Best performance evaluation metrics for image Classification, Detection, Segmentation?
1. Similarity Index = 2*TP/(2*TP+FP+FN)
2. Correct detection Ratio = TP/TP+FN
3. Segmentation errors (OSE, USE, TSE)
4. Hausdorff Distance
5. Average Surface distance
6. Accuracy = (TP+TN)/(FN+FP+TP+TN);
7. Recall = TP/(TP+FN);
8. Precision = TP/(TP+FP);
9. F-measure = 2*TP/(2*TP+FP+FN);
10. MCC = (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
11. Dice = 2*TP/(2*TP+FP+FN);
12. Jaccard = Dice/(2-Dice);
13. Specitivity = TN/(TN+FP);
14. Sensitivity = TP/(TP+FN);

Best performance evaluation metrics for image Classification.docx

  • 1.
    Best performance evaluationmetrics for image Classification, Detection, Segmentation? 1. Similarity Index = 2*TP/(2*TP+FP+FN) 2. Correct detection Ratio = TP/TP+FN 3. Segmentation errors (OSE, USE, TSE) 4. Hausdorff Distance 5. Average Surface distance 6. Accuracy = (TP+TN)/(FN+FP+TP+TN); 7. Recall = TP/(TP+FN); 8. Precision = TP/(TP+FP); 9. F-measure = 2*TP/(2*TP+FP+FN); 10. MCC = (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)); 11. Dice = 2*TP/(2*TP+FP+FN); 12. Jaccard = Dice/(2-Dice); 13. Specitivity = TN/(TN+FP); 14. Sensitivity = TP/(TP+FN);