0.8 1.0 1.2 J / cm -2 -20 0 20 40 60 10 mv s -1 100 mv s -1 A At 20 mV/s in 100 µM Valacyclovir + 0.1 M 20 mL PBS (pH 7.4)  Different concentration of GO -5 cycle electrodeposition Anodic peak current of 20 µM valacyclovir in 0.1 M PBS (pH 7.2) -0.3 mg mL-1 (3, 5, 10 and 15 cycle) CVs of different scan rate (A); Plot of anodic response (a) AP and (b) Valacyclovir
  • 25. 25 E / V ( Ag / AgCl) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 J / cm -2 0 20 40 60 80 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 10 20 30 40 Performance of rGO/GCE for Valacyclovir detection CV response at 20 mV/s in 50 µM Valacyclovir + 0.1 M 20 mL PBS (pH 7.4)  rGO/GCE vs PBS  Inset: bare GCE vs PBS Concentration /  0 10 20 30 40 50 J / A cm -2 0 10 20 30 40 R 2 = 0.992 R 2 = 0.985 B E vs (Ag / AgCl) / V 0.7 0.8 0.9 1.0 1.1 J / cm -2 10 20 30 40 50 10 nM 45.1  A Concentration /  0 10 20 30 40 50 J / A cm -2 0 10 20 30 40 R 2 = 0.992 R 2 = 0.985 B E vs (Ag / AgCl) / V 0.7 0.8 0.9 1.0 1.1 J / cm -2 10 20 30 40 50 10 nM 45.1  A Calibration plot of current response against valacyclovir concentration. DPV responses to the successive addition from 10 nM to 45µM
  • 26. 26 Simultaneous detection of acetaminophen and valacyclovir E / V ( Ag/AgCl) 0.2 0.4 0.6 0.8 1.0 J / cm -2 10 20 30 40 50 nM 45  AP Val 0 J / cm -2 0 5 10 15 20 25 30 35 R R Performance of rGO/GCE for simultaneous detection of 50µM acetaminophen and valacyclovir. Inset: bare GCE Successive addition of 50 nM-45µM E / V ( Ag / AgCl) 0.2 0.4 0.6 0.8 1.0 1.2 J / cm -2 0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 10 20 30 40 A AP Val Calibration curve of current response vs concentration E / V ( Ag/AgCl) 0.2 0.4 0.6 0.8 1.0 J / cm -2 10 20 30 40 50 nM 45  AP Val Concentration /  0 10 20 30 40 50 J / cm -2 0 5 10 15 20 25 30 35 R 2 = 0.992 R 2 = 0.984 R 2 = 0.981 R 2 = 0.99 AP Val
  • 27. Interference, reproducibility and stability of developed sensor 27 (a) 25 µM AP and val (b) 50 µM of each ascorbic acid (c) Dopamine (d) Uric acid (e) Glutathione in 0.1 M PBS, pH 7.2 Relative anodic peak current response from (A) ̴2.5% for AP and 3.0% for Val-peak variation Number of days 4 6 8 10 12 14 16 18 20 22 I / I 0 0 20 40 60 80 100 120 Stability test Number of electrodes 1.0 2.0 3.0 4.0 J / cm -2 0 2 4 6 8 10 12 14 Reproducibility test E vs ( Ag / AgCl) / V 0.0 0.2 0.4 0.6 0.8 1.0 J / cm -2 a b c d e 50 f Interference study A I / I 0 0 20 40 60 80 100 120 Acetaminophen Valacyclovir a b c d e f B E vs ( Ag / AgCl) / V 0.0 0.2 0.4 0.6 0.8 1.0 J e f B Analysed through DPV in 5 µM valacyclovir A very low RSD of 1.08% (n=4) 5.26% current loss
  • 28. 28 Actual sample analysis in human plasma: simultaneous detection of acetaminophen (325 mg) and valacyclovir (500 mg) generic tablets. Added (µM) Found (µM) Recovery (%) RSD (%) Acetaminophen Valacyclovir Acetaminophen Valacyclovir Acetaminophen Valacyclovir 5 5.3 4.96 106 99.33 2.17 5.3 10 10.1 9.43 101 94.33 5.5 0.99 15 14.25 14.55 95 97 1.75 2.75
  • 29. 29 Conclusion  Graphene nanosheets (rGO) based sensor has been developed for simultaneous detection of AP and valacyclovir  A very low limit of detection (LOD)-1.34 nM for valacyclovir; simultaneous detection: LOD-4.65 nM for AP and 3.1nM for valacyclovir  Excellent stability, reproducibility with no interference  High recovery in real sample analysis  Highly suitable for pharmaceutical formulation and bioavailability testing B.-R. Adhikari, M. Govindhan, H. Schraft, A. Chen. J. Electroanal. Chem. 2016, 780: 241-248.
  • 30. 30 Exploring electrocatalytic activity of graphene based nanocomposites with single walled carbon nanotubes (SWCNTs) B.-R. Adhikari, M. Govindhan , A. Chen. Sensors 2015, 9:22490-22508 Synergistic catalytic behaviour of SWCNTs-rGO nanohybrid film
  • 31. 31 Cyclic voltammetric performance of Acetaminophen 50 µM acetaminophen, at 20 mV/s scan rate, 0.1 M PBS ( pH 7.2) E vs ( Ag / AgCl) / V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 I /  -2 -1 0 1 2 rGO E vs ( Ag / AgCl) / V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 I /  -60 -40 -20 0 20 40 60 80 SWCNTs E vs ( Ag / AgCl) / V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 I /  -100 -50 0 50 100 150 SWCNTs-rGO Drop casted 0.5 mg/mL SWCNTs and 4 mg/mL GO on GCE; air dried and electrochemical reduction to make SWCNTs-rGO nanohybrid thin film
  • 32. 32 Differential Pulse Voltammetric (DPV) performance of Acetaminophen E vs ( Ag / AgCl) / V 0.1 0.2 0.3 0.4 0.5 I /  0 2 4 6 8 80 M 5 M rGO E vs ( Ag AgCl) / V 0.1 0.2 0.3 0.4 0.5 I /  100 150 200 250 300 350 400 5 nM 80 M SWCNTs E vs ( Ag / AgCl) / V 0.1 0.2 0.3 0.4 0.5 I /  100 150 200 250 300 350 400 5 nM 80 M SWCNTs-rGO Concentration /  0 20 40 60 80 100 I  0 1 2 3 4 5 6 7 Concentration /  0 20 40 60 80 100 I /  0 50 100 150 200 250 300 Concentration /  0 20 40 60 80 100 I / 50 100 150 200 250 300 350 SWCNTs-rGO>SWCNTs >rGO
  • 33. 33 Project 3: A High-performance Enzyme Entrapment Platform Facilitated by a Cationic Polymer for the Efficient Electrochemical Sensing of Ethanol Zn2+ Cys Cys His  Further explore biocompatibility properties of SWCNTs-rGO nanohybrid  Detailed study of enzyme entrapment platform for biosensor design
  • 34. 34 Biosensor fabrication Graphite oxide Graphene oxide ( 5 mg/mL) - ultrasonication SWCNTs SWCNTs (5 mg/mL) in DMF- ultrasonication Graphene nanocompsite-drop casted 2 µL each on GCE cyclic voltammetry -0.6 to -1.5 V (5 cycles at 20 mVs-1) in 0.1M tris buffer solution- rGO/SWCNTs nanohybrid Huang, N. M.; Lim, H. N.; Chia, C. H.; Yarmo, M. A.; Muhamad, M. R. Int. J. Nanomed. 2011, 6, 3443. MADQUAT 2 µL each for ADH entrapment Modified hummer’s method Air dried
  • 35. 35 Surface characterization Energy, keV 0.5 1.0 1.5 2.0 Intensity Oxygen Carbon D A B C A B C SWCNTs-rGO SWCNTs rGO SEM images of (A) rGO, (B) SWCNTs and (C) SWCNT-rGO nanohybrids; (D) EDX spectra of rGO (green), SWCNTs (blue) and SWCNTs-rGO nanobybrid (red). Energy, keV 0.5 1.0 1.5 2.0 Intensity Oxygen Carbon D A B C A B C SWCNTs-rGO SWCNTs rGO Energy, keV 0.5 1.0 1.5 2.0 Intensity Oxygen Carbon D A B C A B C SWCNTs-rGO SWCNTs rGO Energy, keV 0.5 1.0 1.5 2.0 Intensity Oxygen Carbon D A B C A B C SWCNTs-rGO SWCNTs rGO CV responses in a 0.1 M KCl solution containing 2.5 mM K3Fe(CN)6 at the scan rate of 20 mVs-1.
  • 36. 36 Wavenumbers ( cm-1) 1600 1620 1640 1660 1680 1700 Absorbance 0.00 0.01 0.02 0.03 0.04 Wavenumbers (cm-1) 1600 1620 1640 1660 1680 1700 Absorbance 0.00 0.01 0.02 0.03 0.04 Biocompatibility study on SWCNTs-rGO nanohybrid thin film (ADH as model enzyme) Free ADH ADH immobilized on poly-methyl chloride(MADQUAT) Linear association (r) = 0.92 Wavenumber (cm-1) 1000 1200 1400 1600 1800 b a (a) Free ADH (b) after entrapment with polymer Band assignment Band position Area % ADH ADH+ Poly- methylchloride ADH ADH+ Poly- methylchloride Amino acid absorption 1604,1614 1608,1614 13 10 ß-sheet 1633, 1689 1635 29 23 Random coils 1645 1646 25 23 ɑ-helix 1658 1658 22 21 ß-turns 1677 1675, 1686 11 14
  • 37. 37 Electrocatalytic behaviour of ADH onto SWCNT-rGO nanohybrid for ethanol detection CV responses (20 mVs-1); physisorbed ADH (green dashed line) in a 0.1M tris buffer containing 50 mM ethanol + 10 mM NAD+ and only 10 mM NAD+(blue dashed line). E vs (Ag / AgCl) / V 0.0 0.2 0.4 0.6 I /  -40 -20 0 20 40 60 D I/ µA E vs ( Ag / AgCl) / V 0.0 0.2 0.4 0.6 I /  -20 0 20 40 60 A I/ µA E vs ( Ag / AgCl) / V 0.0 0.2 0.4 0.6 I /  -20 0 20 40 60 B I/ µA E vs (Ag / AgCl) / V 0.0 0.2 0.4 0.6 I / A -20 0 20 40 60 C I/ µA ADH-rGO ADH-SWCNTs ADH-SWCNTs-rGO SWCNTs-rGO 10 mM NADH
  • 38. 38 Optimization of proposed biosensor (ADH-SWCNTs-rGO/GCE) pH effect 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 I /  0.01 0.02 0.03 0.04 0.05 B MADQUAT concentration ( mg mL-1) 0 10 20 30 40 50 60 70 I /  0.00 0.01 0.02 0.03 0.04 0.05 0.06 A  On 20 µM ethanol  50 mg/mL MADQUAT concentration  pH 8.2 (A) CVs at scan rates of 20, 40, 50, 60 and 70 mVs-1. (B) Plot of anodic peak currents versus the scan rates obtained from A (surface controlled process)
  • 39. 39 Time / Sec 1000 1200 1400 1600 1800 2000 2200 0.8 1.0 1.2 1.4 1.6 1.8 2.0 5 M 100 M C I/ µA Concentration/ M 0 200 400 600 800 1.0 1.2 1.4 1.6 1.8 2.0 R 2 = 0.998 D I/ µA R 2 = 0.99 Concentration / mM 0 5 10 15 20 25 30 35 0 2 4 6 8 10 R 2 = 0.986 B I/ µA E vs (Ag / AgCl) / V -0.2 0.0 0.2 0.4 0.6 I / A -40 -20 0 20 40 60 1 mM 30 mM A Analytical performance of biosensor (ADH-SWCNT-rGO/GCE) (A) CV responses at 20 mVs-1 (1 – 30 mM ethanol) (B) Calibration plot of the current responses derived from A (C)Amperometric responses from 5 - 800 µM (Eapp= 0.5V) (D) Calibration plot of the current responses derived from C. 0.1M tris buffer (pH 8.2)+ 10 mM NAD+.
  • 40. 40 Time / Sec 600 700 800 900 1000 I /  0.50 0.55 0.60 0.65 0.70 0.75 a b c d e f B Time (s) 1000 2000 3000 4000 I / I 0 0 20 40 60 80 100 120 Sample Concentration added (mM) Concentration detected (mM) Recovery (%) RSD (%) 10.00 9.30 93.0 3.3 Wine 20.00 19.80 98.9 2.4 30.00 29.91 99.7 4.1 10.00 9.82 98.2 1.9 Beer 20.00 20.06 100.3 3.6 30.00 29.55 98.5 2.1 10.00 10.40 104.0 4.3 Blood alcohol 20.00 20.30 102.0 4.7 30.00 31.00 105.0 1.6 Interference, stability and real sample analysis of proposed biosensor Time / Sec 600 700 800 900 1000 I /  0.50 0.55 0.60 0.65 0.70 0.75 a b c d e f B Time (s) 1000 2000 3000 4000 0 20 Interference tests- 20 µM ethanol (a),1mM of each ascorbic acid (b), glutathione (c), glucose (d), uric acid (e) and 20 µM ethanol (f) 10 mM NAD+ in 0.1 M tris buffer. Stability test: in 20 µM ethanol Real sample analysis Eapp: 0.5 V
  • 41. 41 Conclusion  Studied biocompatibility behaviour of SWCNTs-rGO nanohybrid (no alteration in structure) MADQUAT entrapped ADH biosensor on SWCNTs-rGO nanohybrid for ethanol detection Different carbon based platforms have been studied. The synergistic enhancement of SWCNTs-rGO nanohybrid has been revealed with superior activity B.-R. Adhikari, H. Schraft, A. Chen. Analyst 2017, 142:2595-2602
  • 42. 42 Project 4: Integrated Bifunctional Electrochemcial Approach for Efficient Bacterial Disinfection Live E. coli cells Bifunctional After 10 minutes  Attempt to broadening the application of nanostructured materials  A new approach of combining two nanostructred materials (bifunctional)- photocatalyst (nanoporous TiO2) and electrocatalyst (RuO2) for highly synergistic activity for electrochemical water disinfection
  • 43. 43 Fabrication of bifunctional electrode Ti plate (1.25 cm x 0.8 cm x 0.5 mm)-anode Pt coil-cathode 1st anodization 0.3 wt% ammonium fluoride; NH4F and 2wt% water in ethylene glycol Eapp 50 V; 5hrs Rough nanoporous- removed by masking tape Rough nanoporous- removed by masking tape 2nd anodization; 2 hrs Rutile nanoporous TiO2 3rd anodization; 15 min Anatase nanoporous TiO2 450 0C for 4 hrs in oven Working nanoporous TiO2 Electrochemical reduction - 5 mA cm-2 for 10 min; 0.1M H2SO4 Ruthenium (III) chloride hydrate (RuCl3.x H2O) Calcination; 450 oC for 2 h RuO2 Bifunctional electrode Electrochemical bacterial disinfection through amperommetry; Eapp 1.2 V; 100 mL of 0.05 Na2SO4
  • 44. 44 Energy (KeV) Intensity (a.u.) Nanoporous TiO2 RuO2 D Energy (KeV) 0 1 2 3 4 Intensity (a.u.) C TiO Ru O Ru RuO2 Nanoporous TiO2 C Time (min) 50 100 150 200 j (mA cm -2 ) 0 5 10 15 20 25 TiO2/Ti RuO2/Ti D TiO2 /Ti/RuO2 Characterization of the bifunctional TiO2/Ti/RuO2 electrode
  • 45. 45 Time / min 0 5 10 15 20 25 30 35 ln (C/C 0 ) -15 -10 -5 0 5 TiO2/Ti/RuO2 TiO2/Ti RuO2/Ti C Time / min 10 20 30 40 50 60 Log 10 reducti 0 2 4 6 8 RuO2/Ti TiO2/Ti TiO2/Ti/RuO2 Control A Time / min 10 20 30 40 50 60 Log 10 reduction 0 2 4 6 8 10 B a b c d e RuO2/Ti RuO2/Ti Time(min) Time(min) Time(min) TiO2/Ti/RuO2 Time (min) 0 5 10 15 20 25 30 35 ln (C/C 0 ) -15 -10 -5 0 5 TiO2/Ti/RuO2 TiO2/Ti RuO2/Ti C 5 Time / min 10 20 30 40 50 60 Log 10 reduction 0 2 4 6 8 10 RuO2/Ti TiO2/Ti TiO2/Ti/RuO2 Control A Time / min 10 20 30 40 50 60 Log 10 reduction 0 2 4 6 8 10 B a b c d e TiO2/Ti/RuO2 RuO2/Ti Time(min) Time(min) 5 5 min 10 min 15 min 30 min 25 min 20 min 5 min 10 min 15 min 30 min 25 min 20 min 5 min 10 min 15 min 30 min 25 min 20 min 5 min 10 min 15 min 30 min 25 min 20 min 5 min 10 min 15 min 30 min 25 min 20 min 5 min 10 min 15 min 30 min 25 min 20 min Performance of electrodes for bacterial disinfection (initial count 2.3 x 108 CFU / mL) 5 Time / min 10 20 30 40 50 60 Log 10 reduction 0 2 4 6 8 10 RuO2/Ti TiO2/Ti TiO2/Ti/RuO2 Control A Time / min 10 20 30 40 50 60 Log 10 reduction 0 2 4 6 8 10 B a b c d e TiO2/Ti/RuO2 RuO2/Ti Time(min) Time(min) 5 TiO2/Ti (B) ROSs scavenger experiments in bifunctional : no scavenging (a), 10 mM of each sodium azide (b) mannitol (c), sodium pyruvate (d), sodium thiosulfate (e); ( major ROS H2O2) Culturable cell reduction (C) Disinfection kinetics: 0.62 min-1 ( TiO2/Ti/RuO2); 0.28 min-1 (TiO2/Ti); 0.14 min- 1(RuO2 /Ti)
  • 46. 46 Time(min) Time(min) Time(min) Time(min) Time(min) Time(min) Bacterial cell viability estimation LIVE/DEAD® BacLight™ stain through confocal scanning laser microscopy (A) 0 min; (B) 5 min; (C) 30 min; (D) Biovolume count SEM analysis (E) 0 min; (F) 30 min Biomolecule leakage (A) TOC (B) Protein concentration The LOD of spread plate method is ˂ 100 CFU/mL for 1/10 dilutions
  • 47. 47 Time of treatment (minutes) Nutrient broth (well) Nutrient broth enriched with 30 mM sodium pyruvate (well) Average MPN Standard error (n=3) Average MPN Standard error (n=3) 30 210 6.3 480 6.3 40 8.6 4.1 18.2 4.1 50 0.66 - 5.4 1.6 60 0 - 0 - 70 0 - 0 - Viable but non culturable (VBNC) state after bifunctional treatment A Resuscitated B Most probable number (MPN) of E. coli calculated through American Public Health Association
  • 48. 48 Variables Initial 10 minutes 20 minutes 30 minutes 40 minutes 50 minutes Initial 1 -0.037 -0.363 -0.439 -0.245 -0.340 10 minutes -0.037 1 0.368 -0.197 -0.144 -0.299 20 minutes -0.363 0.368 1 -0.109 -0.123 -0.248 30 minutes -0.439 -0.197 -0.109 1 0.668 0.162 40 minutes -0.245 -0.144 -0.123 0.668 1 0.325 50 minutes -0.340 -0.299 -0.248 0.162 0.325 1 Metabolomics study through NMR 1H NMR processed through spin works All the NMR spectra analyses for Principle component analysis (PCA) correlation matrix- XLSTAT version 2016.5 software
  • 49. 49 • A total of 106 metabolites. • A total of 38 primary metabolites - Initial sample • Major metabolite loss-30 min of electrochemical treatment, • 17 vital metabolites lost. • The lack of key metabolites for TCA cycle, DNA synthesis, lipopolysaccharide and peptidoglycan synthesis- induce cell death- confirmed by SPM in NA The NMR spectra positions used to search through the Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) for potential metabolites and verified through the freely available Biocyc (http://biocyc.org) database Confirmation of metabolites through ECMDB database
  • 50. 50 Conclusion Synergistic behaviour of photocatalyst (TiO2) and electrocatalyst (RuO2) in one electrode ( bifunctional) have been studied  Very efficient bacterial disinfection through the bifunctional electrode in comparision to their individual photocatalyst (TiO2) and electrocatalyst (RuO2) counterparts  A high disinfection rate (0.62 min-1) with >99.999% of bacterial removal within 20 min throughTiO2/Ti/RuO2 bifunctional electrode  Very low power consumption (1.2V) and evironmemental friendly technology  No VBNC state of bacteria found for longer time ( nil within 50 min)  Studied bacterial mtabolomics of different treated sample with strongly relates to mass death of E. coli after 30 min of bifunctional treatment This chapter has been submitted to Water Research (a high impact peer reviewed journal)
  • 51. 51 Future prospectives  A combining approach of nanomaterials have great synergistic effect. This approache can be utilized further for the different electrochemical processes Further study the synergistic nature of SWCNTs-rGO nanohybrid thin film for biosensing application through the indepth study of enzyme-substrate catalysis Functionalization of these nanohybrid film may further improve the biocatalytic performance by the formation of stable covalent bond  Doping with conducting metal nanoparticles on TiO2 nanoporous and then combining it with electroactive catalyst may further improve the performance with out using UV- visible light By reducing band gap of photocatalyst, the performance can be improved in visible light which my be useful not only for energy efficient bacterial disinfection but also for electrochemical biosensing application
  • 52. 52 Acknowledgement  Dr. Aicheng Chen (supervisor)  Dr Heidi Schraft (Co-supervisor)  Dr Neelam Khaper (Committee member)  Dr Antonella Badia (External examiner)  Michale moore and biology lab members  Chemistry department  Instrumentation lab members  Dr. Chen’s group members NSERC for PGSD during PhD