SlideShare a Scribd company logo
1 of 67
Computer Organization &
 Assembly Languages

        Procedure
Chapter Overview
• Stack Operations
• Defining and Using Procedures
• Program Design Using Procedures
Link Library Overview
• A file containing procedures that have
  been compiled into machine code
  – constructed from one or more OBJ files
• To build a library, . . .
  – start with one or more ASM source files
  – assemble each into an OBJ file
  – create an empty library file (extension .LIB)
  – add the OBJ file(s) to the library file, using
    the Microsoft LIB utility
Calling a Library Procedure
• Call a library procedure using the CALL instruction.
  Some procedures require input arguments. The
  INCLUDE directive copies in the procedure
  prototypes (declarations).
• The following example displays "1234" on the
  console: Irvine32.inc
   INCLUDE
   .code
      mov eax,1234h           ; input argument
      call WriteHex           ; show hex number
      call Crlf               ; end of line
Linking to a Library
• Your programs link to Irvine32.lib using the linker
  command inside a batch file named make32.bat.
• Notice the two LIB files: Irvine32.lib, and
  kernel32.lib
   – the latter is part of the Microsoft Win32 Software
     Development Kit (SDK)
Library Procedures - Overview
CloseFile – Closes an open disk file
Clrscr - Clears console, locates cursor at upper left corner
CreateOutputFile - Creates new disk file for writing in output mode
Crlf - Writes end of line sequence to standard output
Delay - Pauses program execution for n millisecond interval
DumpMem - Writes block of memory to standard output in hex
DumpRegs – Displays general-purpose registers and flags (hex)
GetCommandtail - Copies command-line args into array of bytes
GetMaxXY - Gets number of cols, rows in console window buffer
GetMseconds - Returns milliseconds elapsed since midnight
Library Procedures - Overview
                             (cont.)
GetTextColor - Returns active foreground and background text colors in
the console window
Gotoxy - Locates cursor at row and column on the console
IsDigit - Sets Zero flag if AL contains ASCII code for decimal digit (0–9)
MsgBox, MsgBoxAsk – Display popup message boxes
OpenInputFile – Opens existing file for input
ParseDecimal32 – Converts unsigned integer string to binary
ParseInteger32 - Converts signed integer string to binary
Random32 - Generates 32-bit pseudorandom integer in the range 0 to
FFFFFFFFh
Randomize - Seeds the random number generator
RandomRange - Generates a pseudorandom integer within a specified
range
ReadChar - Reads a single character from standard input
Library Procedures - Overview
                            (cont.)
ReadFromFile – Reads input disk file into buffer
ReadDec - Reads 32-bit unsigned decimal integer from keyboard
ReadHex - Reads 32-bit hexadecimal integer from keyboard
ReadInt - Reads 32-bit signed decimal integer from keyboard
ReadKey – Reads character from keyboard input buffer
ReadString - Reads string from standard input, terminated by [Enter]
SetTextColor - Sets foreground and background colors of all
subsequent console text output
StrLength – Returns length of a string
WaitMsg - Displays message, waits for Enter key to be pressed
WriteBin - Writes unsigned 32-bit integer in ASCII binary format.
WriteBinB – Writes binary integer in byte, word, or doubleword format
WriteChar - Writes a single character to standard output
Library Procedures - Overview
                             (cont.)
WriteDec - Writes unsigned 32-bit integer in decimal format
WriteHex - Writes an unsigned 32-bit integer in hexadecimal
format
WriteHexB – Writes byte, word, or doubleword in hexadecimal
format
WriteInt - Writes signed 32-bit integer in decimal format
WriteString - Writes null-terminated string to console window
WriteToFile - Writes buffer to output file
WriteWindowsMsg - Displays most recent error message
generated by MS-Windows
Example 1
Clear the screen, delay the program for 500 milliseconds,
and dump the registers and flags.

             .code
                call   Clrscr
                mov    eax,500
                call   Delay
                call   DumpRegs



Sample output:
   EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000
   ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6
   EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0
Example 2
Display a null-terminated string and move the cursor
to the beginning of the next screen line.


     .data
     str1 BYTE "Assembly language is easy!",0

     .code
        mov edx,OFFSET str1
        call WriteString
        call Crlf
Example 3
Display an unsigned integer in binary, decimal, and
hexadecimal, each on a separate line.
  IntVal = 35
  .code
     mov eax,IntVal
     call WriteBin           ; display binary
     call Crlf
     call WriteDec           ; display decimal
     call Crlf
     call WriteHex           ; display hexadecimal
     call Crlf

Sample output:
    0000 0000 0000 0000 0000 0000 0010 0011
    35
    23
Example 4
Input a string from the user. EDX points to the string
and ECX specifies the maximum number of characters
the user is permitted to enter.
       .data
       fileName BYTE 80 DUP(0)

       .code
          mov edx,OFFSET fileName
          mov ecx,SIZEOF fileName – 1
          call ReadString




     A null byte is automatically appended to the string.
Example 5
Generate and display ten pseudorandom signed integers
in the range 0 – 99. Pass each integer to WriteInt in EAX
and display it on a separate line.

 .code
    mov ecx,10               ; loop counter

 L1: mov    eax,100          ;   ceiling value
     call   RandomRange      ;   generate random int
     call   WriteInt         ;   display signed int
     call   Crlf             ;   goto next display line
     loop   L1               ;   repeat loop
Example 6
Display a null-terminated string with yellow characters
on a blue background.
      .data
      str1 BYTE "Color output is easy!",0

      .code
         mov    eax,yellow + (blue * 16)
         call   SetTextColor
         mov    edx,OFFSET str1
         call   WriteString
         call   Crlf


 The background color is multiplied by 16 before being added
 to the foreground color.
Stack Operations
•   Runtime Stack
•   PUSH Operation
•   POP Operation
•   PUSH and POP Instructions
•   Using PUSH and POP
•   Example: Reversing a String
•   Related Instructions
Runtime Stack
• Imagine a stack of plates . . .
   – plates are only added to the top
   – plates are only removed from the top
   – LIFO (Last-In, First-Out) structure
   – Push & pop operations
Runtime Stack
• Managed by the CPU, using two registers
    – SS (stack segment)
    – ESP (stack pointer) *   SS




* SP in Real-address mode
PUSH Operation
• A 32-bit push operation decrements the
  stack pointer by 4 and copies a value into
  the location pointed to by the stack pointer.




                PUSH 0A5h
PUSH Operation (cont.)
• Same stack after pushing two more
  integers:




 The stack grows downward. The area below ESP is
 always available (unless the stack has overflowed).
POP Operation
• Copies value at stack[ESP] into a register or variable.
• Adds n to ESP, where n is either 2 or 4.
   – value of n depends on the attribute of the operand
     receiving the data




                      Pop EAX
                      EAX = 00000002
PUSH and POP Instructions
• PUSH syntax:
  – PUSH r/m16
  – PUSH r/m32
  – PUSH imm32
• POP syntax:
  – POP r/m16
  – POP r/m32
When to Use Sacks
•   To save and restore registers
•   To save return address of a procedure
•   To pass arguments
•   To support local variables
Example: Using PUSH and
             POP
Save and restore registers when they contain important
values. PUSH and POP instructions occur in the opposite
order.
 push esi                       ; push registers
 push ecx
 push ebx

 mov    esi,OFFSET dwordVal     ; display some memory
 mov    ecx,LENGTHOF dwordVal
 mov    ebx,TYPE dwordVal
 call   DumpMem

 pop    ebx                     ; restore registers
 pop    ecx                     ; opposite order
 pop    esi
Example: Nested Loop
When creating a nested loop, push the outer loop
counter before entering the inner loop:

        mov ecx,100      ; set outer loop count
  L1:                    ; begin the outer loop
        push ecx         ; save outer loop count

        mov ecx,20       ; set inner loop count
  L2:                    ; begin the inner loop
        ;
        ;
        loop L2          ; repeat the inner loop

        pop ecx          ; restore outer loop count
        loop L1          ; repeat the outer loop
Related Instructions
• PUSHFD and POPFD
  – push and pop the EFLAGS register
• PUSHAD pushes the 32-bit general-purpose
  registers on the stack
  – order: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
    EDI
• POPAD pops the same registers off the
  stack in reverse order
  – PUSHA and POPA do the same for 16-bit
    registers
Example: Reversing String
.data
aName BYTE "Abraham Lincoln",0
nameSize = ($ - aName) – 1

.code
main PROC
; Push the name on the stack.
   mov ecx,nameSize
   mov esi,0
L1:
  movzx eax,aName[esi]      ; get character
   push eax                         ; push on stack
   inc esi
   Loop L1
Example: Reversing String
                            (cont.)
; Pop the name from the stack, in reverse,
; and store in the aName array.
   mov ecx,nameSize
   mov esi,0
L2:
  pop eax                     ; get character
   mov aName[esi],al ; store in string
   inc esi
   Loop L2

  exit
main ENDP
END main
Defining and Using Procedures
•   Creating Procedures
•   Documenting Procedures
•   Example: SumOf Procedure
•   CALL and RET Instructions
•   Nested Procedure Calls
•   Local and Global Labels
•   Procedure Parameters
•   Flowchart Symbols
•   USES Operator
Creating Procedures
• Procedure
   – A named block of statements that ends in a return statement
• Large problems can be divided into smaller tasks to make them
  more manageable
• A procedure is the ASM equivalent of a Java or C++ function
• Following is an assembly language procedure named sample:

          sample PROC
             .
             .
             ret
          sample ENDP
Documenting Procedures
Suggested documentation for each procedure:
• A description of all tasks accomplished by the
  procedure.
• Receives: A list of input parameters; state their usage
  and requirements.
• Returns: A description of values returned by the
  procedure.
• Requires: Optional list of requirements called
  preconditions that must be satisfied before the procedure
  is called.
 If a procedure is called without its preconditions satisfied, it will
  probably not produce the expected output.
Example: SumOf Procedure
;---------------------------------------------------------
SumOf PROC
;
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be
; signed or unsigned.
; Returns: EAX = sum, and the status flags (Carry,
; Overflow, etc.) are changed.
; Requires: nothing
;---------------------------------------------------------
   add eax,ebx
   add eax,ecx
   ret
SumOf ENDP
CALL and RET Instructions
• The CALL instruction calls a procedure
   – pushes offset of next instruction on the stack
   – copies the address of the called procedure into EIP
        ESP = ESP - 4         ; push return address
       SS:ESP = EIP ; onto the stack
       EIP = EIP + relative offset (or displacement)
                         ; update EIP to point to procedure
•   The RET instruction returns from a procedure
    – pops top of stack into EIP
        EIP = SS:ESP ; pop return address
        ESP = ESP + 4        ; from the stack
CALL-RET Example
                           main PROC
                              00000020 call MySub
0000025 is the offset of      00000025 mov eax,ebx
the instruction               .
immediately following         .
the CALL instruction       main ENDP

                           MySub PROC
00000040 is the offset        00000040 mov eax,edx
of the first instruction      .
inside MySub                  .
                              ret
                           MySub ENDP
CALL-RET Example (cont.)
The CALL
instruction pushes
00000025 onto the
stack, and loads
00000040 into EIP




The RET
instruction pops
00000025 from the
stack into EIP

                     (stack shown before RET executes)
Nested Procedure Calls
         By the time Sub3 is called, the
         stack contains all three return
         addresses:
How Is Program Control
          Transferred?
Offset(hex) machine code(hex)
                         main:
                            . . . .
00000002 E816000000              call    sum
00000007 89C3               mov     EBX,EAX
                           . . . .
                                ; end of
  main procedure
                         sum:
0000001D   55               push     EBP
                            . . . .
                              ; end of sum
 procedure
                         avg:
                            . . . .
00000028   E8F0FFFFFF            call    sum
Local and Global Labels
A local label is visible only to statements inside the
same procedure. A global label is visible everywhere.

     main PROC
        jmp L2                   ; error
     L1::                        ; global label
        exit
     main ENDP

     sub2 PROC
     L2:                         ; local label
         jmp L1                  ; ok
         ret
     sub2 ENDP
Procedure Parameters
• A good procedure might be usable in many
  different programs
  – but not if it refers to specific variable names
• Parameters help to make procedures flexible
  because parameter values can change at
  runtime
Parameter Passing
            Mechanisms
• Call-by-value
  – Receives only values
  – Similar to mathematical functions


• Call-by-reference
  – Receives pointers
  – Directly manipulates parameter storage
Parameter Passing
• Parameter passing is different and complicated than in a high-
  level language
• In assembly language
   – You should first place all required parameters in a mutually
      accessible storage area
   – Then call the procedure
• Types of storage area used
   – Registers (general-purpose registers are used)
   – Memory (stack is used)
• Two common methods of parameter passing:
   – Register method
   – Stack method
Parameter Passing: Register
          Method
The ArraySum procedure calculates the sum of an array. It
makes two references to specific variable names:
ArraySum PROC                             Call-by-reference
    mov esi,0                  ; array index
    mov eax,0                  ; set the sum to zero
    mov ecx,LENGTHOF myarray   ; set number of elements

L1: add eax,myArray[esi]       ; add each integer to sum
    add esi,4                  ; point to next integer
    loop L1                    ; repeat for array size

    mov theSum,eax             ; store the sum
    ret
ArraySum ENDP


 What if you wanted to calculate the sum of two or
 three arrays within the same program?
Procedure Parameters (cont.)
This version of ArraySum returns the sum of any
doubleword array whose address is in ESI. The sum is
returned in EAX:
ArraySum PROC
; Receives: ESI points to an array of doublewords,
;   ECX = number of array elements.
; Returns: EAX = sum
;-----------------------------------------------------
    mov eax,0                 ; set the sum to zero

L1: add eax,[esi]            ; add each integer to sum
    add esi,4                ; point to next integer
    loop L1                  ; repeat for array size

    ret
ArraySum ENDP
Calling ArraySum
.data
array DWORD 10000h, 20000h, 30000h,
  40000h
theSum DWORD ?
.code
main PROC
  mov    esi, OFFSET array
  mov    ecx, LENGTHOF array
  call   ArraySum
 mov        theSum, eax
USES Operator
• Lists the registers that will be preserved
 ArraySum PROC USES esi ecx
    mov eax,0                 ; set the sum to zero
    etc.

 MASM generates the code shown in blue:
 ArraySum PROC
    push esi
    push ecx
    .
    .
    pop ecx
    pop esi
    ret
 ArraySum ENDP
When Not to Push a Register
The sum of the three registers is stored in EAX on line
(3), but the POP instruction replaces it with the starting
value of EAX on line (4):
  SumOf PROC                   ;   sum of three integers
     push eax                  ;   1
     add eax,ebx               ;   2
     add eax,ecx               ;   3
     pop eax                   ;   4
     ret
  SumOf ENDP

                                              Call-by-value
  SumOf PROC                   ; sum of three integers
     add eax,ebx               ; 2
     add eax,ecx               ; 3
     ret
  SumOf ENDP
Pros and Cons of the Register
              Method
• Advantages
  – Convenient and easier
  – Faster

• Disadvantages
  – Only a few parameters can be passed using
    the register method
       – Only a small number of registers are available
  – Often these registers are not free
       – freeing them by pushing their values onto the stack
         negates the second advantage
Parameter Passing: Stack
            Method
• All parameter values are pushed onto the
  stack before calling the procedure
• Example:
    push   number1
    push   number2
    call   sum
Accessing Parameters on the
             Stack
• Parameter values are buried inside the
  stack
• We can use the following to read
  number2
     mov    EBX,[ESP+4]
  Problem: The ESP value changes with
  push and pop operations
     • Relative offset depends of the stack
       operations performed
• Is there a better alternative?
Using BP Register to Access Parameters
• Preferred method of accessing parameters on the stack is
       mov EBP,ESP
       mov EAX,[EBP+4]
  to access number2 in the previous example
• Problem: BP contents are lost!
   – We have to preserve the contents of BP
   – Use the stack (caution: offset value changes)
       push EBP
       mov EBP,ESP
Clearing the Stack Parameters




Stack state after   Stack state after   Stack state after
  saving EBP          pop EBP           executing ret
Clearing the Stack Parameters (cont.)
• Two ways of clearing the unwanted parameters on the stack:
   – Use the optional-integer in the ret instruction
      • in the previous example, you can use
              ret 4
        EIP = SS:ESP
        ESP = ESP + 4 + optional-integer
   – Add the constant to ESP in calling procedure (C uses this
     method)
              push number1
              push number2
              call sum
              add ESP,4
Housekeeping Issues
• Who should clean up the stack of unwanted
  parameters?
  – Calling procedure
    • Need to update ESP with every procedure call
    • Not really needed if procedures use fixed number of
      parameters
    • C uses this method because C allows variable
      number of parameters
  – Called procedure
    • Code becomes modular (parameter clearing is done
      in only one place)
    • Cannot be used with variable number of parameters
Housekeeping Issues (cont.)
• Need to preserve the state (contents of the registers) of the
  calling procedure across a procedure call.
       • Stack is used for this purpose
• Which registers should be saved?
   – Save those registers that are used by the calling procedure
      but are modified by the called procedure
       • Might cause problems as the set of registers used by the
         calling and called procedures changes over time
   – Save all registers (brute force method) by using pusha
       • Increased overhead (pusha takes 5 clocks as opposed 1 to
         save a register)
Housekeeping Issues (cont.)
• Who should preserve the state of the calling
  procedure?
  – Calling procedure
     • Need to know the registers used by the called
       procedure
     • Need to include instructions to save and restore
       registers with every procedure call
     • Causes program maintenance problems
  – Called procedure
     • Preferred method as the code becomes modular (state
       preservation is done only once and in one place)
     • Avoids the program maintenance problems mentioned
Housekeeping Issues (cont.)


Stack state after pusha
Flowchart Symbols
• The following symbols are the basic
  building blocks of flowcharts:
Flowchart
  for the
ArraySum
Procedure
Program Design Using Procedures
• Top-Down Design (functional decomposition)
  involves the following:
   – design your program before starting to code
   – break large tasks into smaller ones
   – use a hierarchical structure based on procedure
     calls
   – test individual procedures separately
Integer Summation Program
Description: Write a program that prompts the
user for multiple 32-bit integers, stores them in
an array, calculates the sum of the array, and
displays the sum on the screen.

 Main steps:
 • Prompt user for multiple integers
 • Calculate the sum of the array
 • Display the sum
Procedure Design (cont.)
Main
 Clrscr              ; clear screen
 PromptForIntegers
     WriteString     ; display string
     ReadInt         ; input integer
 ArraySum            ; sum the integers
 DisplaySum
     WriteString     ; display string
     WriteInt        ; display integer
Structure Chart (cont.)




gray indicates library procedure
PromptForIntegers
PromptForIntegers PROC
;
; Prompts the user for an array of integers, and
; fills the array with the user's input.
; Receives: ESI points to the array,
;         ECX = array size
; Returns: nothing
;--------------------------------------------------
     pushad                     ; save all registers

   mov edx,OFFSET prompt1 ; address of the prompt
   cmp ecx,0         ; array size <= 0?
   jle L2                ; yes: quit
PromptForIntegers
L1:
  call WriteString ; display string
  call ReadInt             ; read integer into EAX
  call Crlf            ; go to next output line
  mov [esi],eax            ; store in array
  add esi,4        ; next integer
  loop L1

L2:
  popad            ; restore all registers
  ret
PromptForIntegers ENDP
DisplaySum
DisplaySum PROC
; Displays the sum on the screen
; Receives: EAX = the sum
; Returns: nothing
;---------------------------------------------------
   push edx
   mov edx,OFFSET prompt2 ; display message
   call WriteString
   call WriteInt                      ; display EAX
   call Crlf
   pop edx
   ret
DisplaySum ENDP
Code Fragment
IntegerCount = 3                      ; array size
.data
prompt1 BYTE "Enter a signed integer: ",0
prompt2 BYTE "The sum of the integers is: ",0
array DWORD IntegerCount DUP(?)
.code
main PROC
   call Clrscr
   mov esi,OFFSET array
   mov ecx,IntegerCount
   call PromptForIntegers
   call ArraySum
   call DisplaySum
   exit
main ENDP
Assem -lect-6

More Related Content

What's hot

CNIT 127 Ch 2: Stack overflows on Linux
CNIT 127 Ch 2: Stack overflows on LinuxCNIT 127 Ch 2: Stack overflows on Linux
CNIT 127 Ch 2: Stack overflows on LinuxSam Bowne
 
4Developers 2018: The turbulent road to byte-addressable storage support at t...
4Developers 2018: The turbulent road to byte-addressable storage support at t...4Developers 2018: The turbulent road to byte-addressable storage support at t...
4Developers 2018: The turbulent road to byte-addressable storage support at t...PROIDEA
 
Linuxppt
LinuxpptLinuxppt
LinuxpptReka
 
Introduction to debugging linux applications
Introduction to debugging linux applicationsIntroduction to debugging linux applications
Introduction to debugging linux applicationscommiebstrd
 
Unit 4 assembly language programming
Unit 4   assembly language programmingUnit 4   assembly language programming
Unit 4 assembly language programmingKartik Sharma
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...Bilal Amjad
 
Assembly Language Compiler Implementation
Assembly Language Compiler ImplementationAssembly Language Compiler Implementation
Assembly Language Compiler ImplementationRAVI TEJA KOMMA
 
Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086Shehrevar Davierwala
 
8086 arch instns
8086 arch instns8086 arch instns
8086 arch instnsRam Babu
 
CNIT 127: Ch 3: Shellcode
CNIT 127: Ch 3: ShellcodeCNIT 127: Ch 3: Shellcode
CNIT 127: Ch 3: ShellcodeSam Bowne
 
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- PipeliningLec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- PipeliningHsien-Hsin Sean Lee, Ph.D.
 
Linux 系統程式--第一章 i/o 函式
Linux 系統程式--第一章 i/o 函式Linux 系統程式--第一章 i/o 函式
Linux 系統程式--第一章 i/o 函式艾鍗科技
 

What's hot (20)

Lecture6
Lecture6Lecture6
Lecture6
 
CNIT 127 Ch 2: Stack overflows on Linux
CNIT 127 Ch 2: Stack overflows on LinuxCNIT 127 Ch 2: Stack overflows on Linux
CNIT 127 Ch 2: Stack overflows on Linux
 
Assembly 8086
Assembly 8086Assembly 8086
Assembly 8086
 
4Developers 2018: The turbulent road to byte-addressable storage support at t...
4Developers 2018: The turbulent road to byte-addressable storage support at t...4Developers 2018: The turbulent road to byte-addressable storage support at t...
4Developers 2018: The turbulent road to byte-addressable storage support at t...
 
Linuxppt
LinuxpptLinuxppt
Linuxppt
 
Linuxppt
LinuxpptLinuxppt
Linuxppt
 
Assembler (2)
Assembler (2)Assembler (2)
Assembler (2)
 
Lecture5(1)
Lecture5(1)Lecture5(1)
Lecture5(1)
 
Introduction to debugging linux applications
Introduction to debugging linux applicationsIntroduction to debugging linux applications
Introduction to debugging linux applications
 
Unit 4 assembly language programming
Unit 4   assembly language programmingUnit 4   assembly language programming
Unit 4 assembly language programming
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 4 (Introduction ...
 
Assembly Language Compiler Implementation
Assembly Language Compiler ImplementationAssembly Language Compiler Implementation
Assembly Language Compiler Implementation
 
Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086Assembly language programming_fundamentals 8086
Assembly language programming_fundamentals 8086
 
8086 arch instns
8086 arch instns8086 arch instns
8086 arch instns
 
Emu8086
Emu8086Emu8086
Emu8086
 
Assembly language part I
Assembly language part IAssembly language part I
Assembly language part I
 
Lec05
Lec05Lec05
Lec05
 
CNIT 127: Ch 3: Shellcode
CNIT 127: Ch 3: ShellcodeCNIT 127: Ch 3: Shellcode
CNIT 127: Ch 3: Shellcode
 
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- PipeliningLec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
 
Linux 系統程式--第一章 i/o 函式
Linux 系統程式--第一章 i/o 函式Linux 系統程式--第一章 i/o 函式
Linux 系統程式--第一章 i/o 函式
 

Viewers also liked

Развитие письма: от рисунка к букве.
Развитие письма: от рисунка к букве. Развитие письма: от рисунка к букве.
Развитие письма: от рисунка к букве. pmlectures
 
Rowan Dancer Profile (Interactive Assignment)
Rowan Dancer Profile (Interactive Assignment)Rowan Dancer Profile (Interactive Assignment)
Rowan Dancer Profile (Interactive Assignment)Gab410
 
Apresentação consultoria mundicel
Apresentação consultoria mundicelApresentação consultoria mundicel
Apresentação consultoria mundicelLuciano Senise
 
Media A2 Coursework Evaluation
Media A2 Coursework Evaluation Media A2 Coursework Evaluation
Media A2 Coursework Evaluation radgeorge
 

Viewers also liked (7)

Развитие письма: от рисунка к букве.
Развитие письма: от рисунка к букве. Развитие письма: от рисунка к букве.
Развитие письма: от рисунка к букве.
 
Bb k12 lps
Bb k12 lpsBb k12 lps
Bb k12 lps
 
Estadistica cuadros
Estadistica cuadrosEstadistica cuadros
Estadistica cuadros
 
Rowan Dancer Profile (Interactive Assignment)
Rowan Dancer Profile (Interactive Assignment)Rowan Dancer Profile (Interactive Assignment)
Rowan Dancer Profile (Interactive Assignment)
 
Apresentação consultoria mundicel
Apresentação consultoria mundicelApresentação consultoria mundicel
Apresentação consultoria mundicel
 
PowerPoint
PowerPointPowerPoint
PowerPoint
 
Media A2 Coursework Evaluation
Media A2 Coursework Evaluation Media A2 Coursework Evaluation
Media A2 Coursework Evaluation
 

Similar to Assem -lect-6

lec15_x86procedure_4up.pdf
lec15_x86procedure_4up.pdflec15_x86procedure_4up.pdf
lec15_x86procedure_4up.pdfhasan58964
 
Advanced procedures in assembly language Full chapter ppt
Advanced procedures in assembly language Full chapter pptAdvanced procedures in assembly language Full chapter ppt
Advanced procedures in assembly language Full chapter pptMuhammad Sikandar Mustafa
 
Creating a Fibonacci Generator in Assembly - by Willem van Ketwich
Creating a Fibonacci Generator in Assembly - by Willem van KetwichCreating a Fibonacci Generator in Assembly - by Willem van Ketwich
Creating a Fibonacci Generator in Assembly - by Willem van KetwichWillem van Ketwich
 
Assembly lab up to 6 up (1)
Assembly lab up to 6 up (1)Assembly lab up to 6 up (1)
Assembly lab up to 6 up (1)ilias ahmed
 
Reversing & Malware Analysis Training Part 4 - Assembly Programming Basics
Reversing & Malware Analysis Training Part 4 - Assembly Programming BasicsReversing & Malware Analysis Training Part 4 - Assembly Programming Basics
Reversing & Malware Analysis Training Part 4 - Assembly Programming Basicssecurityxploded
 
Reversing malware analysis training part4 assembly programming basics
Reversing malware analysis training part4 assembly programming basicsReversing malware analysis training part4 assembly programming basics
Reversing malware analysis training part4 assembly programming basicsCysinfo Cyber Security Community
 
other-architectures.ppt
other-architectures.pptother-architectures.ppt
other-architectures.pptJaya Chavan
 
Buffer overflow – Smashing The Stack
Buffer overflow – Smashing The StackBuffer overflow – Smashing The Stack
Buffer overflow – Smashing The StackTomer Zait
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...Bilal Amjad
 
Buffer Overflow - Smashing the Stack
Buffer Overflow - Smashing the StackBuffer Overflow - Smashing the Stack
Buffer Overflow - Smashing the StackironSource
 

Similar to Assem -lect-6 (20)

The Stack and Buffer Overflows
The Stack and Buffer OverflowsThe Stack and Buffer Overflows
The Stack and Buffer Overflows
 
lec15_x86procedure_4up.pdf
lec15_x86procedure_4up.pdflec15_x86procedure_4up.pdf
lec15_x86procedure_4up.pdf
 
Advance ROP Attacks
Advance ROP AttacksAdvance ROP Attacks
Advance ROP Attacks
 
Advanced procedures in assembly language Full chapter ppt
Advanced procedures in assembly language Full chapter pptAdvanced procedures in assembly language Full chapter ppt
Advanced procedures in assembly language Full chapter ppt
 
[ASM]Lab6
[ASM]Lab6[ASM]Lab6
[ASM]Lab6
 
X86 assembly nasm syntax
X86 assembly nasm syntaxX86 assembly nasm syntax
X86 assembly nasm syntax
 
Creating a Fibonacci Generator in Assembly - by Willem van Ketwich
Creating a Fibonacci Generator in Assembly - by Willem van KetwichCreating a Fibonacci Generator in Assembly - by Willem van Ketwich
Creating a Fibonacci Generator in Assembly - by Willem van Ketwich
 
[ASM]Lab4
[ASM]Lab4[ASM]Lab4
[ASM]Lab4
 
Exploitation Crash Course
Exploitation Crash CourseExploitation Crash Course
Exploitation Crash Course
 
Assembly fundamentals
Assembly fundamentalsAssembly fundamentals
Assembly fundamentals
 
Assembly lab up to 6 up (1)
Assembly lab up to 6 up (1)Assembly lab up to 6 up (1)
Assembly lab up to 6 up (1)
 
Reversing & Malware Analysis Training Part 4 - Assembly Programming Basics
Reversing & Malware Analysis Training Part 4 - Assembly Programming BasicsReversing & Malware Analysis Training Part 4 - Assembly Programming Basics
Reversing & Malware Analysis Training Part 4 - Assembly Programming Basics
 
[ASM]Lab8
[ASM]Lab8[ASM]Lab8
[ASM]Lab8
 
Reversing malware analysis training part4 assembly programming basics
Reversing malware analysis training part4 assembly programming basicsReversing malware analysis training part4 assembly programming basics
Reversing malware analysis training part4 assembly programming basics
 
other-architectures.ppt
other-architectures.pptother-architectures.ppt
other-architectures.ppt
 
Buffer overflow – Smashing The Stack
Buffer overflow – Smashing The StackBuffer overflow – Smashing The Stack
Buffer overflow – Smashing The Stack
 
It322 intro 3
It322 intro 3It322 intro 3
It322 intro 3
 
ISA.pptx
ISA.pptxISA.pptx
ISA.pptx
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 8 (The Stack and...
 
Buffer Overflow - Smashing the Stack
Buffer Overflow - Smashing the StackBuffer Overflow - Smashing the Stack
Buffer Overflow - Smashing the Stack
 

Assem -lect-6

  • 1. Computer Organization & Assembly Languages Procedure
  • 2. Chapter Overview • Stack Operations • Defining and Using Procedures • Program Design Using Procedures
  • 3. Link Library Overview • A file containing procedures that have been compiled into machine code – constructed from one or more OBJ files • To build a library, . . . – start with one or more ASM source files – assemble each into an OBJ file – create an empty library file (extension .LIB) – add the OBJ file(s) to the library file, using the Microsoft LIB utility
  • 4. Calling a Library Procedure • Call a library procedure using the CALL instruction. Some procedures require input arguments. The INCLUDE directive copies in the procedure prototypes (declarations). • The following example displays "1234" on the console: Irvine32.inc INCLUDE .code mov eax,1234h ; input argument call WriteHex ; show hex number call Crlf ; end of line
  • 5. Linking to a Library • Your programs link to Irvine32.lib using the linker command inside a batch file named make32.bat. • Notice the two LIB files: Irvine32.lib, and kernel32.lib – the latter is part of the Microsoft Win32 Software Development Kit (SDK)
  • 6. Library Procedures - Overview CloseFile – Closes an open disk file Clrscr - Clears console, locates cursor at upper left corner CreateOutputFile - Creates new disk file for writing in output mode Crlf - Writes end of line sequence to standard output Delay - Pauses program execution for n millisecond interval DumpMem - Writes block of memory to standard output in hex DumpRegs – Displays general-purpose registers and flags (hex) GetCommandtail - Copies command-line args into array of bytes GetMaxXY - Gets number of cols, rows in console window buffer GetMseconds - Returns milliseconds elapsed since midnight
  • 7. Library Procedures - Overview (cont.) GetTextColor - Returns active foreground and background text colors in the console window Gotoxy - Locates cursor at row and column on the console IsDigit - Sets Zero flag if AL contains ASCII code for decimal digit (0–9) MsgBox, MsgBoxAsk – Display popup message boxes OpenInputFile – Opens existing file for input ParseDecimal32 – Converts unsigned integer string to binary ParseInteger32 - Converts signed integer string to binary Random32 - Generates 32-bit pseudorandom integer in the range 0 to FFFFFFFFh Randomize - Seeds the random number generator RandomRange - Generates a pseudorandom integer within a specified range ReadChar - Reads a single character from standard input
  • 8. Library Procedures - Overview (cont.) ReadFromFile – Reads input disk file into buffer ReadDec - Reads 32-bit unsigned decimal integer from keyboard ReadHex - Reads 32-bit hexadecimal integer from keyboard ReadInt - Reads 32-bit signed decimal integer from keyboard ReadKey – Reads character from keyboard input buffer ReadString - Reads string from standard input, terminated by [Enter] SetTextColor - Sets foreground and background colors of all subsequent console text output StrLength – Returns length of a string WaitMsg - Displays message, waits for Enter key to be pressed WriteBin - Writes unsigned 32-bit integer in ASCII binary format. WriteBinB – Writes binary integer in byte, word, or doubleword format WriteChar - Writes a single character to standard output
  • 9. Library Procedures - Overview (cont.) WriteDec - Writes unsigned 32-bit integer in decimal format WriteHex - Writes an unsigned 32-bit integer in hexadecimal format WriteHexB – Writes byte, word, or doubleword in hexadecimal format WriteInt - Writes signed 32-bit integer in decimal format WriteString - Writes null-terminated string to console window WriteToFile - Writes buffer to output file WriteWindowsMsg - Displays most recent error message generated by MS-Windows
  • 10. Example 1 Clear the screen, delay the program for 500 milliseconds, and dump the registers and flags. .code call Clrscr mov eax,500 call Delay call DumpRegs Sample output: EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000 ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6 EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0
  • 11. Example 2 Display a null-terminated string and move the cursor to the beginning of the next screen line. .data str1 BYTE "Assembly language is easy!",0 .code mov edx,OFFSET str1 call WriteString call Crlf
  • 12. Example 3 Display an unsigned integer in binary, decimal, and hexadecimal, each on a separate line. IntVal = 35 .code mov eax,IntVal call WriteBin ; display binary call Crlf call WriteDec ; display decimal call Crlf call WriteHex ; display hexadecimal call Crlf Sample output: 0000 0000 0000 0000 0000 0000 0010 0011 35 23
  • 13. Example 4 Input a string from the user. EDX points to the string and ECX specifies the maximum number of characters the user is permitted to enter. .data fileName BYTE 80 DUP(0) .code mov edx,OFFSET fileName mov ecx,SIZEOF fileName – 1 call ReadString A null byte is automatically appended to the string.
  • 14. Example 5 Generate and display ten pseudorandom signed integers in the range 0 – 99. Pass each integer to WriteInt in EAX and display it on a separate line. .code mov ecx,10 ; loop counter L1: mov eax,100 ; ceiling value call RandomRange ; generate random int call WriteInt ; display signed int call Crlf ; goto next display line loop L1 ; repeat loop
  • 15. Example 6 Display a null-terminated string with yellow characters on a blue background. .data str1 BYTE "Color output is easy!",0 .code mov eax,yellow + (blue * 16) call SetTextColor mov edx,OFFSET str1 call WriteString call Crlf The background color is multiplied by 16 before being added to the foreground color.
  • 16. Stack Operations • Runtime Stack • PUSH Operation • POP Operation • PUSH and POP Instructions • Using PUSH and POP • Example: Reversing a String • Related Instructions
  • 17. Runtime Stack • Imagine a stack of plates . . . – plates are only added to the top – plates are only removed from the top – LIFO (Last-In, First-Out) structure – Push & pop operations
  • 18. Runtime Stack • Managed by the CPU, using two registers – SS (stack segment) – ESP (stack pointer) * SS * SP in Real-address mode
  • 19. PUSH Operation • A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location pointed to by the stack pointer. PUSH 0A5h
  • 20. PUSH Operation (cont.) • Same stack after pushing two more integers: The stack grows downward. The area below ESP is always available (unless the stack has overflowed).
  • 21. POP Operation • Copies value at stack[ESP] into a register or variable. • Adds n to ESP, where n is either 2 or 4. – value of n depends on the attribute of the operand receiving the data Pop EAX EAX = 00000002
  • 22. PUSH and POP Instructions • PUSH syntax: – PUSH r/m16 – PUSH r/m32 – PUSH imm32 • POP syntax: – POP r/m16 – POP r/m32
  • 23. When to Use Sacks • To save and restore registers • To save return address of a procedure • To pass arguments • To support local variables
  • 24. Example: Using PUSH and POP Save and restore registers when they contain important values. PUSH and POP instructions occur in the opposite order. push esi ; push registers push ecx push ebx mov esi,OFFSET dwordVal ; display some memory mov ecx,LENGTHOF dwordVal mov ebx,TYPE dwordVal call DumpMem pop ebx ; restore registers pop ecx ; opposite order pop esi
  • 25. Example: Nested Loop When creating a nested loop, push the outer loop counter before entering the inner loop: mov ecx,100 ; set outer loop count L1: ; begin the outer loop push ecx ; save outer loop count mov ecx,20 ; set inner loop count L2: ; begin the inner loop ; ; loop L2 ; repeat the inner loop pop ecx ; restore outer loop count loop L1 ; repeat the outer loop
  • 26. Related Instructions • PUSHFD and POPFD – push and pop the EFLAGS register • PUSHAD pushes the 32-bit general-purpose registers on the stack – order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI • POPAD pops the same registers off the stack in reverse order – PUSHA and POPA do the same for 16-bit registers
  • 27. Example: Reversing String .data aName BYTE "Abraham Lincoln",0 nameSize = ($ - aName) – 1 .code main PROC ; Push the name on the stack. mov ecx,nameSize mov esi,0 L1: movzx eax,aName[esi] ; get character push eax ; push on stack inc esi Loop L1
  • 28. Example: Reversing String (cont.) ; Pop the name from the stack, in reverse, ; and store in the aName array. mov ecx,nameSize mov esi,0 L2: pop eax ; get character mov aName[esi],al ; store in string inc esi Loop L2 exit main ENDP END main
  • 29. Defining and Using Procedures • Creating Procedures • Documenting Procedures • Example: SumOf Procedure • CALL and RET Instructions • Nested Procedure Calls • Local and Global Labels • Procedure Parameters • Flowchart Symbols • USES Operator
  • 30. Creating Procedures • Procedure – A named block of statements that ends in a return statement • Large problems can be divided into smaller tasks to make them more manageable • A procedure is the ASM equivalent of a Java or C++ function • Following is an assembly language procedure named sample: sample PROC . . ret sample ENDP
  • 31. Documenting Procedures Suggested documentation for each procedure: • A description of all tasks accomplished by the procedure. • Receives: A list of input parameters; state their usage and requirements. • Returns: A description of values returned by the procedure. • Requires: Optional list of requirements called preconditions that must be satisfied before the procedure is called. If a procedure is called without its preconditions satisfied, it will probably not produce the expected output.
  • 32. Example: SumOf Procedure ;--------------------------------------------------------- SumOf PROC ; ; Calculates and returns the sum of three 32-bit integers. ; Receives: EAX, EBX, ECX, the three integers. May be ; signed or unsigned. ; Returns: EAX = sum, and the status flags (Carry, ; Overflow, etc.) are changed. ; Requires: nothing ;--------------------------------------------------------- add eax,ebx add eax,ecx ret SumOf ENDP
  • 33. CALL and RET Instructions • The CALL instruction calls a procedure – pushes offset of next instruction on the stack – copies the address of the called procedure into EIP ESP = ESP - 4 ; push return address SS:ESP = EIP ; onto the stack EIP = EIP + relative offset (or displacement) ; update EIP to point to procedure • The RET instruction returns from a procedure – pops top of stack into EIP EIP = SS:ESP ; pop return address ESP = ESP + 4 ; from the stack
  • 34. CALL-RET Example main PROC 00000020 call MySub 0000025 is the offset of 00000025 mov eax,ebx the instruction . immediately following . the CALL instruction main ENDP MySub PROC 00000040 is the offset 00000040 mov eax,edx of the first instruction . inside MySub . ret MySub ENDP
  • 35. CALL-RET Example (cont.) The CALL instruction pushes 00000025 onto the stack, and loads 00000040 into EIP The RET instruction pops 00000025 from the stack into EIP (stack shown before RET executes)
  • 36. Nested Procedure Calls By the time Sub3 is called, the stack contains all three return addresses:
  • 37. How Is Program Control Transferred? Offset(hex) machine code(hex) main: . . . . 00000002 E816000000 call sum 00000007 89C3 mov EBX,EAX . . . . ; end of main procedure sum: 0000001D 55 push EBP . . . . ; end of sum procedure avg: . . . . 00000028 E8F0FFFFFF call sum
  • 38. Local and Global Labels A local label is visible only to statements inside the same procedure. A global label is visible everywhere. main PROC jmp L2 ; error L1:: ; global label exit main ENDP sub2 PROC L2: ; local label jmp L1 ; ok ret sub2 ENDP
  • 39. Procedure Parameters • A good procedure might be usable in many different programs – but not if it refers to specific variable names • Parameters help to make procedures flexible because parameter values can change at runtime
  • 40. Parameter Passing Mechanisms • Call-by-value – Receives only values – Similar to mathematical functions • Call-by-reference – Receives pointers – Directly manipulates parameter storage
  • 41. Parameter Passing • Parameter passing is different and complicated than in a high- level language • In assembly language – You should first place all required parameters in a mutually accessible storage area – Then call the procedure • Types of storage area used – Registers (general-purpose registers are used) – Memory (stack is used) • Two common methods of parameter passing: – Register method – Stack method
  • 42. Parameter Passing: Register Method The ArraySum procedure calculates the sum of an array. It makes two references to specific variable names: ArraySum PROC Call-by-reference mov esi,0 ; array index mov eax,0 ; set the sum to zero mov ecx,LENGTHOF myarray ; set number of elements L1: add eax,myArray[esi] ; add each integer to sum add esi,4 ; point to next integer loop L1 ; repeat for array size mov theSum,eax ; store the sum ret ArraySum ENDP What if you wanted to calculate the sum of two or three arrays within the same program?
  • 43. Procedure Parameters (cont.) This version of ArraySum returns the sum of any doubleword array whose address is in ESI. The sum is returned in EAX: ArraySum PROC ; Receives: ESI points to an array of doublewords, ; ECX = number of array elements. ; Returns: EAX = sum ;----------------------------------------------------- mov eax,0 ; set the sum to zero L1: add eax,[esi] ; add each integer to sum add esi,4 ; point to next integer loop L1 ; repeat for array size ret ArraySum ENDP
  • 44. Calling ArraySum .data array DWORD 10000h, 20000h, 30000h, 40000h theSum DWORD ? .code main PROC mov esi, OFFSET array mov ecx, LENGTHOF array call ArraySum mov theSum, eax
  • 45. USES Operator • Lists the registers that will be preserved ArraySum PROC USES esi ecx mov eax,0 ; set the sum to zero etc. MASM generates the code shown in blue: ArraySum PROC push esi push ecx . . pop ecx pop esi ret ArraySum ENDP
  • 46. When Not to Push a Register The sum of the three registers is stored in EAX on line (3), but the POP instruction replaces it with the starting value of EAX on line (4): SumOf PROC ; sum of three integers push eax ; 1 add eax,ebx ; 2 add eax,ecx ; 3 pop eax ; 4 ret SumOf ENDP Call-by-value SumOf PROC ; sum of three integers add eax,ebx ; 2 add eax,ecx ; 3 ret SumOf ENDP
  • 47. Pros and Cons of the Register Method • Advantages – Convenient and easier – Faster • Disadvantages – Only a few parameters can be passed using the register method – Only a small number of registers are available – Often these registers are not free – freeing them by pushing their values onto the stack negates the second advantage
  • 48. Parameter Passing: Stack Method • All parameter values are pushed onto the stack before calling the procedure • Example: push number1 push number2 call sum
  • 49. Accessing Parameters on the Stack • Parameter values are buried inside the stack • We can use the following to read number2 mov EBX,[ESP+4] Problem: The ESP value changes with push and pop operations • Relative offset depends of the stack operations performed • Is there a better alternative?
  • 50. Using BP Register to Access Parameters • Preferred method of accessing parameters on the stack is mov EBP,ESP mov EAX,[EBP+4] to access number2 in the previous example • Problem: BP contents are lost! – We have to preserve the contents of BP – Use the stack (caution: offset value changes) push EBP mov EBP,ESP
  • 51. Clearing the Stack Parameters Stack state after Stack state after Stack state after saving EBP pop EBP executing ret
  • 52. Clearing the Stack Parameters (cont.) • Two ways of clearing the unwanted parameters on the stack: – Use the optional-integer in the ret instruction • in the previous example, you can use ret 4 EIP = SS:ESP ESP = ESP + 4 + optional-integer – Add the constant to ESP in calling procedure (C uses this method) push number1 push number2 call sum add ESP,4
  • 53. Housekeeping Issues • Who should clean up the stack of unwanted parameters? – Calling procedure • Need to update ESP with every procedure call • Not really needed if procedures use fixed number of parameters • C uses this method because C allows variable number of parameters – Called procedure • Code becomes modular (parameter clearing is done in only one place) • Cannot be used with variable number of parameters
  • 54. Housekeeping Issues (cont.) • Need to preserve the state (contents of the registers) of the calling procedure across a procedure call. • Stack is used for this purpose • Which registers should be saved? – Save those registers that are used by the calling procedure but are modified by the called procedure • Might cause problems as the set of registers used by the calling and called procedures changes over time – Save all registers (brute force method) by using pusha • Increased overhead (pusha takes 5 clocks as opposed 1 to save a register)
  • 55. Housekeeping Issues (cont.) • Who should preserve the state of the calling procedure? – Calling procedure • Need to know the registers used by the called procedure • Need to include instructions to save and restore registers with every procedure call • Causes program maintenance problems – Called procedure • Preferred method as the code becomes modular (state preservation is done only once and in one place) • Avoids the program maintenance problems mentioned
  • 57. Flowchart Symbols • The following symbols are the basic building blocks of flowcharts:
  • 58. Flowchart for the ArraySum Procedure
  • 59. Program Design Using Procedures • Top-Down Design (functional decomposition) involves the following: – design your program before starting to code – break large tasks into smaller ones – use a hierarchical structure based on procedure calls – test individual procedures separately
  • 60. Integer Summation Program Description: Write a program that prompts the user for multiple 32-bit integers, stores them in an array, calculates the sum of the array, and displays the sum on the screen. Main steps: • Prompt user for multiple integers • Calculate the sum of the array • Display the sum
  • 61. Procedure Design (cont.) Main Clrscr ; clear screen PromptForIntegers WriteString ; display string ReadInt ; input integer ArraySum ; sum the integers DisplaySum WriteString ; display string WriteInt ; display integer
  • 62. Structure Chart (cont.) gray indicates library procedure
  • 63. PromptForIntegers PromptForIntegers PROC ; ; Prompts the user for an array of integers, and ; fills the array with the user's input. ; Receives: ESI points to the array, ; ECX = array size ; Returns: nothing ;-------------------------------------------------- pushad ; save all registers mov edx,OFFSET prompt1 ; address of the prompt cmp ecx,0 ; array size <= 0? jle L2 ; yes: quit
  • 64. PromptForIntegers L1: call WriteString ; display string call ReadInt ; read integer into EAX call Crlf ; go to next output line mov [esi],eax ; store in array add esi,4 ; next integer loop L1 L2: popad ; restore all registers ret PromptForIntegers ENDP
  • 65. DisplaySum DisplaySum PROC ; Displays the sum on the screen ; Receives: EAX = the sum ; Returns: nothing ;--------------------------------------------------- push edx mov edx,OFFSET prompt2 ; display message call WriteString call WriteInt ; display EAX call Crlf pop edx ret DisplaySum ENDP
  • 66. Code Fragment IntegerCount = 3 ; array size .data prompt1 BYTE "Enter a signed integer: ",0 prompt2 BYTE "The sum of the integers is: ",0 array DWORD IntegerCount DUP(?) .code main PROC call Clrscr mov esi,OFFSET array mov ecx,IntegerCount call PromptForIntegers call ArraySum call DisplaySum exit main ENDP