Declaration of arrays
type arrayName [ arraySize ];
Ex-double balance[10];
 Initializing Arrays
Ex-double balance[5] = {1000.0, 2.0, 3.4, 7.0,
50.0};
If you omit the size of the array, an array just
big enough to hold the initialization is created.
Therefore, if you write −
Ex-double balance[] = {1000.0, 2.0, 3.4, 7.0,
50.0};
 Initializing Arrays
Ex-double balance[5] = {1000.0, 2.0, 3.4, 7.0,
50.0};
If you omit the size of the array, an array just
big enough to hold the initialization is created.
Therefore, if you write −
Ex-double balance[] = {1000.0, 2.0, 3.4, 7.0,
50.0};
Initializing Arrays
You will create exactly the same array as
you did in the previous example. Following
is an example to assign a single element
of the array −
Ex-balance[4] = 50.0;
Shown below is the pictorial representation
of the array:
double salary = balance[4];
#include <stdio.h>
int main ()
{
int a[10],i,size;
printf(“nhow many no of elements u want to scan”);
scanf(“%d”,&size);
printf(“nEnter the elements in the array”);
for(i=0;i<size;i++)
{
scanf(“%d”,&a[i]);
} //end for
for(i=0;i<size;i++)
{
printf(“The array is %d”,a[i]); //Displaying Array
} //end for
return 0;
}
1
2
3
4
5
type name[size1][size2]...[sizeN];
multidimensional array is the two-dimensional
array
type arrayName [ x ][ y ];
Initializing Two-Dimensional Arrays
int a[3][4] = { {0, 1, 2, 3} , /* initializers for
{4, 5, 6, 7} ,
{8, 9, 10, 11} /* initializers for row
/* initializers for row indexed by 2 */ };
Accessing Two-Dimensional Array
Elements
int val = a[2][3];
For example, the following declaration
creates a three dimensional integer array −
Ex-int threedim[5][10][4];
void myFunction(int param[10])
{ . . .
//Statement Excution
}
Passing Arrays as Function
Arguments in C
ADT is useful tool for specifying the logical
properties of a data type.
A data type is a collection of values & the
set of operations on the values.
ADT refers to the mathematical concept
that defines the data type.
ADT is not concerned with implementation
but is useful in making use of data type.
Abstract Data Type
Arrays are stored in consecutive set of
memory locations.
Array can be thought of as set of index and
values.
For each index which is defined there is a
value associated with that index.
There are two operations permitted on
array data structure .retrieve and store
ADT for an array
CREATE()-produces empty array.
RETRIVE(array,index)->value
Takes as input array and index and either
returns appropriate value or an error.
STORE(array,index,value)-array used to
enter new index value pairs.
ADT for an array
Representation and analysis
Type variable_name[size]
Operations with arrays:
Copy
Delete
Insert
Search
Sort
Merging of sorting arrays.
Introduction to arrays
 #include <stdio.h>

 int main()
 {
 int a[100],b[100] position, c n;

 printf("Enter number of elements in arrayn");
 scanf("%d", &n);

 printf("Enter %d elementsn", n);

 for ( c = 0 ; c < n ; c++ )
 scanf("%d", &a[c]);
 printf("Enter %d elementsn", n);

 for( c = 0 ; c < n - 1 ; c++ )
 printf("%dn", a[c]);
 //Coping the element of array a to b
 for( c = 0 ; c < n - 1 ; c++ )
 {
 b[c]=a[c];
 }
 }

 return 0;
 }
Copy operation


 Enter number of elements in array -4

 Enter 4 elements

1
 2
 3
 4
 displaying array a
 1
 2
 3
 4
 displaying array b
 1
 2
 3
 4

 #include <stdio.h>

 int main()
 {
 int array[100], position, i, n;

 printf("Enter number of elements in arrayn");
 scanf("%d", &n);

 printf("Enter %d elementsn", n);

 for ( i = 0 ; i < n ; i++ )
 scanf("%d", &array[i]);

 printf("Enter the location where you wish to delete elementn");
 scanf("%d", &position);

 for ( i = position ; i < n; i++ )
• {
 array[i] = array[i+1];
 }
 printf("Resultant array isn");

 for( i = 0 ; i < n-1 ; i++ )
 printf("%dn", array[i]);


 return 0;
 }
Delete operation
Delete operation
#include <stdio.h>
int main()
{
int array[100], position, i, n, value;
printf("Enter number of elements in arrayn");
scanf("%d", &n);
printf("Enter %d elementsn", n);
for (i= 0;i< n; i++)
scanf("%d", &array[i]);
printf("Enter the location where you wish to insert an elementn");
scanf("%d", &position);
printf("Enter the value to insertn");
scanf("%d", &value);
for (i = n - 1; i >= position ; i--)
array[i+1] = array[i];
array[position] = value;
printf("Resultant array isn");
for (i= 0; i <= n; i++)
printf("%dn", array[i]);
return 0;
}
Inserting an element
Inserting an element
Int a[10]={5,4,3,2,1}
for(i=0;i<n-1;i++)
{
for(j=0;j<=n-1;j++)
{
if(a[j]>a[j+1])
{
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
Sort an array
Reverse array
#include <stdio.h>
int main() {
int array[100], n, i, temp, end;
scanf("%d", &n);
end = n - 1;
for (i = 0; i < n; i++) {
scanf("%d", &array[i]);
}
for (i= 0; < n/2; i++)
{
t emp = array[i];
array[i] = array[end];
array[end] = temp;
end--;
}
printf("Reversed array elements are:n");
for ( i= 0; i < n; i++) {
printf("%dn", array[i]);
}
return 0;
}
Sort element using array
int a[10]={5,4,3,2,1}
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
if(a[i]>a[j])
{
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
Merging of two arrays
multidimensional array is the two-dimensional
array
type arrayName [ x ][ y ];
 m-no of rows
 n-no of columns
 Printf(“n Enter the rows and columns”);
 Scanf(%d %d”,&m,&n);
 for(i=0;i<m;i++)
 {
• for(j=0;j<n;j++)
• {
 Printf(“n Enter the value of(%d)(%d)=“,i,j);
 Scanf(“%d”,&a[i][j]);
• }
 For(i=0;i<m;i++)
 {
• Printf(“n”);
• For(j=0;j<n;j++)
• {

 printf(“%d”,&a[i][j]);
• }
}
 int main ()
 { /* an array with 5 rows and 2 columns*/
 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
 int i, j;
 /* output each array element's value */
 for ( i = 0; i < 5; i++ )
 {
 for ( j = 0; j < 2; j++ )
 {
 printf("a[%d][%d] = %dn", i,j, a[i][j] );
 }
 }
 return 0;
 }
Address Calculation in single (one)
Dimension Array:
 Array of an element of an array say “A[ I ]” is
calculated using the following formula:
 Address of A [ I ] = B + W * ( I – LB )
 Where,
B = Base address
W = Storage Size of one element stored in the
array (in byte)
I = Subscript of element whose address is to be
found
LB = Lower limit / Lower Bound of subscript, if not
specified assume 0 (zero)
 Ex-Given the base address of an
array B[1300…..1900] as 1020 and size of each
element is 2 bytes in the memory. Find the address
of B[1700].
Solution:
 The given values are: B = 1020, LB = 1300, W = 2, I
= 1700
 Address of A [ I ] = B + W * ( I – LB )
 = 1020 + 2 * (1700 – 1300)
= 1020 + 2 * 400
= 1020 + 800
= 1820 [Ans]
While storing the elements of a 2-D array in
memory, these are allocated contiguous
memory locations. Therefore, a 2-D array must
be liberalized so as to enable their storage.
There are two alternatives to achieve
linearization: Row-Major and Column-Major.
Address of an element of any array say “A[ I ][ J
]” is calculated in two forms as given:
(1) Row Major System (2) Column Major System
The address of a location in Row Major System is calculated using the
following formula:
Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc )
The address of a location in Row Major System is calculated using the
following formula:
Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc )
B = Base address
I = Row subscript of element whose address is to be found
J = Column subscript of element whose address is to be found
W = Storage Size of one element stored in the array (in byte)
Lr = Lower limit of row/start row index of matrix, if not given
assume 0 (zero)
Lc = Lower limit of column/start column index of matrix, if not
given assume 0 (zero)
M = Number of row of the given matrix
N = Number of column of the given matrix
Address of A [ I ][ J ] Column Major Wise = B + W * [( I – Lr ) + M * ( J
– Lc )]
Column Major System:
The address of a location in Column Major System is calculated using
the following formula:
B = Base address
I = Row subscript of element whose address is to be found
J = Column subscript of element whose address is to be found
W = Storage Size of one element stored in the array (in byte)
Lr = Lower limit of row/start row index of matrix, if not given
assume 0 (zero)
Lc = Lower limit of column/start column index of matrix, if not
given assume 0 (zero)
M = Number of row of the given matrix
N = Number of column of the given matrix
Important : Usually number of rows and columns of a matrix are
given ( like A[20][30] or A[40][60] ) but if it is given as A[Lr- – – –
– Ur, Lc- – – – – Uc]. In this case number of rows and columns
are calculated using the following methods:
Number of rows (M) will be calculated as = (Ur – Lr) + 1
Number of columns (N) will be calculated as = (Uc – Lc) + 1
And rest of the process will remain same as per requirement
(Row Major Wise or Column Major Wise).
Examples:
Q 1. An array X [-15……….10, 15……………40] requires one
byte of storage. If beginning location is 1500 determine the
location of X [15][20].
Solution:
As you see here the number of rows and columns are not given in
the question. So they are calculated as:
Number or rows say M = (Ur – Lr) + 1 = [10 – (- 15)] +1 = 26
Number or columns say N = (Uc – Lc) + 1 = [40 – 15)] +1 = 26
(i) Column Major Wise Calculation of above equation
The given values are: B = 1500, W = 1 byte, I = 15, J =
20, Lr = -15, Lc = 15, M = 26
Address of A [ I ][ J ]
=B + W * [ ( I – Lr ) + M * ( J – Lc ) ]
= 1500 + 1 * [(15 – (-15)) + 26 * (20 – 15)] = 1500 + 1 *
[30 + 26 * 5] = 1500 + 1 * [160] = 1660 [Ans]
= 1500 + 1* [26 * (15 – (-15))) + (20 – 15)]
= 1500 + 1 * [26 * 30 + 5]
= 1500 + 1 * [780 + 5]
= 1500 + 785
= 2285 [Ans]
(ii) Row Major Wise Calculation of above equation
The given values are: B = 1500, W = 1 byte, I = 15, J =
20, Lr = -15, Lc = 15, N = 26
Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc ) ]
Merging of two arrays
 int main()
 {
 int arr1[30], arr2[30], res[60];
 int i, j, k, n1, n2;

 printf("nEnter no of elements in 1st array :");
 scanf("%d", &n1);
 for (i = 0; i < n1; i++)
 {
 scanf("%d", &arr1[i]);
 }

 printf("nEnter no of elements in 2nd array :");
 scanf("%d", &n2);
 for (i = 0; i < n2; i++)
 {
 scanf("%d", &arr2[i]);
 }

 i = 0;
 j = 0;
 k = 0;

Merging of two arrays
 // Merging starts
 while (i < n1 && j < n2)
 {
 if (arr1[i] <= arr2[j])
 {
 res[k] = arr1[i];
 i++;
 k++;
 }
 else
 {
res[k] = arr2[j];
k++;
j++;
 }
 }

Merging of two arrays
/* Some elements in array 'arr1' are still remaining
 where as the array 'arr2' is exhausted */

 while (i < n1)
 {
 res[k] = arr1[i];
 i++;
 k++;
 }
Merging of two arrays
/* Some elements in array 'arr2' are still remaining
 where as the array 'arr1' is exhausted */

 while (j < n2) {
 res[k] = arr2[j];
 k++;
 j++;
 }
Merging of two arrays
//Displaying elements of array 'res'
printf("nMerged array is :");
for (i = 0; i < n1 + n2; i++)
printf("%d ", res[i]);
return (0);
}
Merging of two arrays
/* Some elements in array 'arr2' are still remaining
where as the array 'arr2' is exhausted */
while (i < n2)
{
res[k] = arr2[i];
i++;
k++;
}
for(i=0;i<k;i++)
{
printf(“%d”,res[i]);
}
Merging of two arrays
Output:
Enter no of elements in 1st array : 4
11 22 33 44
Enter no of elements in 2nd array : 3
10 40 80
Merged array is : 10 11 22 33 40 44 80

arrays.pptx

  • 4.
    Declaration of arrays typearrayName [ arraySize ]; Ex-double balance[10];
  • 5.
     Initializing Arrays Ex-doublebalance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0}; If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write − Ex-double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
  • 6.
     Initializing Arrays Ex-doublebalance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0}; If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write − Ex-double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
  • 7.
    Initializing Arrays You willcreate exactly the same array as you did in the previous example. Following is an example to assign a single element of the array − Ex-balance[4] = 50.0;
  • 8.
    Shown below isthe pictorial representation of the array:
  • 9.
    double salary =balance[4];
  • 10.
    #include <stdio.h> int main() { int a[10],i,size; printf(“nhow many no of elements u want to scan”); scanf(“%d”,&size); printf(“nEnter the elements in the array”); for(i=0;i<size;i++) { scanf(“%d”,&a[i]); } //end for for(i=0;i<size;i++) { printf(“The array is %d”,a[i]); //Displaying Array } //end for return 0; }
  • 11.
  • 12.
  • 13.
    multidimensional array isthe two-dimensional array type arrayName [ x ][ y ];
  • 15.
    Initializing Two-Dimensional Arrays inta[3][4] = { {0, 1, 2, 3} , /* initializers for {4, 5, 6, 7} , {8, 9, 10, 11} /* initializers for row /* initializers for row indexed by 2 */ };
  • 16.
  • 17.
    For example, thefollowing declaration creates a three dimensional integer array − Ex-int threedim[5][10][4];
  • 18.
    void myFunction(int param[10]) {. . . //Statement Excution } Passing Arrays as Function Arguments in C
  • 19.
    ADT is usefultool for specifying the logical properties of a data type. A data type is a collection of values & the set of operations on the values. ADT refers to the mathematical concept that defines the data type. ADT is not concerned with implementation but is useful in making use of data type. Abstract Data Type
  • 20.
    Arrays are storedin consecutive set of memory locations. Array can be thought of as set of index and values. For each index which is defined there is a value associated with that index. There are two operations permitted on array data structure .retrieve and store ADT for an array
  • 21.
    CREATE()-produces empty array. RETRIVE(array,index)->value Takesas input array and index and either returns appropriate value or an error. STORE(array,index,value)-array used to enter new index value pairs. ADT for an array
  • 22.
    Representation and analysis Typevariable_name[size] Operations with arrays: Copy Delete Insert Search Sort Merging of sorting arrays. Introduction to arrays
  • 23.
     #include <stdio.h>  int main()  {  int a[100],b[100] position, c n;   printf("Enter number of elements in arrayn");  scanf("%d", &n);   printf("Enter %d elementsn", n);   for ( c = 0 ; c < n ; c++ )  scanf("%d", &a[c]);  printf("Enter %d elementsn", n);   for( c = 0 ; c < n - 1 ; c++ )  printf("%dn", a[c]);  //Coping the element of array a to b  for( c = 0 ; c < n - 1 ; c++ )  {  b[c]=a[c];  }  }   return 0;  } Copy operation
  • 24.
       Enter numberof elements in array -4   Enter 4 elements  1  2  3  4  displaying array a  1  2  3  4  displaying array b  1  2  3  4 
  • 25.
     #include <stdio.h>  int main()  {  int array[100], position, i, n;   printf("Enter number of elements in arrayn");  scanf("%d", &n);   printf("Enter %d elementsn", n);   for ( i = 0 ; i < n ; i++ )  scanf("%d", &array[i]);   printf("Enter the location where you wish to delete elementn");  scanf("%d", &position);   for ( i = position ; i < n; i++ ) • {  array[i] = array[i+1];  }  printf("Resultant array isn");   for( i = 0 ; i < n-1 ; i++ )  printf("%dn", array[i]);    return 0;  } Delete operation
  • 26.
  • 27.
    #include <stdio.h> int main() { intarray[100], position, i, n, value; printf("Enter number of elements in arrayn"); scanf("%d", &n); printf("Enter %d elementsn", n); for (i= 0;i< n; i++) scanf("%d", &array[i]); printf("Enter the location where you wish to insert an elementn"); scanf("%d", &position); printf("Enter the value to insertn"); scanf("%d", &value); for (i = n - 1; i >= position ; i--) array[i+1] = array[i]; array[position] = value; printf("Resultant array isn"); for (i= 0; i <= n; i++) printf("%dn", array[i]); return 0; } Inserting an element
  • 28.
  • 29.
  • 30.
    Reverse array #include <stdio.h> intmain() { int array[100], n, i, temp, end; scanf("%d", &n); end = n - 1; for (i = 0; i < n; i++) { scanf("%d", &array[i]); } for (i= 0; < n/2; i++) { t emp = array[i]; array[i] = array[end]; array[end] = temp; end--; } printf("Reversed array elements are:n"); for ( i= 0; i < n; i++) { printf("%dn", array[i]); } return 0; }
  • 31.
    Sort element usingarray int a[10]={5,4,3,2,1} for(i=0;i<n;i++) for(j=i+1;j<n;j++) { if(a[i]>a[j]) { temp=a[i]; a[i]=a[j]; a[j]=temp; } }
  • 32.
  • 33.
    multidimensional array isthe two-dimensional array type arrayName [ x ][ y ];
  • 35.
     m-no ofrows  n-no of columns  Printf(“n Enter the rows and columns”);  Scanf(%d %d”,&m,&n);  for(i=0;i<m;i++)  { • for(j=0;j<n;j++) • {  Printf(“n Enter the value of(%d)(%d)=“,i,j);  Scanf(“%d”,&a[i][j]); • }
  • 36.
     For(i=0;i<m;i++)  { •Printf(“n”); • For(j=0;j<n;j++) • {   printf(“%d”,&a[i][j]); • } }
  • 37.
     int main()  { /* an array with 5 rows and 2 columns*/  int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};  int i, j;  /* output each array element's value */  for ( i = 0; i < 5; i++ )  {  for ( j = 0; j < 2; j++ )  {  printf("a[%d][%d] = %dn", i,j, a[i][j] );  }  }  return 0;  }
  • 38.
    Address Calculation insingle (one) Dimension Array:
  • 40.
     Array ofan element of an array say “A[ I ]” is calculated using the following formula:  Address of A [ I ] = B + W * ( I – LB )  Where, B = Base address W = Storage Size of one element stored in the array (in byte) I = Subscript of element whose address is to be found LB = Lower limit / Lower Bound of subscript, if not specified assume 0 (zero)
  • 41.
     Ex-Given thebase address of an array B[1300…..1900] as 1020 and size of each element is 2 bytes in the memory. Find the address of B[1700]. Solution:  The given values are: B = 1020, LB = 1300, W = 2, I = 1700  Address of A [ I ] = B + W * ( I – LB )  = 1020 + 2 * (1700 – 1300) = 1020 + 2 * 400 = 1020 + 800 = 1820 [Ans]
  • 42.
    While storing theelements of a 2-D array in memory, these are allocated contiguous memory locations. Therefore, a 2-D array must be liberalized so as to enable their storage. There are two alternatives to achieve linearization: Row-Major and Column-Major.
  • 45.
    Address of anelement of any array say “A[ I ][ J ]” is calculated in two forms as given: (1) Row Major System (2) Column Major System
  • 46.
    The address ofa location in Row Major System is calculated using the following formula: Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc )
  • 47.
    The address ofa location in Row Major System is calculated using the following formula: Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc ) B = Base address I = Row subscript of element whose address is to be found J = Column subscript of element whose address is to be found W = Storage Size of one element stored in the array (in byte) Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero) Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero) M = Number of row of the given matrix N = Number of column of the given matrix
  • 48.
    Address of A[ I ][ J ] Column Major Wise = B + W * [( I – Lr ) + M * ( J – Lc )] Column Major System: The address of a location in Column Major System is calculated using the following formula: B = Base address I = Row subscript of element whose address is to be found J = Column subscript of element whose address is to be found W = Storage Size of one element stored in the array (in byte) Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero) Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero) M = Number of row of the given matrix N = Number of column of the given matrix
  • 49.
    Important : Usuallynumber of rows and columns of a matrix are given ( like A[20][30] or A[40][60] ) but if it is given as A[Lr- – – – – Ur, Lc- – – – – Uc]. In this case number of rows and columns are calculated using the following methods: Number of rows (M) will be calculated as = (Ur – Lr) + 1 Number of columns (N) will be calculated as = (Uc – Lc) + 1 And rest of the process will remain same as per requirement (Row Major Wise or Column Major Wise).
  • 50.
    Examples: Q 1. Anarray X [-15……….10, 15……………40] requires one byte of storage. If beginning location is 1500 determine the location of X [15][20]. Solution: As you see here the number of rows and columns are not given in the question. So they are calculated as: Number or rows say M = (Ur – Lr) + 1 = [10 – (- 15)] +1 = 26 Number or columns say N = (Uc – Lc) + 1 = [40 – 15)] +1 = 26
  • 51.
    (i) Column MajorWise Calculation of above equation The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, M = 26 Address of A [ I ][ J ] =B + W * [ ( I – Lr ) + M * ( J – Lc ) ] = 1500 + 1 * [(15 – (-15)) + 26 * (20 – 15)] = 1500 + 1 * [30 + 26 * 5] = 1500 + 1 * [160] = 1660 [Ans]
  • 52.
    = 1500 +1* [26 * (15 – (-15))) + (20 – 15)] = 1500 + 1 * [26 * 30 + 5] = 1500 + 1 * [780 + 5] = 1500 + 785 = 2285 [Ans] (ii) Row Major Wise Calculation of above equation The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, N = 26 Address of A [ I ][ J ] = B + W * [ N * ( I – Lr ) + ( J – Lc ) ]
  • 53.
    Merging of twoarrays  int main()  {  int arr1[30], arr2[30], res[60];  int i, j, k, n1, n2;   printf("nEnter no of elements in 1st array :");  scanf("%d", &n1);  for (i = 0; i < n1; i++)  {  scanf("%d", &arr1[i]);  }   printf("nEnter no of elements in 2nd array :");  scanf("%d", &n2);  for (i = 0; i < n2; i++)  {  scanf("%d", &arr2[i]);  }   i = 0;  j = 0;  k = 0; 
  • 54.
    Merging of twoarrays  // Merging starts  while (i < n1 && j < n2)  {  if (arr1[i] <= arr2[j])  {  res[k] = arr1[i];  i++;  k++;  }  else  { res[k] = arr2[j]; k++; j++;  }  } 
  • 55.
    Merging of twoarrays /* Some elements in array 'arr1' are still remaining  where as the array 'arr2' is exhausted */   while (i < n1)  {  res[k] = arr1[i];  i++;  k++;  }
  • 56.
    Merging of twoarrays /* Some elements in array 'arr2' are still remaining  where as the array 'arr1' is exhausted */   while (j < n2) {  res[k] = arr2[j];  k++;  j++;  }
  • 57.
    Merging of twoarrays //Displaying elements of array 'res' printf("nMerged array is :"); for (i = 0; i < n1 + n2; i++) printf("%d ", res[i]); return (0); }
  • 58.
    Merging of twoarrays /* Some elements in array 'arr2' are still remaining where as the array 'arr2' is exhausted */ while (i < n2) { res[k] = arr2[i]; i++; k++; } for(i=0;i<k;i++) { printf(“%d”,res[i]); }
  • 59.
    Merging of twoarrays Output: Enter no of elements in 1st array : 4 11 22 33 44 Enter no of elements in 2nd array : 3 10 40 80 Merged array is : 10 11 22 33 40 44 80