SlideShare a Scribd company logo
1 of 33
Download to read offline
Toulouse, 28‐29 October 2014
Day 1: Final project results
ATC FULL DATALINK
ATC Full Datalink – The consortium
2
Introduction
3
ATC Full Datalink project is a
demonstration project of the
SJU that performed a certain
number of flight trials, with
commercial aircraft,
controlled in UK and Italian
Airspace, using the datalink
as primary means of
communication for almost all
phases of flight.
Outlook of Plan
Phase 1
• October 2012 – February 2013
• Operational and technical feasibility study
• Two role gaming sessions
Phase 2
• March – July 2013
• Setup of ATN over PENS communication infrastructure
• Setup of AFD platform
• Communication End‐to‐End test between AFD platform and Airbus/Boeing Test Bench
Phase 3
• August – December 2013
• Setup of Shared Virtual Sky server/client
• Setup of AFD platform, able to receive flight track from SVS wrapper
• Airbus Simulated flight conducted by real pilots and controlled by ATCOs
• New release of AFD platform, adding RTA capability
Phase 4
• December 2013 – January 2014
• Operational procedures
• Feedbacks and conclusions
• Safety assessment
• Human Factor methodology
EXE
• February– June 2014
• Execution of AFD Flight Trials
4
Experimental Phase 1
• Operational and Technical feasibility study
• Role gaming sessions
• Initial safety assessment
• Start to design operational procedures for flight trials
5
Experimental Phase 2
6
Test Bench
Setup of ENAV and SITA PENS networks, with the installation of an AFD router 
that allows communications between those domains;
End‐to‐End communication tests between AFD platform and Airbus/Boeing 
Test Benches, with the usage of the full set of CPDLC messages need for AFD 
purpose.
Experimental Phase 2 ‐ Output
7
AFD platform was correctly 
managing loggin phase and 
CPDLC exchange of 
messages;
Airbus Test Bench was 
correctly managing loggin 
phase and CPDLC exchange 
of messages;
SITA PENS network was 
correcly rerouting datalink 
instructions, realizing an ATN 
over PENS network;
A first test of SVS gave us 
confidence of a success 
result of phase 3
Experimental Phase 3 – Step 1‐ 2
8
 AFD platform was connected with the Airbus 
Cockpit Simulator, using Shared Virtual Sky 
software for the airplane track and real VDL2 
channel for comms.
in the OPS room of Rome ACC, the  EXE ATCO 
will control a real flight as usual, with voice as 
primary means of communication. 
 in the simulation room, where AFD platform is 
located, a simulated flight will act as a ghost of 
the target flight.
 Supervisor OPS will repeat on the phone to 
the AFD Supervisor and AFD ATCO those 
instructions that are referred to the target flight 
AFD ATCO will send the above instructions via 
datalink to the simulated flight. 
 The pilot of Airbus Cockpit Simulator will react 
accordingly and the behavior of simulated flight 
will be very similar to the real flight.
 RTA messages used for test
Experimental Phases 4
• AFD ground platform capable to communicate the full set of messages with 
both Airbus and Boeing aircrafts, equipped with different avionics models;
• ATCOs and Pilots increases their level of confidence on such new way of 
communication, developing together the AFD operational procedures for the 
conduction of flight trials;
• A complete Safety Assessment has been developed, needed also for the NSA 
autorization;
• Human Factor methodology for Airborne and Ground segments has been
structured, with the help of online questionnaires;
• Technical procedures has been designed, in order to track the behaviour of 
datalink communications on both application and communication layers.
9
Experimental Phases – List of different avionic
manufacturer used
10
Experimental Phases – Differences in interpretation
of ED‐110B Standard
Field Local System NSEL and TSEL is composed by different parts of the ATN 
NSAP address:
• LOC (2 octets)
• SYS (6 octets)
• NSEL (1 octets)
• TSEL (1 or 2 octets)
Being TSEL either 10 or 11 can create different interpretations.
In having ground and airborne systems using a different number of octets 
(10 or 11) poses the concrete risk (more than a risk) of non‐communication 
between ground and airborne systems.
Therefore we think it would be useful to address this issue considering that, 
based on ENAV experience, this could be solved in having the ground 
system verifying the parameters and adapt itself consequently.
General statement: too many optional fields complicate the certainty to 
have a ground platform able to communicate with all models of avionics.
11
Experimental Phases – Lesson learnt
12
• Due to some room of interpretation on standards,
ground system needs to be tested with as many
avionic models as possible, possibly using real
aircrafts (this allow to test VDL2 GS as well);
• ATCOs and Pilots familiarization sessions helped
to reduce a general diffidence that surrounds
«the datalink» .
AFD Flight Trial Campaign
13
The picture explain the configuration adopted for the 
conduction of the operations for selected revenue 
flights during trials, in the Demonstration Campaign. 
Such solution has been chosen mainly upon the 
following considerations:
To provide the operations with the required 
level of safety, so to obtain the National Authority 
permission to conduct the trials
To decouple AFD project from the full 
operational readiness of the Italian 
implementation project LinkIT, the local instance 
of Link2000+, so to de‐risk the possibility to delay 
the execution of the trials beyond the contractual 
obligations and AFD Consortium commitment to 
conclude the Demonstration Campaign by mid 
2014.
AFD Flight Trials Campaign in numbers
• 12/02/2014: start of the Flight Trials Campaign
• 27/06/2014: end of the Flight Trials Campaign
• 90 target flights, operated by EasyJet, SAS, AirFrance
• 20 ATCOs involved in the conduction of flight trials
• 4 HF experts for the collection of feedbacks
14
AFD – ENAV logs activity
15
Message 
timestamp
Message 
UL/DL
Message  Msg Content
Msg 
IdNumber
Ref Msg IdNumber
08:20:27 downlink 98
LOGON REQUEST CallSign: AFR1205 ICAO
Address: 3746536 Departure: LIRF Destination: LFPG
1
08:20:27 uplink 183
LOGON RESPONSE - ICAO Address: 3746536 -
LOGON ACCEPTED
2 1
08:21:17 uplink 183 CPDLC START REQUEST SENT 3
08:21:21 downlink 98 CONNECTION CONFIRM 4 3
08:21:23 downlink 99 CURRENT DATA AUTHORITY 5
08:21:23 uplink 183 CURRENT ATC UNIT LIRR,ROMA,CENTER 6
08:26:19 uplink 183 CPDLC NOT IN USE 7
08:27:09 uplink 183 CPDLC IN USE 8
08:27:42 uplink 20 CLIMB TO 200 9
08:28:17 downlink 0 WILCO 10 9
08:28:17 uplink 74 PROCEED DIRECT TO ELB 11
08:28:39 downlink 0 WILCO 12 11
08:29:11 uplink 20 CLIMB TO 240 13
08:29:29 downlink 0 WILCO 14 13
08:30:21 uplink 117 CONTACT LIRR124.800 15
08:30:35 downlink 0 WILCO 16 15
08:30:46 uplink 183 CPDLC IN USE 17
08:30:46 uplink 79
CLEARED TO LFPG VIA LIR2F-DCT-ELB-M729-
BETEN-UM729-AOSTA-DCT
18
08:31:25 downlink 1 UNABLE 19 18
08:31:16 uplink 20 CLIMB TO 300 20
08:31:46 downlink 0 WILCO 21 20
08:32:30 uplink 74 PROCEED DIRECT TO NORNI 22
08:33:00 downlink 0 WILCO 23 22
08:33:10 uplink 20 CLIMB TO 360 24
08:33:32 downlink 0 WILCO 25 24
08:38:53 downlink 22 REQUEST DIRECT TO AOSTA 26
08:39:15 uplink 1 STAND BY 27 26
08:40:42 uplink 74 PROCEED DIRECT TO IDONA 28
08:41:06 downlink 0 WILCO 29 28
08:41:28 uplink 74 PROCEED DIRECT TO AOSTA 30
08:41:50 downlink 0 WILCO 31 30
08:42:28 downlink 6 REQUEST 380 32
08:42:40 uplink 1 STAND BY 33 32
08:43:29 uplink 20 CLIMB TO 380 34
08:43:55 downlink 0 WILCO 35 34
08:48:51 uplink 117 CONTACT LIRR132.905 36
08:49:12 downlink 0 WILCO 37 36
08:49:30 uplink 183 CPDLC IN USE 38
08:49:30 uplink 79 CLEARED TO LFPG VIA LIR2F‐AOSTA‐DCT 39
08:50:15 downlink 1 UNABLE 40 39
08:51:24 uplink 79 CLEARED TO LFPG VIA DCT‐AOSTA‐DCT 41
08:51:48 downlink 0 WILCO 42 41
08:53:30 uplink 190 FLY HEADING 325 43
08:53:54 downlink 0 WILCO 44 43
08:55:40 uplink 79 CLEARED TO LFPG VIA DCT‐AOSTA‐DCT 45
08:56:04 downlink 0 WILCO 46 45
09:06:34 uplink 160 NEXT DATA AUTHORITY 47
09:10:21 uplink 161 DISCONNECTION REQUEST 48
09:10:27 downlink 98 DISCONNECTION CONFIRM 49 48
ATC Full Datalink ‐ Report of the flight trial
Date Leg Time zulu Airline Model Call Sign ICAO code Radio CMU GS used
09/04/2014 FCO‐CDG 08:20/10:30 AirFrance A320 AFR1205 3746536 Rockwell Collins P/N 822‐1287‐120 ATSU CSB6‐5  LIN2,FCO2
Results
Event details
The CPDLC connections was established on ground, about 5 minutes before take off. ATCOs used datalink as primary mean of communication from FL100.
The automatic messabe UM79 is affected by a small bug on the definition of VIA points, where he could transmit a fix already flown. Pilots was aware of that, and in fact they replied with UNABLE if that occurred.
Following a target
16
SAS Flight
SK1842
B738
FCO – ARN
(LIRF – ESSA)
Test procedure 
LOGON
(gnd)
CPDLC msgs 
(FL 100 ‐ FL 400)
Network
MGS HO
(FCO 33S – VCE 
Twr)
Milan ATN A/G 
router
Rome ATN G/G 
router  
SAS/System performance (1/3)   
17
SAS/System performance (2/3)
18
SAS/System performance (3/3)
19
AFD – ENAV Performance Monitoring 1/3
20
round trip delay calculated 
at AVLC level (just Air 
segment between 
airborne radio and ground 
stations) on messages 
exchanged using FCO2 and 
LIN2 VDL2 Stations
AVLC= Aviation VHF Link 
Control, comms protocol 
21
Round trip delay calculated 
at application layer end‐to‐
end (of course it includes 
AVLC round trip delay). So 
it measures round trip 
delay  between AirServer 
and the aircraft.
AFD – ENAV Performance Monitoring 2/3
22
SQP=Signal Quality 
Parameters
The signal drops during 
the Hand Over between 
FCO2 and LIN2 stations.
AFD – ENAV Performance Monitoring 3/3
AFD/ENAV COM Network behaviour
23
The COM Network performed very well and no PAs due to it were 
registered
 ~13 seconds, with some cases of ~5 seconds to close CPDLC loop (from
the click on the HMI to the reception of the WILCO)
 Round‐Trip Delay < 3 sec @ 95%
 During Flight Trials Campaign the network worked also for AoA and
PoA at the same time.
In numbers (Jan‐Apr 2014):
 Total Managed Aircraft
133.9K (VDLM2 circuits)
 Total AOA traffic exchanged
34.7 MByte (only payloads)
 Total POA traffic exchanged
106.1 MByte (only payloads) 
0
10
20
30
40
50
jan feb mar apr
ARINC ACARS (Mbyte)
AOA
POA
AFD/ENAV Network HO report 
24
Perceived workload impact on AFD operation 
25
Using CPDLC, ATCOs report that the effort
request to manage the air/ground
communications is slightly higher that in r/t
0
2
4
6
8
10
12
14
1 2 3 4 5 6 7 8 9 10
Number of Responses
Controller Assessment of Workload
Lo
w
High
No ATCOs indicated a level of workload that
would impact their primary ATM task. More
than half indicated they had enough spare
capacity for all desirable additional tasks.
ENAV NATS
Pilots
19 out of 32 respondents indicated a reduced
level of workload, whereas for the remaining the
workload was slightly higher or higher.
Acceptability of CPDLC below FL 285 (ENAV)
26
300 300 300 310
195
345
200
150
285
340
280 280
0
100
200
300
400
Minimum Flight Level where CPDLC could 
be applied?
ATCOs FEEDBACK: 
AFD is perceived as less suitable in the 
approach phase (both before landing or after 
take‐off) due to the working methods of this 
area (e.g. frantic flow of instructions, number 
for restrictions and airspace complexity) , plus 
because of some technical issues faced with 
the ATM platform, not ready for the operations 
yet, that was not providing to ATCOs the 
expected level of reliability
Acceptability of CPDLC below FL 285 (NATS)
27
0
2
4
6
8
10
N/A Strongly
disagree
Disagree Neither agree or
disagree
Agree Strongly agree
Nunber of Responses 
I felt comfortable using CPDLC between FL195 and 
FL285
0
2
4
6
8
10
12
14
16
18
20
N/A Strongly
disagree
Disagree Neither agree or
disagree
Agree Strongly agree
Nunber of Responses 
I felt comfortable using CPDLC between FL100 and FL195
Acceptability of CPDLC below FL 285 (Pilots)
28
The majority of the pilots perceive the use of CPDLC acceptable. Few pilots do
somewhat disagree on CPDLC acceptability for such operational situations, and two
pilots disagreed.
The major perceived benefit of CPDLC communication below FL285 compared to RT
is the clarity of the message set (n=28 out of 32), followed by availability of message
set and easy integration with pilot’s tasks (n=13 each), ATC responsiveness (n=10),
Time available for message management (n=6) and other benefits (n=3).
Impact of the available message set 
29
Recommended to improve the flexibility of CPDLC messages without  impair safety
• Need to foreseen specific restrictions  and/or additional clearances in terms of rate of 
climb/descent to be maintained until a specific level, or limit and “reason” of 
vector/hdg
• Need to broadcast  to a/c relevant messages (e.g.  turbulence/ bad weather , 
congested situation, restricted area etc.)
• Instruction of “Stop Climb/Stop Descend” should be foreseen 
Acceptability of “unusual” messages 
30
• In general, in case of critical/unexpected 
event  revert to R/T is strongly expected 
AFD Reccomandations ‐ Pilots
• VHF Data Link Ground Station /avionic investigations are needed in order 
to identify explained technical issues
• Support the Multi frequency trial to validate if the new VDL plus Airbus 
ATSU upgrade (permits multi‐frequency) could give a contribution to 
improve reliability to acceptable level
• ATN B2 timeout changes should be investigated more thoroughly to 
address the controller / Pilot anxiety about the current logical 
acknowledgement (ACK) timer with B1 up to 2 minutes.
• Procedures among the various airspaces of the European countries must 
be harmonized to provide the flight crew with seamless procedures all 
over Europe. For instance, the logon time interval (45' to 15' before take‐
off or when entering the airspace?), the message set, the altitude used as 
a floor for CPDLC, and even the designation of the system should be 
consistent whenever it is possible in the various countries of the European 
airspace.
31
AFD Reccomandations ‐ ATCOs
32
• R1: Test the system with experimental flight legs 
should last more
• R2: Test the system with more that one flight 
connected by CPDLC (at list 5 a/c) 
• R3: Test the system across more complex 
sectors/scenarios (e.g. MI sectors and higher traffic 
load)
• R4: Test the system increasing the number of 
instructions exchanges between ATCO and FC 
33
THANK YOU!
Michele Carandente
International Strategies
SESAR Unit
ENAV S.p.A
Via Salaria, 713 - 00138 Rome - Italy
Ph. +39 06 81662774
Mob. +39 335 1938192
michele.carandente@enav.it
www.enav.it

More Related Content

Viewers also liked

Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...
Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...
Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...Karen Simmons
 
Apresentação 19 motolaguna
Apresentação 19 motolagunaApresentação 19 motolaguna
Apresentação 19 motolagunaMichel de Moraes
 
Apresentação 19motolaguna tendas_motorhomes
Apresentação 19motolaguna tendas_motorhomesApresentação 19motolaguna tendas_motorhomes
Apresentação 19motolaguna tendas_motorhomesMichel de Moraes
 
Maquinas simples y compuestas
Maquinas simples y compuestasMaquinas simples y compuestas
Maquinas simples y compuestasalejandrosepul12
 
Foundations of a curriculum
Foundations of a curriculumFoundations of a curriculum
Foundations of a curriculumarjay alteza
 

Viewers also liked (8)

Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...
Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...
Scaffolding Inquiry Learning to Develop Writing Skills with Digital Graphic O...
 
Internship rev
Internship revInternship rev
Internship rev
 
Soffa Catalog
Soffa CatalogSoffa Catalog
Soffa Catalog
 
Apresentação 19 motolaguna
Apresentação 19 motolagunaApresentação 19 motolaguna
Apresentação 19 motolaguna
 
Apresentação 19motolaguna tendas_motorhomes
Apresentação 19motolaguna tendas_motorhomesApresentação 19motolaguna tendas_motorhomes
Apresentação 19motolaguna tendas_motorhomes
 
Maquinas simples y compuestas
Maquinas simples y compuestasMaquinas simples y compuestas
Maquinas simples y compuestas
 
Harpreet's project
Harpreet's projectHarpreet's project
Harpreet's project
 
Foundations of a curriculum
Foundations of a curriculumFoundations of a curriculum
Foundations of a curriculum
 

Similar to AFD

Cats second experiment results
Cats second experiment resultsCats second experiment results
Cats second experiment resultsCATS/EUROCONTROL
 
The PROuD project - Flying into the future with the PBN flight procedures
The PROuD project - Flying into the future with the PBN flight procedures The PROuD project - Flying into the future with the PBN flight procedures
The PROuD project - Flying into the future with the PBN flight procedures PROuD Project
 
IRJET- Analysing the Performance of Solar Powered Wing (UAV)
IRJET-  	  Analysing the Performance of Solar Powered Wing (UAV)IRJET-  	  Analysing the Performance of Solar Powered Wing (UAV)
IRJET- Analysing the Performance of Solar Powered Wing (UAV)IRJET Journal
 
Programming embedded systems ii
Programming embedded systems iiProgramming embedded systems ii
Programming embedded systems iivtsplgroup
 
DEVELOPMENT OF FIXED WING VTOL UAV.
DEVELOPMENT OF FIXED WING VTOL UAV.DEVELOPMENT OF FIXED WING VTOL UAV.
DEVELOPMENT OF FIXED WING VTOL UAV.IRJET Journal
 
CRASH AVOIDANCE SYSTEM FOR DRONES
CRASH AVOIDANCE SYSTEM FOR DRONESCRASH AVOIDANCE SYSTEM FOR DRONES
CRASH AVOIDANCE SYSTEM FOR DRONESIRJET Journal
 
Erica The European Tiltrotor
Erica The European TiltrotorErica The European Tiltrotor
Erica The European Tiltrotorahmad bassiouny
 
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and AerosolsALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and AerosolsNoury Bouraqadi
 
Unmanned Aerial Vehicle for Surveillance
Unmanned Aerial Vehicle for Surveillance Unmanned Aerial Vehicle for Surveillance
Unmanned Aerial Vehicle for Surveillance Vedant Srivastava
 
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92SESAR Joint Undertaking
 
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-220120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2Julián Maldonado
 
Why choose Falcon 3D for Aerial Thermal Inspection
Why choose Falcon 3D for Aerial Thermal InspectionWhy choose Falcon 3D for Aerial Thermal Inspection
Why choose Falcon 3D for Aerial Thermal InspectionFALCON 3D
 
Control of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissionControl of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissiontheijes
 
Control of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissionControl of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissiontheijes
 
European Rotors - PBN and GNSS for Rotorcraft Operations
European Rotors - PBN and GNSS for Rotorcraft OperationsEuropean Rotors - PBN and GNSS for Rotorcraft Operations
European Rotors - PBN and GNSS for Rotorcraft OperationsLeonardo
 
Aviation powered by EGNOS: high precision, low investment
Aviation powered by EGNOS: high precision, low investmentAviation powered by EGNOS: high precision, low investment
Aviation powered by EGNOS: high precision, low investmentThe European GNSS Agency (GSA)
 

Similar to AFD (20)

Cats second experiment results
Cats second experiment resultsCats second experiment results
Cats second experiment results
 
The PROuD project - Flying into the future with the PBN flight procedures
The PROuD project - Flying into the future with the PBN flight procedures The PROuD project - Flying into the future with the PBN flight procedures
The PROuD project - Flying into the future with the PBN flight procedures
 
total project
total projecttotal project
total project
 
IRJET- Analysing the Performance of Solar Powered Wing (UAV)
IRJET-  	  Analysing the Performance of Solar Powered Wing (UAV)IRJET-  	  Analysing the Performance of Solar Powered Wing (UAV)
IRJET- Analysing the Performance of Solar Powered Wing (UAV)
 
dlabs
dlabsdlabs
dlabs
 
[IJET-V1I3P17] Authors :Prof. U. R. More. S. R. Adhav
[IJET-V1I3P17] Authors :Prof. U. R. More. S. R. Adhav[IJET-V1I3P17] Authors :Prof. U. R. More. S. R. Adhav
[IJET-V1I3P17] Authors :Prof. U. R. More. S. R. Adhav
 
Programming embedded systems ii
Programming embedded systems iiProgramming embedded systems ii
Programming embedded systems ii
 
DEVELOPMENT OF FIXED WING VTOL UAV.
DEVELOPMENT OF FIXED WING VTOL UAV.DEVELOPMENT OF FIXED WING VTOL UAV.
DEVELOPMENT OF FIXED WING VTOL UAV.
 
CRASH AVOIDANCE SYSTEM FOR DRONES
CRASH AVOIDANCE SYSTEM FOR DRONESCRASH AVOIDANCE SYSTEM FOR DRONES
CRASH AVOIDANCE SYSTEM FOR DRONES
 
hardware_design_RAFS
hardware_design_RAFShardware_design_RAFS
hardware_design_RAFS
 
Erica The European Tiltrotor
Erica The European TiltrotorErica The European Tiltrotor
Erica The European Tiltrotor
 
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and AerosolsALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols
ALPAGA : An AeriaL Platform for sampling Atmospheric Gases and Aerosols
 
Unmanned Aerial Vehicle for Surveillance
Unmanned Aerial Vehicle for Surveillance Unmanned Aerial Vehicle for Surveillance
Unmanned Aerial Vehicle for Surveillance
 
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92
SESAR at World ATM Congress 2016 - InteroperabilityWac 2016 iop draft v0.92
 
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-220120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2
20120815_155538_49174_TELFONA_ECCOMAS_CFD2006_-_v2-1-2
 
Why choose Falcon 3D for Aerial Thermal Inspection
Why choose Falcon 3D for Aerial Thermal InspectionWhy choose Falcon 3D for Aerial Thermal Inspection
Why choose Falcon 3D for Aerial Thermal Inspection
 
Control of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissionControl of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmission
 
Control of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmissionControl of aircraft from the base station using eog siganl transmission
Control of aircraft from the base station using eog siganl transmission
 
European Rotors - PBN and GNSS for Rotorcraft Operations
European Rotors - PBN and GNSS for Rotorcraft OperationsEuropean Rotors - PBN and GNSS for Rotorcraft Operations
European Rotors - PBN and GNSS for Rotorcraft Operations
 
Aviation powered by EGNOS: high precision, low investment
Aviation powered by EGNOS: high precision, low investmentAviation powered by EGNOS: high precision, low investment
Aviation powered by EGNOS: high precision, low investment
 

AFD