SlideShare a Scribd company logo
 
	
  
	
  
	
  
A	
   review	
   of	
   phthalates	
   and	
   the	
  
associated	
   reproductive	
   and	
  
developmental	
   toxicity	
   towards	
  
fish.	
  
	
  
Masters	
  literature	
  thesis	
  -­‐	
  12	
  EC	
  
Emma	
  Greenwell	
  (10407995)	
  
Biological	
  sciences:	
  Limnology	
  and	
  oceanography	
  
Supervisor:	
  Liana	
  Bastos	
  Sales	
  
Examiner:	
  Michiel	
  Kraak	
  
	
  
20th	
  December	
  2013	
  –	
  27th	
  March	
  2014	
  
	
  
	
   	
  
  2	
  
Table	
  of	
  Contents	
  
I.	
  Abstract	
  ..............................................................................................................	
  4	
  
II.	
  Introduction	
  .......................................................................................................	
  5	
  
2.1	
  What	
  are	
  phthalates?	
  ................................................................................................................................	
  5	
  
2.1.1	
  Common	
  phthalates	
  ...............................................................................................................................	
  5	
  
2.2	
  Environmental	
  fate	
  of	
  phthalates	
  ........................................................................................................	
  6	
  
2.2.1	
  Differences	
  in	
  seasons	
  ............................................................................................................................	
  8	
  
2.3	
  Levels	
  in	
  the	
  environment	
  ......................................................................................................................	
  8	
  
2.4	
  Half-­‐lives	
  .........................................................................................................................................................	
  9	
  
2.5	
  Inside	
  the	
  organism	
  ................................................................................................................................	
  11	
  
2.6	
  Modes	
  of	
  action	
  once	
  inside	
  an	
  organism	
  .....................................................................................	
  11	
  
2.7	
  Environmental	
  risk	
  limits	
  ....................................................................................................................	
  12	
  
2.8	
  Objective	
  ......................................................................................................................................................	
  12	
  
III.	
  Method	
  ...........................................................................................................	
  13	
  
IV.	
  Results	
  ............................................................................................................	
  13	
  
4.1	
  Summary	
  of	
  literature	
  (1980-­‐1999)	
  ...............................................................................................	
  14	
  
4.2	
  Literature	
  (1980-­‐1999)	
  ........................................................................................................................	
  16	
  
4.3	
  Summary	
  of	
  literature	
  post	
  2000	
  .....................................................................................................	
  17	
  
4.4	
  Literature	
  post	
  2000	
  ..............................................................................................................................	
  19	
  
4.4.1	
  DEHP	
  ..........................................................................................................................................................	
  19	
  
4.4.2	
  DBP	
  .............................................................................................................................................................	
  24	
  
4.4.3	
  DEHP	
  and	
  DBP	
  .......................................................................................................................................	
  28	
  
4.4.4	
  DINP	
  and	
  DIDP	
  ......................................................................................................................................	
  29	
  
V.	
  Discussion	
  ........................................................................................................	
  29	
  
5.2	
  DEHP	
  .............................................................................................................................................................	
  30	
  
5.3	
  DBP	
  ................................................................................................................................................................	
  30	
  
5.4	
  Nominal	
  concentration	
  experiments	
  with	
  DEHP	
  and	
  DBP	
  ....................................................	
  31	
  
5.5	
  DINP	
  and	
  DIDP	
  ..........................................................................................................................................	
  32	
  
5.6	
  Exposure	
  routes	
  .......................................................................................................................................	
  33	
  
5.7	
  Problematic	
  variables	
  and	
  environmental	
  risk	
  limits	
  .............................................................	
  33	
  
VI.	
  Conclusions	
  .....................................................................................................	
  34	
  
6.1	
  Classification	
  of	
  phthalates	
  ..................................................................................................................	
  34	
  
6.1.1	
  DEHP	
  ..........................................................................................................................................................	
  35	
  
6.1.2	
  DBP	
  .............................................................................................................................................................	
  35	
  
6.1.3	
  DINP	
  and	
  DIDNP	
  ...................................................................................................................................	
  35	
  
4.9	
  Recommendations	
  ...................................................................................................................................	
  35	
  
VII.	
  Author’s	
  remarks	
  ...........................................................................................	
  36	
  
VIII.	
  References	
  ....................................................................................................	
  37	
  
	
  
  3	
  
GLOSSARY	
  
	
  
Environmental	
  risk	
  limit	
  (ERL)	
  –	
  represent	
  the	
  potential	
  risk	
  of	
  the	
  substance	
  
to	
  the	
  ecosystem	
  and	
  are	
  derived	
  using	
  data	
  from	
  ecotoxicology	
  and	
  
environmental	
  chemistry.	
  
Oocytes	
  –	
  a	
  cell	
  in	
  an	
  ovary,	
  which	
  might	
  undergo	
  meiotic	
  division	
  to	
  form	
  an	
  
ovum.	
  
Vitellogenin	
  –	
  a	
  protein	
  present	
  in	
  the	
  blood	
  from	
  which	
  the	
  substance	
  of	
  the	
  
egg	
  yolk	
  is	
  derived.	
  
Planktivores	
  –	
  An	
  organism	
  that	
  feeds	
  on	
  plankton.	
  
Glucuronides	
  –	
  any	
  substance	
  produced	
  by	
  linking	
  a	
  glucuronic	
  acid	
  to	
  another	
  
substance	
  (via	
  glycosidic	
  bonds).	
  This	
  method	
  (glucorinidation)	
  is	
  used	
  by	
  
animals	
  to	
  help	
  excrete	
  toxic	
  substances	
  from	
  the	
  body.	
  
Environmental	
  risk	
  assessmen	
  (ERA)	
  –	
  An	
  evaluation	
  of	
  the	
  interactions	
  of	
  
agents,	
  human	
  and	
  ecological	
  resources.	
  
No	
  observed	
  effect	
  concentration	
  (NOEC)	
  –	
  the	
  highest	
  treatment	
  (test	
  
concentration)	
  of	
  a	
  substance	
  that	
  shows	
  no	
  statistical	
  effect	
  compared	
  to	
  a	
  
control.	
  
Predicted	
  no	
  effect	
  concentration	
  (PNEC)	
  –	
  the	
  concentration	
  below	
  which	
  a	
  
specified	
  percentage	
  of	
  species	
  in	
  an	
  ecosystem	
  are	
  expected	
  to	
  be	
  protected.	
  
Nominal	
  concentration	
  –	
  The	
  concentration	
  if	
  you	
  all	
  test	
  material	
  added	
  to	
  the	
  
test	
  solution	
  dissolved.	
  
Effective	
  concentrations	
  (EC50)	
  –	
  the	
  concentration	
  of	
  a	
  substance,	
  which	
  
induces	
  a	
  response	
  halfway	
  between	
  the	
  baseline	
  and	
  maximum	
  after	
  a	
  specified	
  
exposure	
  time.	
  The	
  number	
  refers	
  to	
  the	
  position	
  within	
  the	
  baseline-­‐maximum	
  
scale.	
  
Gonado-­‐somatic	
  index	
  –	
  calculation	
  of	
  the	
  gonad	
  mass	
  as	
  a	
  proportion	
  of	
  the	
  
total	
  body	
  mass.	
  
Spermatozoa	
  –	
  a	
  sperm	
  cell.	
  
Spermatocyte	
  –	
  immature	
  male	
  germ	
  cell	
  which	
  undergoes	
  meiosis	
  developme	
  
into	
  a	
  sperm	
  cell.	
  
Spermatagonia	
  –	
  any	
  cell	
  of	
  the	
  male	
  gonad	
  that	
  mature	
  to	
  form	
  spermatocytes.	
  
Hypertrophy	
  –	
  a	
  non-­‐tumorous	
  enlargement	
  of	
  an	
  organ	
  (or	
  part)	
  as	
  a	
  result	
  of	
  
increased	
  cell	
  size	
  rather	
  than	
  cell	
  number.	
  
Spiggin	
  –	
  a	
  glycoprotein	
  glue	
  used	
  by	
  three-­‐spined	
  sticklbacks	
  to	
  stick	
  their	
  
nests	
  together.	
  
Peroxidation	
  –	
  a	
  chemical	
  reaction	
  in	
  which	
  oxygen	
  atoms	
  are	
  formed	
  leading	
  to	
  
production	
  of	
  peroxides.	
  
Photodegradtion	
  /photodegradable	
  –	
  substances	
  capable	
  of	
  being	
  chemically	
  
broken	
  down	
  by	
  prolonged	
  exposure	
  to	
  light.	
  
Octanol-­‐water	
  partition	
  coefficient	
  (Kow)	
  –	
  a	
  coefficient	
  representing	
  the	
  ratio	
  
of	
  the	
  solubility	
  of	
  a	
  compound	
  in	
  octanol	
  to	
  its	
  solubility	
  in	
  water.	
  	
  
Soil	
  organic	
  carbon-­‐water	
  partitioning	
  coefficient	
  (Koc)	
  –	
  the	
  ratio	
  of	
  the	
  
mass	
  of	
  a	
  chemical	
  that	
  is	
  adsorbed	
  in	
  the	
  soil	
  per	
  unit	
  mass	
  of	
  organic	
  carbon	
  in	
  
the	
  sol	
  per	
  the	
  equilibrium	
  chemical	
  concentration	
  in	
  solution.	
  
Phytoremediation	
  –	
  the	
  use	
  of	
  plants	
  to	
  remove/neutralize	
  contaminants.	
  
  4	
  
I.	
  Abstract	
  
	
  
Phthalates	
  are	
  endocrine	
  disrupting	
  compounds	
  produced	
  on	
  a	
  mass	
  
scale	
   for	
   use	
   in	
   plastics.	
   They	
   are	
   not	
   chemically	
   bound	
   to	
   the	
  
product	
  and	
  therefore	
  leach	
  into	
  the	
  environment	
  exposing	
  fish	
  to	
  a	
  
range	
   of	
   endocrine	
   toxicities.	
   Environmental	
   risk	
   limits	
   (ERLs)	
   are	
  
difficult	
   to	
   calculate	
   as	
   different	
   solubility,	
   exposure	
   method,	
   fish	
  
species	
  and	
  even	
  age	
  all	
  combine	
  to	
  produce	
  different	
  toxicity	
  effects.	
  
In	
   most	
   literature	
   environmental	
   phthalate	
   levels	
   were	
   above	
   the	
  
ERL.	
   This	
   paper	
   focuses	
   on	
   what	
   are	
   associated	
   endocrine	
   toxicity	
  
effects	
   (metabolic,	
   developmental	
   and	
   reproductive)	
   of	
   di-­‐2-­‐ethyl-­‐
hexyl	
   phthalate	
   (DEHP),	
   di-­‐butyl	
   phthalate	
   (DBP),	
   di-­‐isononyl	
  
phthalate	
  (DINP)	
  and	
  di-­‐isodecyl	
  phthalate	
  (DIDP).	
  Results	
  consist	
  of	
  
18	
  studies	
  on	
  phthalate	
  toxicity	
  filtered	
  to	
  only	
  include	
  results	
  from	
  
DEHP,	
  DBP,	
  DINP	
  and	
  DIDP	
  on	
  fish	
  species.	
  A	
  mixture	
  of	
  effects	
  on	
  
growth	
   inhibition,	
   VTG	
   level	
   alteration,	
   inhibition	
   of	
   oocyte	
  
maturation,	
   increased	
   mortality,	
   spinal	
   deformities	
   and	
   maturation	
  
inducing	
  hormone	
  alterations	
  etc.	
  were	
  observed	
  with	
  all	
  both	
  DEHP	
  
and	
   DBP.	
   Effects	
   were	
   seen	
   to	
   be	
   more	
   potent	
   in	
   pre/early	
   life	
  
exposure	
  compared	
  to	
  adults	
  and	
  sometimes	
  even	
  irreversible.	
  Both	
  
DEHP	
   and	
   DBP	
   phthalates	
   produces	
   developmental	
   toxicity	
   effects	
  
such	
   as	
   increased	
   mortality,	
   retardation	
   in	
   ovary	
   development,	
  
decreases	
   in	
   body	
   weight	
   and	
   length,	
   inhibition	
   of	
   5α-­‐adione,	
  
decreases	
   in	
   fertility	
   and	
   many	
   more.	
   The	
   order	
   of	
   literature	
  
available	
   went	
   DEHP>DBP>DINP/DIDP.	
   For	
   the	
   latter	
   two	
  
(DINP/DIDP)	
   only	
   one	
   study	
   was	
   found	
   post	
   year	
   2000.	
   The	
  
availability	
   of	
   DEHP	
   and	
   DBP	
   information	
   allows	
   to	
   derive	
  
reasonable	
   ERLs	
   values.	
   However	
   due	
   to	
   the	
   lack	
   of	
   DINP/DIDP	
  
information	
   DEHP	
   is	
   used	
   as	
   a	
   proxy	
   for	
   DINP/DIDP	
   ERLs.	
   In	
  
conjunction,	
  there	
  is	
  no	
  uniform	
  exposure	
  route	
  to	
  which	
  ERL’s	
  are	
  
based	
  on	
  and	
  as	
  seen	
  in	
  the	
  results	
  different	
  exposure	
  routes	
  of	
  the	
  
same	
  compound	
  can	
  produce	
  different	
  effects.	
  More	
  solid	
  guidelines	
  
of	
  phthalate	
  testing	
  are	
  needed	
  on	
  all	
  compounds	
  especially	
  those	
  of	
  
DINP	
  and	
  DIDP.	
  
	
   	
  
  5	
  
II.	
  Introduction	
  
2.1	
  What	
  are	
  phthalates?	
  
	
  
Phthalates	
   are	
   chemical	
   compounds	
   used	
   to	
   reduce	
   the	
   chemical	
  
affinity	
  between	
  plastic	
  molecules	
  therewith	
  increasing	
  the	
  flexibility	
  
of	
   the	
   product	
   sometimes	
   making	
   up	
   50%	
   of	
   the	
   finished	
   plastic	
  
product	
  (Oehlmann	
  et	
  al.,	
  2009;	
  OEHHA,	
  2009).	
  They	
  are	
  also	
  known	
  
to	
   be	
   endocrine	
   disrupting	
   compounds	
   (EDCs)	
   (Ikele,	
   2011).	
   EDCs	
  
may	
  be	
  natural	
  or	
  synthetic	
  compounds	
  that	
  interfere	
  with	
  endocrine	
  
regulated	
   processes	
   such	
   as	
   growth	
   and	
   reproduction	
   (Crain	
   et	
  al.,	
  
2008).	
   The	
   international	
   program	
   for	
   chemical	
   safety	
   defines	
  
endocrine	
  disrupters	
  as	
  “exogenous	
  substances	
  that	
  alter	
  function(s)	
  
of	
   the	
   endocrine	
   system	
   and	
   consequently	
   cause	
   adverse	
   health	
  
effects	
  in	
  an	
  intact	
  organism	
  or	
  its	
  progeny	
  secondary	
  to	
  changes	
  in	
  
the	
  endocrine	
  function”	
  (ECPI,	
  2009).	
  
	
  
Production	
  of	
  phthalates	
  consists	
  of	
  around	
  1	
  billion	
  tones	
  per	
  year	
  
worldwide.	
  They	
  are	
  present	
  in	
  the	
  medical	
  environment,	
  cosmetics,	
  
computers,	
   children	
   toys,	
   food	
   packaging,	
   car	
   products	
   and	
   paint	
  
making	
   them	
   an	
   unavoidable	
   part	
   of	
   modern	
   life	
   (Mankidy	
   et	
   al.,	
  
2013;	
   OEHHA,	
   2009;	
   Guven	
   and	
   Coban,	
   2013	
   and	
   Carnevali	
   et	
   al.	
  
2010).	
  Phthalates	
  are	
  not	
  chemically	
  bound	
  to	
  the	
  plastic	
  molecules	
  
within	
   the	
   product	
   meaning	
   they	
   are	
   able	
   to	
   leach	
   out	
   into	
   the	
  
environment	
   rendering	
   these	
   compounds	
   unstable	
   within	
   their	
  
plastic	
  counterpart	
  (Oehlmann,	
  et	
  al.,	
  2009	
  and	
  Mankidy	
  et	
  al.,	
  2013).	
  
Consequently	
   phthalates	
   are	
   ubiquitous	
   the	
   environmental	
   and	
  
ecological	
  concerns	
  surrounding	
  them	
  are	
  increasing.	
  
2.1.1	
  Common	
  phthalates	
  
	
  
The	
  general	
  structure	
  of	
  phthalates	
  can	
  be	
  
seen	
   in	
   figure	
   1	
   (to	
   the	
   right)	
   (R-­‐alkyl	
  
chain).	
   The	
   most	
   common	
   phthalates	
   are	
  
di-­‐n-­‐butyl	
   phthalate	
   (DBP)	
   and	
   di-­‐2-­‐ethyl-­‐
hexyl	
  phthalate	
  (DEHP)	
  (Jarmolowicz	
  et	
  al.,	
  
2013;	
  Huang	
  et	
  al.,	
  2008	
  and	
  Uren-­‐Webster	
  
et	
  al.,	
  2010).	
  These	
  two	
  specific	
  phthalates	
  
Figure	
  1:	
  General	
  structure	
  
of	
  phthalates	
  (Ogunfowokan	
  
et	
  al.,	
  2006)	
  
  6	
  
occur	
  at	
  higher	
  concentrations	
  than	
  other	
  phthalates	
  (Van	
  Wezel	
  et	
  
al.,	
   2000)	
   and	
   have	
   the	
   highest	
   toxicity	
   (out	
   8	
   common	
   phthalates	
  
under	
  the	
  U.S.	
  environmental	
  protection	
  agency	
  (EPA)	
  management	
  
plan)	
   to	
   terrestrial	
   and	
   aquatic	
   organisms	
   (EPA,	
   2012).	
   These	
   two	
  
phthalates	
  produce	
  reproductive	
  and	
  developmental	
  toxicity	
  effects	
  
(Jarmolowicz	
   et	
   al.,	
   2013;	
   Lee	
   and	
   Liang	
   2011	
   and	
   Zanotelli	
   et	
   al.,	
  
2009).	
   Newer	
   phthalate	
   compounds	
   such	
   as	
   di-­‐isononyl	
   phthalate	
  
(DINP)	
  and	
  di-­‐isodecyl	
  phthalate	
  (DIDP)	
  have	
  shown	
  to	
  have	
  no	
  (or	
  
very	
  low)	
  toxic	
  effects	
  on	
  aquatic	
  organisms	
  (EPA,	
  2012;	
  Oehlmann	
  et	
  
al.,	
  2009	
  and	
  Hallmark	
  2010)	
  despite	
  the	
  reproductive	
  development	
  
effects	
  in	
  two	
  generations	
  of	
  rats	
  (OEHHA,	
  2010).	
  
2.2	
  Environmental	
  fate	
  of	
  phthalates	
  
	
  
Once	
  in	
  the	
  environment	
  phthalates	
  are	
  transported	
  through	
  water	
  
where	
  they	
  may	
  be	
  dissolved	
  (water	
  sink)	
  or	
  due	
  to	
  its	
  low	
  solubility	
  
end	
  up	
  within	
  the	
  sediment	
  (Huang	
  et	
  al.,	
  2008).	
  Here	
  the	
  phthalate	
  
compounds	
   are	
   transferred	
   to	
   fish	
   and	
   other	
   aquatic	
   organisms	
  
through	
   their	
   diet	
   or	
   by	
   water	
   (Jarmolowicz	
   et	
   al.,	
   2009).	
   Benthic	
  
feeders	
   contain	
   higher	
   levels	
   of	
   phthalate	
   compounds	
   within	
   their	
  
system	
   compared	
   to	
   planktivores	
   due	
   to	
   the	
   low	
   solubility	
   of	
   most	
  
phthalates	
  (Huang	
  et	
  al.,	
  2008;	
  Oehlmann	
  et	
  al.,	
  2009;	
  Mankidy	
  et	
  al.,	
  
2013	
  and	
  OEHHA,	
  2009).	
  The	
  levels	
  of	
  phthalates	
  within	
  water	
  are	
  
affected	
  by	
  water	
  quality	
  such	
  as	
  chemical	
  oxygen	
  demand,	
  dissolved	
  
oxygen,	
  ammonia-­‐nitrate,	
  suspended	
  solids	
  etc.	
  (Haung	
  et	
  al.,	
  2008).	
  	
  
	
  
Each	
   phthalate	
   has	
   a	
   different	
   molecular	
   weight	
   that	
   also	
   gives	
   it	
  
different	
  properties.	
  A	
  high	
  molecular	
  weight	
  (HMW)	
  means	
  that	
  the	
  
compound	
   may	
   be	
   less	
   biologically	
   available	
   while	
   low	
   molecular	
  
weight	
  (LMW)	
  compounds	
  are	
  more	
  biologically	
  available	
  (Berge	
  et	
  
al.,	
   2013).	
   This	
   makes	
   sense	
   with	
   some	
   literature	
   as	
   DBP	
   (MW	
  
278.4g/mol)	
  has	
  a	
  lower	
  molecular	
  weight	
  then	
  DEHP	
  (390.6g/mol)	
  
so	
  therefore	
  is	
  more	
  available	
  for	
  uptake	
  (Teil	
  et	
  al.,	
  2012).	
  In	
  France	
  
three	
  fish	
  species	
  were	
  analyzed	
  to	
  see	
  which	
  phthalates	
  were	
  more	
  
abundant	
  (Teil	
  et	
  al.,	
  2012).	
  Contradictory	
  to	
  Huang	
  et	
  al.,	
  2008)	
  DBP	
  
was	
  the	
  main	
  phthalate	
  found	
  in	
  roach	
  (Rutilus	
  rutilus)	
  followed	
  by	
  
  7	
  
DEHP.	
  This	
  would	
  confirm	
  the	
  theory	
  that	
  LMW	
  compounds	
  are	
  more	
  
readily	
  biologically	
  available	
  than	
  HMW.	
  
	
  
The	
   gradients	
   for	
   soil	
   was	
   however	
   opposite	
   with	
   DEHP	
   being	
   the	
  
main	
  phthalate,	
  but	
  this	
  too	
  would	
  fit	
  theory	
  that	
  phthalates	
  with	
  a	
  
low	
  log	
  Kow	
  (inverse	
  of	
  octanol-­‐water	
  partition	
  coefficient,	
  related	
  to	
  
aqueous	
   solubility)	
   are	
   better	
   at	
   forming	
   solutes	
   (dissolving)	
   than	
  
phthalates	
  with	
  a	
  high	
  log	
  Kow.	
  DBP	
  has	
  a	
  log	
  Kow
	
  of	
  4.75	
  while	
  DEHP	
  
has	
  a	
  higher	
  one	
  at	
  7.5.	
  Phthalates	
  with	
  a	
  high	
  log	
  Kow	
  are	
  more	
  likely	
  
to	
   have	
   a	
   higher	
   %	
   in	
   the	
   sediment	
   as	
   the	
   particles	
   that	
   do	
   not	
  
dissolve	
  sink	
  towards	
  the	
  sediment	
  within	
  a	
  water	
  column	
  (Berge	
  et	
  
al.,	
   2013).	
   As	
   DEHP	
   has	
   a	
   higher	
   log	
   Kow	
   it	
   means	
   that	
   it	
   will	
   be	
  
present	
  in	
  larger	
  quantities	
  compared	
  to	
  DBP	
  in	
  sediment	
  samples.	
  	
  
	
  
When	
  looking	
  at	
  the	
  log	
  Kow	
  of	
  DINP	
  and	
  DIDP	
  both	
  have	
  a	
  value	
  of	
  
8.8.	
  This	
  value	
  may	
  be	
  derived	
  from	
  another	
  phthalate,	
  which	
  makes	
  
it	
  unreliable	
  toward	
  the	
  specific	
  phthalate	
  (ECPI	
  2014	
  and	
  Megaloid1	
  
2013).	
  All	
  in	
  all	
  more	
  attention	
  should	
  be	
  placed	
  upon	
  sediment	
  as	
  it	
  
tends	
   to	
   have	
   the	
   highest	
   levels,	
   even	
   during	
   different	
   seasons	
  
(Figure	
   5)	
   (Sibali	
   et	
   al.,	
   2013).	
   All	
   phthalates	
   however	
   have	
   a	
   low	
  
solubility	
   meaning	
   that	
   once	
   saturated	
   in	
   the	
   water,	
   particles	
   of	
  
phthalate	
  will	
  join	
  the	
  sediment	
  (Sibali	
  et	
  al.,	
  2013).	
  Figure	
  5	
  shows	
  
Figure	
  5:	
  Sediment	
  and	
  water	
  levels	
  of	
  phthalates	
  (DEHP,	
  DBP,	
  DEP	
  and	
  DMP	
  at	
  
different	
  sample	
  sites	
  along	
  the	
  River	
  Jeksei	
  during	
  two	
  seasons	
  (Sibali	
  et	
  al.,	
  2013).	
  
  8	
  
the	
  differences	
  in	
  water	
  and	
  sediment	
  phthalate	
  levels	
  from	
  the	
  River	
  
Jukskei,	
  South	
  Africa.	
  
2.2.1	
  Differences	
  in	
  seasons	
  
	
  
It	
   is	
   still	
   unclear	
   why	
   these	
   differences	
   in	
   seasons	
   arise.	
   For	
  
atmospheric	
  phthalates	
  for	
  example	
  seasonal	
  differences	
  can	
  be	
  due	
  
to	
  influences	
  of	
  emission	
  sources	
  such	
  as	
  the	
  burning	
  of	
  coal	
  in	
  cold	
  
season	
   that	
   would	
   then	
   produce	
   phthalate	
   particulates	
   in	
   the	
   air	
  
(Kong	
   et	
   al.,	
   2013).	
   Another	
   reason	
   could	
   be	
   a	
   meteorological	
  
parameter.	
  Intense	
  sunlight	
  during	
  the	
  summer,	
  when	
  photochemical	
  
reactions	
   are	
   increased	
   and	
   degrade	
   phthalates	
   lowering	
   the	
  
concentrations	
   within	
   the	
   atmosphere.	
   Rain	
   can	
   also	
   be	
   a	
   culprit	
  
through	
  diluting	
  and	
  washing	
  away	
  phthalates	
  particulates	
  (Kong	
  et	
  
al.,	
  2013).	
  	
  
	
  
When	
  comparing	
  the	
  water	
  and	
  sediment	
  levels	
  in	
  the	
  graph	
  above	
  it	
  
is	
   possible	
   that	
   the	
   high	
   winter	
   levels	
   are	
   due	
   to	
   a	
   lack	
   of	
   rain	
  
therefore	
  concentrating	
  the	
  phthalates.	
  African	
  summer	
  (rain	
  period)	
  
could	
  perhaps	
  dilute	
  the	
  phthalate	
  concentrations	
  within	
  the	
  water	
  
and	
   sediment	
   therefore	
   lowering	
   the	
   concentrations	
   (Sibali	
   et	
   al.,	
  
2013).	
   Plants	
   have	
   also	
   very	
   recently	
   been	
   shown	
   to	
   significantly	
  
enhance	
   the	
   dissipation	
   of	
   phthalates	
   in	
   soil	
   in	
   three	
   ways:	
  
phytoremediation,	
  increased	
  sorption	
  of	
  phthalates	
  to	
  soil	
  and	
  plant	
  
promoted	
   biodegradation	
   (Li	
   et	
   al.,	
   2004).	
   This	
   could	
   be	
   another	
  
explanation	
   for	
   the	
   lower	
   summer	
   concentrations	
   of	
   phthalates	
   in	
  
figure	
   5.	
   Half-­‐lives	
   of	
   phthalates	
   can	
   also	
   be	
   increased	
   through	
  
increased	
  sorption	
  and	
  cooler	
  temperatures	
  (Staples	
  et	
  al.,	
  1997	
  and	
  
Kickham	
  et	
  al.,	
  2012).	
  
2.3	
  Levels	
  in	
  the	
  environment	
  
	
  
In	
  the	
  1990’s	
  the	
  levels	
  of	
  phthalates	
  in	
  river	
  water,	
  in	
  Manchester,	
  
UK	
  for	
  example,	
  were	
  at	
  a	
  mean	
  of	
  21.5μg/L	
  	
  ±12.5	
  and	
  1.3μg/L	
  ±0.9	
  
for	
   DBP	
   and	
   DEHP	
   respectively	
   (Fatoki	
   and	
   Vernon,	
   1990).	
   High	
  
standard	
  deviation	
  was	
  due	
  to	
  the	
  different	
  sample	
  station	
  along	
  the	
  
river	
  Irwell.	
  However	
  surprisingly	
  levels	
  at	
  the	
  effluent	
  of	
  a	
  sewage	
  
treatment	
   plant	
   were	
   the	
   lowest	
   at	
   6μg/L	
   for	
   DBP	
   while	
   all	
   other	
  
  9	
  
sample	
   sites	
   were	
   above	
   12.1μg/L.	
   For	
   DEHP	
   the	
   highest	
  
concentration	
   was	
   found	
   at	
   the	
   sewage	
   treatment	
   plant	
   (1.9μg/L)	
  
that	
  also	
  coincided	
  with	
  the	
  percentage	
  of	
  DEHP	
  found	
  in	
  the	
  samples	
  
1.9%	
  for	
  DEHP	
  (79.4%	
  for	
  DBP).	
  This	
  contradicts	
  previous	
  research	
  
claiming	
   that	
   DEHP	
   has	
   the	
   highest	
   environmental	
   levels.	
   However	
  
this	
   could	
   be	
   due	
   to	
   the	
   higher	
   degradability	
   of	
   DEHP	
   under	
  
anaerobic	
  conditions	
  (Huang	
  et	
  al.,	
  2008).	
  In	
  Germany	
  DEHP	
  surface	
  
water	
   levels	
   ranged	
   between	
   0.33-­‐97.8μg/L	
   and	
   sediment	
   levels	
  
varied	
   between	
   0.21-­‐8.44mg/kg	
   dry	
   weight	
   and	
   for	
   DBP	
   0.12-­‐
8.80μg/L	
   and	
   0.06-­‐2.08mg/kg	
   dry	
   weight,	
   respectively	
   (Fromme	
   et	
  
al.,	
   2002).	
   This	
   study	
   showed	
   both	
   phthalates	
   to	
   have	
   a	
   wide	
  
variability	
  in	
  levels	
  throughout	
  Germany	
  although	
  DEHP	
  always	
  had	
  
the	
  highest	
  levels.	
  
	
  
In	
  the	
  Netherlands	
  environmental	
  measurements	
  were	
  taken	
  in	
  2005	
  
and	
   it	
   was	
   found	
   that	
   DEHP	
   showed	
   the	
   highest	
   concentrations	
   in	
  
both	
   mean	
   municipal	
   sewage	
   treatment	
   plant	
   and	
   industrial	
   waste	
  
water	
  types	
  (Vethaak	
  et	
  al.,	
  2005).	
  Mean	
  municipal	
  sewage	
  treatment	
  
plant	
  effluent	
  levels	
  were	
  around	
  1.5μg/L	
  and	
  industrial	
  wastewater	
  
levels	
  were	
  150μg/L	
  compared	
  to	
  DBP	
  that	
  showed	
  levels	
  of	
  0.3	
  and	
  
2.2μg/L.	
  70%	
  of	
  the	
  DEHP	
  and	
  DBP	
  samples	
  contained	
  levels	
  above	
  
the	
  level	
  of	
  detection	
  (LOD)	
  although	
  only	
  30%	
  of	
  the	
  DBP	
  samples	
  
were	
   above	
   the	
   LOD	
   in	
   the	
   sewage	
   treatment	
   plant	
   effluent	
   water.	
  
Fish	
  muscle	
  concentrations	
  of	
  Bream	
  (Abramis	
  brama)	
  and	
  Flounder	
  
(Platichthys	
  flesus)	
  showed	
  mean	
  concentrations	
  of	
  0.044μg	
  DBP/g,	
  
0.153μg	
  DEHP/g	
  and	
  0.0078μg	
  DBP/g,	
  0.064μg	
  DEHP/g	
  in	
  each	
  fish	
  
respectively	
   (Vethaak	
   et	
   al.,	
   2005).	
   It	
   seems	
   that	
   phthalate	
  
concentration	
  varies	
  not	
  only	
  within	
  country	
  or	
  city	
  but	
  also	
  within	
  
micro	
  environments	
  and	
  water	
  types.	
  
2.4	
  Half-­‐lives	
  
	
  
Half-­‐lives	
  of	
  phthalates	
  are	
  the	
  time	
  for	
  a	
  substance	
  to	
  fall	
  to	
  half	
  its	
  
original	
  concentration	
  (i.e.	
  degrading)	
  (Staples	
  et	
  al.,	
  21997)	
  through	
  
hydrolysis	
  of	
  ester	
  bindings	
  (Liang	
  et	
  al.,	
  2008)	
  and	
  the	
  range	
  of	
  half-­‐
lives	
  referring	
  to	
  phthalates	
  is	
  vast.	
  	
  Staples	
  et	
  al.,	
  (1997)	
  reported	
  a	
  
half-­‐life	
   of	
   28	
   day	
   on	
   average	
   for	
   phthalates	
   within	
   sewage	
   sludge,	
  
  10	
  
while	
   within	
   the	
   atmosphere	
   half-­‐lives	
   consist	
   of	
   around	
   one	
   day	
  
(DBP-­‐<6	
  days,	
  DEHP-­‐<2	
  days,	
  DINP-­‐<2	
  days).	
  Within	
  sediment	
  half-­‐
lives	
  of	
  approximately	
  <one	
  week	
  –	
  several	
  months	
  may	
  be	
  recorded	
  
and	
   within	
   surface	
   waters	
   <one	
   day	
   –	
   two	
   weeks	
   (Staples	
   et	
   al.,	
  
1997).	
  Staples	
  et	
  al.	
  also	
  reported	
  a	
  half-­‐life	
  of	
  years	
  through	
  aqueous	
  
hydrolysis	
  (DBP–22	
  years,	
  DEHP-­‐2000	
  years).	
  In	
  contrast	
  Yuan	
  et	
  al.	
  
(2010)	
   reported	
   that	
   DBP	
   and	
   DEHP	
   had	
   half-­‐lives	
   of	
   1.6-­‐2.9	
   days	
  
and	
   5.0-­‐8.3	
   days	
   within	
   sediment,	
   respectively.	
   It	
   has	
   also	
   been	
  
postulated	
   that	
   DEHP	
   degrades	
   fairly	
   rapidly	
   under	
   aerobic	
  
conditions	
   (Brooke	
   et	
   al.,	
   1991).	
   Microbial	
   degradation	
   has	
   shown	
  
DBP	
  to	
  be	
  completely	
  degraded	
  within	
  28	
  days	
  (Liang	
  et	
  al.,	
  2008).	
  In	
  
Turner	
  and	
  Rawling	
  (2000)	
  eight	
  phthalates	
  were	
  found	
  in	
  a	
  water	
  
sample	
  and	
  half-­‐lives	
  were	
  measured.	
  On	
  average	
  the	
  phthalate	
  half-­‐
life	
  in	
  aerobic	
  conditions	
  was	
  between	
  2.4-­‐14.8	
  days	
  and	
  14-­‐34	
  days	
  
under	
   anaerobic	
   conditions.	
   Other	
   studies	
   such	
   as	
   Yuwatini	
   et	
   al.,	
  
(2006)	
   showed	
   that	
   DEHP	
   half	
   life	
   in	
   water	
   is	
   approximately	
   two	
  
days	
   while	
   in	
   sediment	
   it	
   can	
   last	
   up	
   to	
   14	
   days.	
   Magdouli	
   et	
   al.,	
  
(2013)	
   stated	
   that	
   half-­‐lives	
   of	
   DEHP	
   are	
   <one	
   month	
   in	
   aerobic	
  
conditions	
  and	
  >one	
  month	
  in	
  anaerobic	
  conditions.	
  In	
  water	
  (with	
  
sun)	
  under	
  acidic	
  conditions	
  half-­‐lives	
  can	
  be	
  around	
  390	
  days	
  while	
  
in	
  neutral	
  conditions	
  may	
  be	
  up	
  to	
  1600	
  days.	
  
	
  
From	
  above	
  it	
  is	
  clear	
  that	
  phthalate	
  half-­‐lives	
  may	
  have	
  wide	
  ranges.	
  
This	
   is	
   due	
   to	
   the	
   different	
   environmental	
   compartments	
   in	
   which	
  
the	
  phthalate	
  may	
  be	
  present	
  i.e.	
  atmosphere,	
  sediment,	
  water,	
  inside	
  
the	
  organism	
  as	
  each	
  situation	
  will	
  affect	
  the	
  half-­‐life	
  as	
  well	
  as	
  what	
  
process	
  of	
  degradation	
  is	
  measured.	
  This	
  makes	
  it	
  difficult	
  to	
  consent	
  
on	
  fixed	
  half-­‐life	
  values.	
  In	
  general	
  it	
  is	
  thought	
  that	
  the	
  longer	
  the	
  
phthalate	
  chain	
  (R	
  group	
  in	
  figure	
  1)	
  the	
  longer	
  the	
  half-­‐life	
  and	
  the	
  
more	
   persistent	
   it	
   will	
   be	
   and	
   that	
   aerobic	
   conditions	
   will	
   almost	
  
most	
  certainly	
  speed	
  up	
  degradation	
  compared	
  to	
  anaerobic	
  (Liang	
  
et	
   al.,	
   2008).	
   The	
   organization	
   for	
   economic	
   co-­‐operation	
   and	
  
development	
   (OECD)	
   has	
   guideline	
   tests	
   and	
   criteria	
   for	
   defining	
  
‘ready	
   biodegradability’.	
   Using	
   these	
   criteria,	
   >60%	
   removal	
   of	
  
inorganic	
   carbon	
   within	
   a	
   10-­‐day	
   window	
   of	
   the	
   28-­‐day	
   test,	
   both	
  
DBP	
  and	
  DEHP	
  are	
  readily	
  biodegradable	
  in	
  all	
  three	
  states	
  (water,	
  
sediment	
   and	
   air).	
   Data	
   concerning	
   DINP	
   was	
   only	
   available	
   for	
  
  11	
  
atmospheric	
  half-­‐life	
  but	
  still	
  fits	
  within	
  the	
  criteria	
  for	
  bing	
  readily	
  
biodegradable.	
  If	
  all	
  half-­‐life	
  tests	
  incorporated	
  these	
  test	
  guidelines	
  
then	
  more	
  accurate	
  comparisons	
  could	
  be	
  made.	
  
2.5	
  Inside	
  the	
  organism	
  
	
  
Phthalate	
  accumulation	
  within	
  organisms	
  is	
  also	
  low,	
   partly	
   due	
   to	
  
their	
  biodegradability	
  but	
  also	
  due	
  to	
  the	
  compound	
  itself	
  not	
  being	
  
highly	
   accumulative	
   in	
   tissue,	
   rendering	
   phthalates	
   non	
   bio-­‐
accumulative	
  compounds	
  (Van	
  Den	
  Berg	
  et	
  al.,	
  2003;	
  Oehlmann	
  et	
  al.,	
  
2009	
  and	
  Mankidy	
  et	
  al.,	
  2013).	
  Due	
  to	
  their	
  high	
  transformation	
  rate	
  
phthalates	
   are	
   not	
   bio-­‐accumulative	
   (Mankidy	
   et	
  al.,	
   2013	
   and	
   Van	
  
Den	
   Berg	
   et	
   al.	
   2003)	
   meaning	
   that	
   on	
   one	
   hand	
   the	
   phthalate	
  
compound	
   is	
   transformed	
   into	
   a	
   metabolite	
   that	
   can	
   then	
   interact	
  
with	
   receptors	
   and	
   enzymes	
   within	
   the	
   organism	
   (Euling	
   et	
   al.,	
  
2013).	
  On	
  the	
  other	
  hand,	
  this	
  metabolism	
  also	
  produces	
  sulphates	
  
and	
   other	
   glucuronides	
   that	
   assist	
   in	
   the	
   removal	
   of	
   the	
   parent	
  
compound	
  (phthalate)	
  reducing	
  the	
  adverse	
  effects	
  of	
  the	
  phthalate	
  
to	
  the	
  organism	
  and	
  also	
  through	
  the	
  food	
  chain	
  (Van	
  Den	
  Berg	
  et	
  al.,	
  
2003	
  and	
  Van	
  Wezel	
  et	
  al.	
  2000).	
  
2.6	
  Modes	
  of	
  action	
  once	
  inside	
  an	
  organism	
  
	
  
Phthalates	
   being	
   EDC’s	
   have	
   a	
   multiple	
   array	
   of	
   modes	
   of	
   action	
  
(MOA)	
  making	
  it	
  important	
  to	
  understand	
  how	
  the	
  EDC	
  interacts	
  on	
  a	
  
cellular	
   level	
   (Nelson	
   and	
   Habibi,	
   2013).	
   Endogenous	
   hormones	
  
(specifically	
  estrogen	
  and	
  androgen)	
  are	
  most	
  commonly	
  the	
  concern	
  
when	
   regarding	
   phthalates.	
   Estrogenic	
   receptors	
   (ERs)	
   and	
  
androgenic	
  receptors	
  (ARs)	
  are	
  important	
  in	
  reproduction	
  (ER	
  and	
  
AR),	
  sexual	
  differentiation	
  (AR)	
  and	
  even	
  adult	
  sexual	
  behavior	
  (AR)	
  
(Harbott	
   et	
   al.,	
   2007	
   and	
   Thibaut	
   and	
   Porte,	
   2004).	
   Peroxisome	
  
proliferator	
   activated	
   receptors	
   (PPARs)	
   act	
   as	
   regulators	
   for	
   lipid	
  
and	
   carbohydrate	
   metabolism	
   as	
   well	
   as	
   cell	
   differentiation	
  
(Maradonna	
  et	
  al.,	
  2013).	
  Another	
  MOA	
  is	
  through	
  oxidative	
  damage	
  
(OxD)	
   that	
   can	
   cause	
   disturbances	
   to	
   the	
   cellular	
   metabolism	
  
(Harbott	
  et	
  al.,	
  2007).	
  All	
  these	
  receptors	
  are	
  present	
  on	
  cell	
  walls.	
  
EDC’s	
  show	
  similar	
  biological	
  effects	
  to	
  estrogens	
  and	
  androgens	
  and	
  
interfere	
  (agonistically/antagonistically)	
  with	
  the	
  cell	
  receptors	
  (Van	
  
  12	
  
den	
   Berg	
   et	
   al.,	
   2003)	
   either	
   decreasing	
   or	
   increasing	
   gene	
  
expression,	
   production	
   of	
   hormones,	
   enzymes	
   and	
   phase	
   II	
  
metabolites	
  affecting	
  the	
  level	
  of	
  active	
  hormones	
  present	
  within	
  an	
  
organisms	
  (Thibaut	
  and	
  Porte,	
  2004).	
  
2.7	
  Environmental	
  risk	
  limits	
  
	
  
The	
  European	
  commission	
  previously	
  considered	
  the	
  four	
  phthalates	
  
(DEHP,	
   DBP,	
   DINP	
   and	
   DIDP)	
   priority	
   substances	
   meaning	
   that	
  
environmental	
   risk	
   assessments	
   (ERA)	
   must	
   have	
   been	
   carried	
   out	
  
on	
   these	
   substances	
   (Oehlmann	
   et	
   al.,	
   2008).	
   ERA’s	
   compare	
  
environmental	
   concentrations	
   or	
   predicted	
   environmental	
  
concentrations	
   (PEC)	
   with	
   the	
   predicted	
   no-­‐effect	
   concentrations	
  
(PNEC).	
  When	
  the	
  PEC/PNEC	
  ratio	
  is	
  <1	
  there	
  is	
  no	
  risk,	
  where	
  as	
  if	
  
the	
  ratio	
  is	
  ≥1	
  there	
  is	
  a	
  potential	
  risk	
  meaning	
  strategies	
  must	
  be	
  put	
  
in	
  place	
  to	
  reduce	
  the	
  concentrations.	
  For	
  the	
  EPA	
  to	
  recognize	
  acute	
  
effects,	
   a	
   total	
   of	
   five	
   tests	
   must	
   be	
   completed	
   on	
   at	
   least	
   four	
  
different	
   species	
   using	
   the	
   limit	
   of	
   solubility	
   concentration	
   (max.	
  
3μg/L)	
   (Oelmann	
   et	
   al.,	
   2008).	
   By	
   2004	
   the	
   European	
   union	
   risk	
  
assessment	
  reports	
  stated	
  that	
  for	
  DBP,	
  DINP	
  and	
  DIDP	
  there	
  was	
  no	
  
need	
  for	
  testing	
  or	
  information.	
  DEHP	
  was	
  not	
  granted	
  similar	
  status	
  
and	
  therefore	
  still	
  remained	
  on	
  the	
  priority	
  substance	
  list	
  	
  in	
  2008	
  
(EC,	
  2014	
  and	
  Oehlmann	
  et	
  al.,	
  2008).	
  
2.8	
  Objective	
  
	
  
This	
   paper	
   will	
   focus	
   on	
   plastic	
   derived	
   EDC	
   known	
   as	
   phthalates.	
  
Background	
   on	
   phthalates	
   and	
   why	
   they	
   are	
   the	
   focus	
   of	
   research	
  
will	
   be	
   given.	
   It	
   will	
   highlight	
   the	
   associated	
   endocrine	
   disruptions	
  
(developmental	
  and	
  reproductive)	
  and	
  will	
  speculate	
  to	
  future	
  work.	
  
In	
   previous	
   reviews,	
   fish	
   have	
   never	
   been	
   the	
   sole	
   focus	
   neither	
  
experiment	
   set	
   up	
   explained.	
   It	
   has	
   been	
   approximately	
   13	
   years	
  
since	
  the	
  last	
  review	
  that	
  incorporated	
  over	
  12	
  studies	
  (Van	
  Wezel	
  et	
  
al.,	
  2000).	
  The	
  paper	
  will	
  focus	
  on	
  four	
  phthalates	
  allowing	
  a	
  more	
  
refined	
  and	
  in	
  depth	
  review.	
  	
  
	
  
	
  
  13	
  
III.	
  Method	
  
	
  
For	
   this	
   paper	
   focus	
   was	
   on	
   the	
   compounds	
   DEHP,	
   DBP	
   DINP	
   and	
  
DIDP	
  due	
  to	
  their	
  high	
  abundance	
  within	
  the	
  environment	
  (former	
  
two)	
  and	
  acclaimed	
  ‘no	
  effects’	
  of	
  the	
  latter	
  two	
  (Oehlman	
  et	
  al.,	
  2009	
  
and	
   Hallmark,	
   2010).	
   Searches	
   were	
   be	
   carried	
   out	
   on	
   ’google’	
  
‘google	
  scholar’	
  and	
  ‘Web	
  of	
  science’	
  focusing	
  mainly	
  on	
  publications	
  
within	
   the	
   years	
   2000-­‐2014.	
   Searches	
   for	
   DEHP,	
   DBP,	
   DINP,	
   DIDP,	
  
effects	
   of	
   DEHP/DBP/DINP/DIDP	
   on	
   aquatic	
   organisms/fish,	
  
reproductive/developmental/metabolic	
   effects	
   of	
   phthalates,	
  
vitellogenin	
   effects	
   of	
   phthalates,	
   intersex	
   caused	
   by	
   endocrine	
  
disrupters,	
   and	
   environmental	
   phthalates	
   are	
   a	
   few	
   of	
   the	
   search	
  
terms	
   used.	
   The	
   main	
   duration	
   of	
   research	
   lasted	
   approximately	
   3	
  
weeks-­‐1	
  month	
  and	
  only	
  full	
  text	
  articles	
  were	
  incorporated	
  within	
  
the	
  paper.	
  
IV.	
  Results	
  
	
  
A	
   total	
   of	
   46	
   papers	
   were	
   gathered	
   and	
   divided	
   into	
   sections	
   on	
  
organism	
   toxicity	
   (≈18),	
   phthalate	
   levels	
   in	
   the	
   environment	
   (≈5),	
  
general	
  information,	
  however	
  nearly	
  all	
  articles	
  had	
  multiple	
  section	
  
uses.	
  Due	
  to	
  the	
  majority	
  of	
  organism	
  toxicity	
  publication	
  a	
  further	
  
division	
   of	
   pre	
   2000	
   and	
   post	
   2000	
   research	
   as	
   well	
   as	
   compound	
  
groups	
   were	
   added.	
   This	
   was	
   done	
   due	
   to	
   the	
   majority	
   of	
   papers	
  
found	
  being	
  post	
  2000	
  and	
  to	
  separate	
  ‘recent	
  work’	
  from	
  ‘previous	
  
work’.	
  All	
  publications	
  were	
  given	
  in	
  publication	
  date	
  order	
  (oldest-­‐
newest).	
  
	
  
Most	
   experiments	
   within	
   the	
   ecotoxicology	
   field	
   focus	
   on	
   either	
   in	
  
vivo	
   or	
   in	
   vitro	
   set-­‐ups.	
   The	
   former	
   refers	
   to	
   the	
   whole	
   organism	
  
being	
   studied	
   allowing	
   observation	
   of	
   the	
   overall	
   effect	
   of	
  
compounds	
   on	
   the	
   organism.	
   The	
   latter	
   refers	
   to	
   using	
   cells	
   in	
  
controlled	
  environments	
  (such	
  as	
  petri	
  dishes,	
  assays,	
  etc)	
  where	
  for	
  
example	
  assays	
  can	
  provide	
  information	
  on	
  the	
  mechanism	
  of	
  action	
  
(MOA)	
  of	
  certain	
  compounds;	
  unfortunately	
  this	
  does	
  not	
  mimic	
  the	
  
whole	
  organism	
  (Sohoni	
  and	
  Sumpter,	
  1998).	
  
  14	
  
4.1	
  Summary	
  of	
  literature	
  (1980-­‐1999)	
  
	
  
Table	
  1:	
  ED	
  effects	
  of	
  phthalates	
  in	
  in	
  vitro	
  receptor	
  binding	
  affinity	
  tests.	
  
	
  
Cell	
  type	
   Effect	
  (mM)	
   Remark	
  
Original	
  references	
  (within	
  
Van	
  Wezel	
  et	
  al.,	
  2000)	
  
DBP	
  
Trout	
  hepatocyte	
   EC50	
  =	
  1	
   REP:	
  6.7x10-­‐6	
   Jobling	
  et	
  al.,	
  1995	
  
Trout	
  hepatic	
  cytosol	
   EC	
  10-­‐25	
  =	
  0.17	
   REP:	
  2x10-­‐5	
   Knudsen	
  and	
  Pottinger,	
  1999	
  
DEHP	
  
Trout	
  hepatocyte	
   EC75	
  =	
  1	
   REP:	
  1x10-­‐5	
   Jobling	
  et	
  al.,	
  1995	
  
Trout	
  hepatic	
  cytosol	
   EC10-­‐25	
  =	
  0.17	
   REP:	
  2x10-­‐5	
   Knudsen	
  and	
  Pottinger,	
  1999	
  
DINP	
  
Trout	
  hepatic	
  cytosol	
   No	
  effect	
  at	
  0.17	
   -­‐	
   Knudsen	
  and	
  Pottinger,	
  1999	
  
	
  
REP:	
  relative	
  potency	
  compared	
  with	
  17-­‐estradiol	
  (Based	
  of	
  appendices	
  by	
  Van	
  Wezel	
  et	
  
al.,	
  2000).	
  
	
  
Table	
  2:	
  Toxicity	
  data	
  for	
  DBP.	
  
	
  
1-­‐Y:	
  chemical	
  analyzed	
  in	
  test	
  solution	
  and	
  N:	
  chemical	
  not	
  analyzed	
  in	
  test	
  solution	
  or	
  
no	
   data.	
   2-­‐S:	
   static,	
   R:	
   Static	
   with	
   renewal	
   and	
   F:	
   flow	
   through.	
   3-­‐S:	
   survival,	
   R:	
  
reproductive	
   and	
   G:	
   Growth.	
   *-­‐Average	
   of	
   results	
   (mg/L)	
   when	
   all	
   parameters	
   and	
  
authors	
  were	
  the	
  same	
  (Based	
  of	
  appendices	
  by	
  Van	
  Wezel	
  et	
  al.,	
  2000).	
  
Organism	
  
Chemical	
  
analysis1	
  
Test	
  
type2	
  
Exp.	
  
time	
  
End	
  
point3	
  
Results	
  
(mg/L)	
  
Original	
  references	
  (within	
  
Van	
  Wezel	
  et	
  al.,	
  2000)	
  
Chronic	
  toxicity	
  to	
  freshwater	
  organisms:	
  NOEC	
  values	
  
Oncorhynchus	
  mykiss	
   Y	
   P	
   60d	
   G	
   0.1	
   Rhodes	
  et	
  al.,	
  1995	
  
Pimephales	
  promelas	
   Y	
   F	
   20d	
   G	
   0.56	
  
McCarthy	
  and	
  Whitmore,	
  
1985	
  
Acute	
  toxicity	
  to	
  freshwater	
  organisms:	
  L(E)C50	
  values	
  
Brachydanio	
  rerio	
   Y	
   S,	
  R	
   96h	
   S	
   2.2	
   Scholz,	
  1994	
  
Lepomis	
  
macrochirus*	
  
N	
   S	
   96h	
   S	
   1.6	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Lepomis	
  macrochirus	
   N	
   F	
   96h	
   S	
   1.6	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  
mykiss*	
  
N	
   S	
   96h	
   S	
   4.4	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   N	
   F	
   96h	
   S	
   1.5	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   Y	
   -­‐	
   96h	
   S	
   1.2-­‐1.8	
   Hrudey	
  et	
  al.,	
  1976	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   96h	
   S	
   1.6	
   Adams	
  et	
  al.,	
  1995	
  
Perca	
  flavescens	
   N	
   F	
   96h	
   S	
   0.35	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Pimephales	
  promelas	
   N	
   S	
   96h	
   S	
   1.3	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Pimephales	
  promelas	
   N	
   F	
   96h	
   S	
   4	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Pimephales	
  promelas	
   N	
   -­‐	
   96h	
   S	
   2	
  
McCarthy	
  and	
  Whitmore,	
  
1985	
  
Pimephales	
  promelas	
   Y	
   S	
   96h	
   S	
   1.5	
   Adams	
  et	
  al.,	
  1995	
  
Pimephales	
  
promelas*	
  
Y	
   F	
   96h	
   S	
   0.97	
   DeFoe	
  et	
  al.,1990	
  
Pimephales	
  promelas	
   Y	
   F	
   96h	
   S	
   0.92	
   Adams	
  et	
  al.,	
  1995	
  
  15	
  
Table	
  3:	
  Toxicity	
  data	
  for	
  DEHP.	
  
	
  
Organism	
  
Chemical	
  
analysis1	
  
Test	
  
type2	
  
Exp.	
  
time	
  
End	
  
point3	
  
Results	
  
(mg/L)	
  
Original	
  references	
  (within	
  Van	
  
Wezel	
  et	
  al.,	
  2000)	
  
Chronic	
  toxicity	
  to	
  freshwater	
  organisms:	
  NOEC	
  values	
  
Brachydanio	
  rerio	
   N	
   R	
   35d	
   S,	
  G	
   ≥0.32	
   Canton	
  et	
  al.,	
  1984	
  
Gasterosteus	
  
aculeatus	
  
N	
   -­‐	
   28d	
   S,	
  G	
   ≥0.32	
   Van	
  den	
  Dikkenberg	
  et	
  al.,	
  1989	
  
Jordanella	
  floridae	
   N	
   S	
   28d	
   S,	
  G	
   ≥0.32	
   Adema	
  et	
  al.,	
  1981	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   102d	
   S,	
  R	
   0.005	
   Mehrle	
  and	
  Mayer,	
  1976	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   90d	
   S,	
  G,	
  R	
   >0.5	
   DeFoe	
  et	
  al.,	
  1990	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   70d	
   S,	
  G,	
  R	
   >0.0073	
  
Cohle	
  and	
  Stratton,	
  1992	
  (EU	
  
draft)	
  
Oryzias	
  latipes	
   Y	
   F	
   168d	
   G	
   0.55	
   DeFoe	
  et	
  al.,	
  1990	
  	
  
Oryzias	
  latipes	
   N	
   R	
   28d	
   S,	
  G	
   ≥0.32	
   Adema	
  et	
  al.,	
  1981	
  
Pimephales	
  promelas	
   Y	
   F	
   56d	
   S,	
  G	
   0.062	
   Mehrle	
  and	
  Mayer,	
  1976	
  
Poecilia	
  reticulata	
   N	
   -­‐	
   28d	
   S,	
  G	
   ≥0.32	
   Adema	
  et	
  al.,	
  1981	
  
Acute	
  toxicity	
  to	
  freshwater	
  organisms:	
  L(E)C50	
  values	
  
Brachydanio	
  rerio	
   N	
   -­‐	
   96h	
   S	
   >0.32	
   Van	
  den	
  Dikkenberg	
  et	
  al.,	
  1989	
  
Brachydanio	
  rerio	
   Y	
   R	
   96h	
   S	
   >100	
   Scholz,	
  1995	
  
Gasterosteus	
  
aculeatus	
  
N	
   -­‐	
   96h	
   S	
   >0.32	
   Van	
  den	
  Dikkenberg	
  et	
  al.,	
  1989	
  
Ictalurus	
  punctatus	
   -­‐	
   S	
   96h	
   S	
   >10	
   Mayer	
  and	
  Sanders,	
  1973	
  
Ictalurus	
  punctatus	
   Y	
   F	
   96h	
   S	
   >100	
   Johnson	
  and	
  Finley,	
  1980	
  
Ictalurus	
  punctatus	
   N	
   S	
   24h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Ictalurus	
  punctatus	
   N	
   S	
   96h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Ictalurus	
  punctatus	
   N	
   F	
   96h	
   S	
   >0.2	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Jordanella	
  floridae	
   N	
   -­‐	
   96h	
   S	
   >0.32	
   Van	
  den	
  Dikkenberg	
  et	
  al.,	
  1989	
  
Lepomis	
  macrochirus	
   -­‐	
   S	
   96h	
   S	
   >10	
   Mayer	
  and	
  Sanders,	
  1973	
  
Lepomis	
  macrochirus	
   N	
   S	
   96h	
   S	
   >250	
   Bionomics	
  Inc.,	
  1972	
  
Lepomis	
  macrochirus	
   Y	
   F	
   96h	
   S	
   >100	
   Johnson	
  and	
  Finley,	
  1980	
  
Lepomis	
  macrochirus	
   Y	
   S	
   96h	
   S	
   >0.2	
   Adams	
  et	
  al.,	
  1995	
  
Lepomis	
  macrochirus	
   N	
   S	
   24h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Lepomis	
  macrochirus	
   N	
   S	
   96h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Lepomis	
  macrochirus	
   N	
   F	
   96h	
   S	
   >0.2	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   -­‐	
   S	
   96h	
   S	
   >10	
   Mayer	
  and	
  Sanders,	
  1973	
  
Oncorhynchus	
  mykiss	
   -­‐	
   S	
   96h	
   S	
   >1000	
   Silvo,	
  1974	
  (EU	
  draft)	
  
Oncorhynchus	
  mykiss	
   N	
   S	
   96h	
   S	
   >540	
   Hrudey	
  et	
  al.,	
  1976	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   96h	
   S	
   >0.32	
   Adams	
  et	
  al.,	
  1995	
  
Oncorhynchus	
  kisutch	
   N	
   S	
   24h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  kisutch	
   N	
   S	
   96h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   N	
   S	
   24h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   N	
   S	
   96h	
   S	
   >100	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Oncorhynchus	
  mykiss	
   Y	
   F	
   96h	
   S	
   >20	
   DeFoe	
  et	
  al.,	
  1990	
  
Oryzias	
  latipes	
   N	
   -­‐	
   96h	
   S	
   >0.32	
   Van	
  den	
  Dikkenberg	
  et	
  al.,	
  1989	
  
Oryzias	
  latipes	
   Y	
   F	
   96h	
   S	
   >0.67	
   DeFoe	
  et	
  al.,	
  1990	
  
Pimephales	
  promelas	
   -­‐	
   S	
   96h	
   S	
   >10	
   Mayer	
  and	
  Sanders,	
  1973	
  
Pimephales	
  promelas	
   Y	
   F	
   96h	
   S	
   >0.67	
   DeFoe	
  et	
  al.,	
  1990	
  
  16	
  
Pimephales	
  promelas	
   N	
   F	
   96h	
   S	
   >1	
   Mayer	
  and	
  Ellersieck,	
  1986	
  
Pimephales	
  promelas	
   Y	
   F	
   96h	
   S	
   >0.33	
   DeFoe	
  et	
  al.,	
  1990	
  
Pimephales	
  promelas	
   Y	
   S	
   96h	
   S	
   >0.16	
   Adams	
  et	
  al.,	
  1995	
  
	
  
1-­‐Y:	
  chemical	
  analyzed	
  in	
  test	
  solution	
  and	
  N:	
  chemical	
  not	
  analyzed	
  in	
  test	
  solution	
  or	
  
no	
   data.	
   2-­‐S:	
   static,	
   R:	
   Static	
   with	
   renewal	
   and	
   F:	
   flow	
   through.	
   3-­‐S:	
   survival,	
   R:	
  
reproductive	
  and	
  G:	
  Growth.	
  EU	
  draft:	
  (DEHP)	
  (Based	
  of	
  appendices	
  by	
  Van	
  Wezel	
  et	
  al.,	
  
2000).	
  
4.2	
  Literature	
  (1980-­‐1999)	
  
	
  
A	
  meta-­‐analysis	
  using	
  journals	
  from	
  1980-­‐1999	
  was	
  carried	
  out	
  by	
  
Van	
  Wezel	
  et	
  al.,	
  2000.	
  Above	
  in	
  table	
  1,	
  2	
  and	
  3	
  a	
  summary	
  of	
  these	
  
results	
   (no	
   observed	
   effect	
   concentration-­‐NOEC,	
   X%	
   effective	
  
concentrations-­‐ECx,	
  chronic	
  and	
  acute	
  exposure)	
  concerning	
  fish	
  can	
  
be	
  found.	
  They	
  found	
  minimal	
  difference	
  between	
  nominal	
  and	
  actual	
  
concentrations	
   used	
   in	
   studies	
   concerning	
   DBP.	
   The	
   most	
   sensitive	
  
freshwater	
   organism	
   was	
   Oncorhynchus	
   mykiss	
   that	
   showed	
   the	
  
lowest	
   chronic	
   NOEC	
   at	
   0.1mg/L	
   (table	
   2).	
   Acute	
   toxicity	
   data	
   was	
  
more	
  available	
  (see	
  table	
  5)	
  and	
  Van	
  Wezel	
  et	
  al.	
  reported	
  that	
  ‘no	
  
useful	
  test’	
  regarding	
  soil	
  or	
  sediment	
  was	
  found.	
  When	
  comparing	
  
chronic	
   and	
   acute	
   DEHP	
   results	
   it	
   was	
   found	
   that	
   both	
   categories	
  
showed	
  no	
  effects	
  in	
  the	
  majority	
  of	
  the	
  studies	
  (even	
  at	
  the	
  highest	
  
concentration	
   tested	
   acute:	
   0.55mg/L	
   and	
   chronic:	
   1x106mg/L).	
  
When	
  effects	
  were	
  recorded	
  and	
  NOEC	
  could	
  be	
  produced	
  the	
  NOEC	
  
was	
  above	
  the	
  water	
  solubility	
  of	
  phthalates	
  (3μg/L).	
  
	
  
With	
  all	
  the	
  data	
  available	
  the	
  authors	
  derived	
  an	
  ERL	
  for	
  the	
  aquatic	
  
and	
   sediment	
   environments.	
   For	
   DBP	
   this	
   was	
   done	
   by	
   using	
   the	
  
lowest	
  NOEC	
  (0.1mg/L)	
  and	
  applying	
  an	
  assessment	
  factor	
  of	
  10.	
  For	
  
sediment	
  due	
  to	
  lack	
  of	
  data	
  the	
  ERL	
  was	
  derived	
  by	
  multiplying	
  the	
  
lowest	
   Koc,	
   partition	
   coefficient	
   between	
   organic	
   carbon	
   in	
   the	
  
soil/sediment	
  and	
  water,	
  value	
  (1.2x103L/kg:	
  12mg/kg).	
  For	
  DEHP,	
  
due	
   to	
   no	
   effects	
   observed,	
   the	
   NOEC	
   for	
   the	
   only	
   soil	
   organisms	
  
(Rana	
  arvalis	
  –	
  frog)	
  was	
  used	
  10mg/kg	
  fresh	
  weight	
  and	
  applying	
  a	
  
factor	
   of	
   10.	
   The	
   ERL	
   for	
   soil	
   was	
   then	
   used	
   to	
   derive	
   an	
   ERL	
   for	
  
water	
  by	
  combining	
  with	
  the	
  lowest	
  soil/sediment	
  Koc.	
  
The	
  derived	
  ERLs	
  for	
  DBP:	
  10μg/L	
  and	
  0.7mg/Kg	
  fresh	
  weight	
  and	
  
DEHP:	
   0.19μg/L	
   and	
   1.0mg/Kg	
   fresh	
   weight.	
   When	
   surface	
   water	
  
  17	
  
samples	
   were	
   taken	
   at	
   different	
   location	
   in	
   the	
   Netherlands	
   they	
  
found	
   that	
   DBP	
   levels	
   were	
   rarely	
   above	
   the	
   ERL	
   (both	
   water	
   and	
  
sediment)	
   derived	
   in	
   this	
   study.	
   For	
   DEHP	
   however	
   unexpected	
  
levels	
   3-­‐20	
   times	
   higher	
   than	
   the	
   derived	
   ERL	
   for	
   water	
   were	
  
observed	
   and	
   sediment	
   levels	
   were	
   also	
   much	
   higher	
   than	
   the	
  
derived	
  sediment	
  ERL.	
  	
  
4.3	
  Summary	
  of	
  literature	
  post	
  2000	
  
	
  
Table	
  4:	
  DBP	
  summary.	
  
	
  
	
  
N-­‐Depicts	
  nominal	
  concentrations.	
  A-­‐depicts	
  acute	
  exposure	
  studies.	
  C-­‐depicts	
  chronic	
  
exposure	
   studies.	
   []-­‐concentration	
   causing	
   significant	
   effects.	
   VTG-­‐vitellogenin.	
  
D/hpf-­‐days/hours	
   post	
   fertilization.	
   Dep.-­‐depuration	
   (none	
   contaminated	
  
water).	
  *-­‐<0.05,	
  **<0.01,	
  ***<0.001	
  significance	
  levels.	
  
Species	
  
Age,	
  sex,	
  exp.	
  type	
  and	
  
concentration	
  (μg/L)	
  
(unless	
  indicated)	
  
Exposure	
  
route	
  and	
  
duration	
  
Effects	
   Authors	
  
Sander	
  
lucioperca	
  
Juvenile	
  (61	
  dph)	
  
(in	
  vivo)	
  
0.125,	
  0.25,	
  0.5,	
  1,	
  
2g/Kg	
  feed	
  
Food	
  
5	
  weeks	
  
	
  
*No	
  effects	
  on	
  female	
  fish,	
  growth	
  
rate	
  and	
  survival.	
  
*Increases	
  in	
  [DBP]	
  shows	
  
decreases	
  in	
  male	
  specimens.	
  
Jarmolowic
z	
  	
  et	
  al.,	
  
(2003)	
  
Danio	
  rerio	
  
Adult	
  male	
  
(in	
  vivo	
  and	
  in	
  vitro)	
  
500	
  
Water	
  
15	
  days	
  
Day	
  7:	
  *increase	
  in	
  surface	
  density	
  
of	
  peroxisomes.	
  
	
  
Day	
  15:	
  *increase	
  in	
  both	
  surface	
  
density	
  and	
  numerical	
  density	
  of	
  
peroxisomes.	
  
Increase	
  in	
  activity	
  of	
  acyl-­‐CoA	
  
oxidase.	
  
	
  
Ortiz-­‐
Zarragoitia	
  
and	
  
Cajaraville	
  
(2005)	
  
Danio	
  rerio	
  
1)	
  Embryos	
  (1-­‐2	
  hpf)	
  
25,	
  100	
  
2)	
  Adult	
  female	
  
100,	
  500	
  
(in	
  vivo)	
  
	
  
Water	
  
1:	
  8	
  weeks	
  
2:	
  15	
  days	
  
1)	
  [100]	
  Increase	
  in	
  number	
  and	
  
volume	
  of	
  peroxisome	
  density	
  and	
  
acyl-­‐CoA	
  oxidase	
  enzyme.	
  
2)	
  Mortality	
  of	
  female	
  offspring	
  
increased.	
  
Ortiz-­‐
Zarragoitia	
  	
  
et	
  al.,	
  
(2006)	
  
Gasterosteus	
  
aculetaus	
  
Adult	
  male	
  
(in	
  vivo)	
  
N50,	
  N100	
  
(Measured	
  levels	
  15,	
  35	
  
respectively)	
  
Water	
  
22	
  days	
  
[35*/**]	
  Increase	
  in	
  testosterone	
  
and	
  oxidised	
  testosterone.	
  
Decrease	
  in	
  spiggin	
  (protein	
  glue).	
  
	
  
Aoki	
  	
  et	
  al.,	
  
(2011)	
  
Cyprinus	
  carpio	
  
(in	
  vitro)	
  
100μM,	
  1mM	
  
Incubated	
  
in	
  vitro	
  
[100]	
  Inhibited	
  formation	
  of	
  5α-­‐
Adione	
  and	
  synthesis	
  of	
  5α-­‐DHT.	
  
[1]	
  Increased	
  synthesis	
  of	
  
17α,20α/βDP	
  
	
  
Thibaut	
  and	
  
Porte	
  
(2004)	
  
Pimephales	
  
promelis	
  
1	
  hpf	
  
(in	
  vivo	
  and	
  In	
  vitro)	
  
1000	
  
Water	
  
96	
  hpf	
  
None	
  
Mankidy	
  et	
  
al.,	
  (2013)	
  
	
  
  18	
  
	
  
Table	
  5:	
  DEHP	
  summary.	
  
	
  
N-­‐Depicts	
   nominal	
   concentrations.	
   []-­‐concentration	
   causing	
   significant	
   effects.	
   Hpf-­‐
hours	
   post	
   fertilization.	
   Dph-­‐days	
   post	
   hatch.	
   Dep.-­‐depuration	
   (none	
   contaminated	
  
water).	
  *-­‐<0.05,	
  **<0.01	
  significance	
  levels.	
  
	
  
	
  
	
  
Species	
  
Age,	
  sex,	
  exp.	
  type	
  and	
  
concentration	
  (μg/L)	
  
(unless	
  indicated)	
  
Exposure	
  
route	
  and	
  
duration	
  
Effects	
   Authors	
  
Oryzias	
  
laptipes	
  
	
  
Adult	
  male	
  
(in	
  vivo)	
  
N0.1,	
  N0.3,	
  N1μmol	
  
	
  
Water	
  
2	
  weeks	
  
None	
  
Shioda	
  and	
  
Wakabayashi	
  
(2000)	
  
Oryzias	
  
laptipes	
  
	
  
A)	
  a	
  few	
  days	
  old	
  
10,	
  50,	
  100	
  
C)	
  7	
  month	
  
N1,	
  N10,	
  N50	
  
(in	
  vivo	
  and	
  in	
  vitro)	
  
	
  
Water	
  
A:	
  5	
  days	
  
C:	
  3	
  months	
  
A)	
  [all]	
  VTG	
  protein	
  not	
  present	
  in	
  
males.	
  
C)	
  [N10*,	
  N50]*	
  GSI	
  lower	
  in	
  females	
  
and	
  [Nall]	
  retardation	
  in	
  ovary	
  (oocyte)	
  
development.	
  
Kim	
  et	
  al.,	
  
(2002)	
  
Oryzias	
  
laptipes	
  
1dpf	
  
(in	
  vivo)	
  
N0.01,	
  N0.1,	
  N1,	
  N10	
  
Water	
  Until	
  
hatched	
  
[N0.1,	
  N1]	
  Decreased	
  hatch	
  time.	
  Post	
  5-­‐
6	
  months	
  dep.:	
  [N0.01***,	
  N0.1*,	
  N1***]	
  
increased	
  mortality,	
  [N0.01*]	
  altered	
  sex	
  
ratio.	
  [N0.1*,	
  N1*,	
  N10**]	
  decrease	
  in	
  
male	
  body	
  weight.	
  
	
  
Chikae	
  et	
  al.,	
  
(2004)	
  
Poecilia	
  
reticulate	
  
	
  
<1	
  week	
  
(in	
  vivo)	
  
0.1,	
  1,	
  10	
  
Water	
  
3	
  months	
  
Day	
  14:	
  [10]	
  decrease	
  in	
  length	
  and	
  
weight.	
  
Day	
  49	
  and	
  91:	
  [1,	
  10]	
  decrease	
  in	
  
length	
  and	
  weight	
  (more	
  significant	
  in	
  
females	
  [all]**)	
  
	
  
Zantonelli	
  et	
  
al.,	
  (2009)	
  
Danio	
  rerio	
  
	
  
6	
  month	
  female	
  
(in	
  vivo	
  and	
  In	
  vitro)	
  
0.02,	
  0.2,	
  2,	
  20,	
  40	
  
Water	
  
3	
  weeks	
  
[2]	
  Increase	
  in	
  VTG	
  oocytes	
  and	
  
decrease	
  in	
  pre-­‐VTG	
  oocytes*.	
  [all]	
  
down	
  regulation	
  of	
  LHR	
  and	
  plasma	
  
VTG.	
  
	
  
Carnevali	
  et	
  
al.,	
  (2010)	
  
Danio	
  rerio	
  
	
  
Mature	
  males	
  
(in	
  vivo)	
  
0.5,	
  50,	
  5000	
  mg/kg	
  
body	
  weight	
  
Injection	
  
on	
  day	
  1	
  
and	
  5	
  
	
  
[5000***]	
  Decrease	
  in	
  fertilization	
  
success.	
  
[50*,	
  5000**/***]	
  decrease	
  in	
  no.	
  of	
  	
  
spermatozoa	
  and	
  increase	
  in	
  no.	
  of	
  
spermatocytes.	
  
[5000*]	
  increase	
  in	
  VTG	
  levels	
  (males	
  
should	
  not	
  have	
  VTG).	
  
[5000**/*]	
  increase	
  expression	
  of	
  acox1	
  
and	
  ehhadh.	
  
	
  
Uren-­‐
Webster	
  et	
  
al.,	
  (2010)	
  
Cyprinus	
  
carpio	
  
(in	
  vitro)	
  
100μM,	
  1mM	
  
Incubated	
  
in	
  vitro	
  
[100]	
  Inhibited	
  formation	
  of	
  5α-­‐Adione.	
  
	
  
Thibaut	
  and	
  
Porte	
  (2004)	
  
Pimephales	
  
promelis	
  
1	
  hpf	
  
(in	
  vivo	
  and	
  In	
  vitro)	
  
1000	
  
Water	
  
96	
  hpf	
  
[1000**/*]	
  increase	
  in	
  embryo	
  mortality	
  
and	
  increased	
  lipid	
  peroxidation	
  
	
  
Mankidy	
  et	
  
al.,	
  (2013)	
  
(Salmo	
  salar)	
  
4	
  weeks	
  post	
  hatch	
  
(in	
  vivo)	
  
N0,	
  N400,	
  N800,	
  
N1500mg/kg	
  feed	
  
Food	
  
4	
  weeks	
  
[DEHP]	
  3x	
  greater	
  then	
  MEHP	
  
(metabolite).	
  
1	
  week	
  after	
  dep.:	
  DEHP+MEHP	
  levels	
  
returned	
  to	
  background	
  levels.	
  
1	
  month	
  dep.:	
  [N1500*]	
  ovo-­‐testis	
  
combo	
  
	
  
Norman	
  et	
  al.,	
  
(2007)	
  
  19	
  
	
  
Table	
  6:	
  DINP	
  and	
  DIDP	
  summary.	
  
	
  
Species	
  
Age,	
  sex,	
  exp.	
  type	
  and	
  
concentration	
  (μg/L)	
  
(unless	
  indicated)	
  
Exposure	
  
route	
  and	
  
duration	
  
Effects	
   Authors	
  
Oryzias	
  
laptipes	
  
	
  
2	
  week	
  old	
  larvae	
  
(in	
  vivo)	
  
20μg/g	
  (for	
  both	
  DINP	
  
and	
  DIDP)	
  
Food	
  
F0	
  till	
  gen.	
  
F2-­‐42dph	
  
	
  
DINP:	
  F0	
  Embryo	
  development	
  
showed	
  decreases	
  in	
  red	
  blood	
  cell	
  
pigment*.	
  
DINP:	
  F1	
  survival	
  decreased*	
  
	
  
Patyna	
  et	
  al.,	
  
(2006)	
  
	
  
Dph-­‐days	
  post	
  hatch.	
  *-­‐<0.05	
  significance	
  levels.	
  Patyna	
  et	
  al.	
  2006	
  uses	
  two	
  bioassays	
  
for	
  a	
  single	
  effect.	
  Therefore	
  only	
  effects	
  proving	
  significant	
  on	
  both	
  assays	
  are	
  used	
  in	
  
this	
  table.	
  
4.4	
  Literature	
  post	
  2000	
  
4.4.1	
  DEHP	
  
	
  
In	
  2000	
  Shioda	
  and	
  wakabayashi	
  studied	
  the	
  effects	
  of	
  DEHP	
  (in	
  vivo)	
  
on	
  the	
  number	
  of	
  eggs	
  produced	
  by	
  mating	
  couples	
  and	
  number	
  of	
  
successful	
   hatchings	
   in	
   medaka	
   fish	
   (Oryzias	
   latipes).	
   For	
   this	
  
experiments	
   groups	
   (one	
   male	
   and	
   two	
   females)	
   with	
   the	
   highest	
  
number	
   of	
   fertilized	
   eggs	
   were	
   used.	
   Males	
   were	
   exposed	
   for	
   two	
  
weeks	
  to	
  low	
  nominal	
  DEHP	
  concentrations	
  of	
  0.1,	
  0.3	
  and	
  1μmol/L	
  	
  
(through	
   means	
   of	
   water)	
   along	
   side	
   a	
   positive	
   (17	
   β–estradiol,	
   a	
  
natural	
  estrogen)	
  and	
  negative	
  control	
  (tap	
  water).	
  Once	
  exposed	
  the	
  
males	
   were	
   placed	
   back	
   into	
   their	
   original	
   group.	
   The	
   DEHP	
  
concentrations	
  showed	
  no	
  significant	
  effects	
  on	
  number	
  of	
  eggs	
  and	
  
hatchings,	
  which	
  could	
  be	
  due	
  to	
  the	
  extremely	
  low	
  concentrations	
  
used.	
  
	
  
Both	
  chronic	
  and	
  acute	
  exposures	
  of	
  DEHP	
  (in	
  vivo	
  and	
  in	
  vitro)	
  were	
  
studied	
  by	
  Kim	
  et	
  al.	
  in	
  2002.	
  Japanese	
  Medaka	
  fish	
  (seven	
  months	
  
old)	
  were	
  exposed	
  via	
  water	
  to	
  concentration	
  of	
  10,	
  50	
  and	
  100μg/L	
  
of	
  DEHP	
  (for	
  acute	
  testing).	
  For	
  chronic	
  testing	
  fish	
  a	
  couple	
  days	
  old	
  
were	
   exposed	
   to	
   nominal	
   concentrations	
   of	
   1,	
   10	
   and	
   50μg/L.	
   In	
  
acute	
  exposure	
  (5	
  days)	
  it	
  was	
  found	
  that	
  the	
  protein	
  (200-­‐kDa)	
  used	
  
for	
  identification	
  of	
  vitellogenin	
  (VTG)	
  proteins	
  were	
  not	
  present	
  in	
  
male	
  Medaka	
  in	
  all	
  four	
  exposures	
  (including	
  the	
  control).	
  In	
  females	
  
however	
   VTG	
   was	
   found	
   in	
   all	
   the	
   control	
   and	
   the	
   exposed	
   fish,	
  
although	
   two	
   out	
   of	
   the	
   five	
   fish	
   in	
   1μg/L	
   exposed	
   tank	
   showed	
  
  20	
  
extremely	
  low	
  levels.	
  Overall,	
  acute	
  effects	
  of	
  DEHP	
  on	
  VTG	
  were	
  not	
  
significant.	
  
	
  
The	
  chronic	
  exposure	
  (three	
  months)	
  to	
  DEHP	
  showed	
  the	
  200-­‐kDa	
  
protein	
  not	
  to	
  be	
  present	
  in	
  male	
  fish.	
  In	
  females	
  fish	
  however	
  the	
  
protein	
   occurred	
   less	
   frequently	
   as	
   DEHP	
   concentration	
   increased.	
  
The	
  weight	
  and	
  length	
  of	
  fish	
  used	
  in	
  the	
  chronic	
  exposure	
  showed	
  
no	
  statistical	
  difference	
  in	
  all	
  treatments	
  showing	
  DEHP	
  to	
  have	
  no	
  
effect	
  on	
  growth.	
  The	
  Gonado-­‐somatic	
  index	
  (GSI)	
  of	
  females	
  in	
  both	
  
10	
  and	
  50μg/L	
  DEHP	
  treatments	
  was	
  statistically	
  lower	
  than	
  that	
  of	
  
the	
  control	
  females	
  while	
  no	
  effect	
  was	
  found	
  on	
  male	
  fish	
  showing	
  
DEHP	
  to	
  inhibit	
  the	
  development	
  of	
  Medaka	
  fish	
  ovaries.	
  
	
  
Histology	
  of	
  both	
  the	
  gonads	
  and	
  ovaries	
  from	
  
the	
   chronically	
   exposed	
   fish	
   were	
   also	
   looked	
  
at.	
   Here	
   gonads	
   of	
   the	
   male	
   fish	
   were	
   not	
  
deformed	
   compared	
   to	
   the	
   control,	
   while	
   the	
  
oocytes	
  within	
  the	
  ovaries	
  of	
  female	
  fish	
  were.	
  
In	
  the	
  control	
  females,	
  oocytes	
  were	
  developed	
  
to	
   either	
   stage	
   two	
   or	
   three	
   (stage	
   three	
  
allowing	
  them	
  to	
  be	
  fertilized).	
  In	
  all	
  1,	
  10	
  and	
  
50μg/L	
   DEHP	
   treatments	
   only	
   37%,	
   0%	
   and	
  
22%,	
   respectively,	
   of	
   the	
   fish	
   had	
   matured	
  
oocytes	
  at	
  stage	
  three	
  compared	
  to	
  54%	
  of	
  the	
  
control	
   –	
   taking	
   note	
   that	
   10μg/L	
   showed	
   no	
  
stage	
  three	
  development.	
  Along	
  side,	
  only	
  26%,	
  
25%	
  and	
  12%	
  of	
  the	
  female	
  fish	
  (respectively	
  of	
  
1,	
   10,	
   50μg/L	
   DEHP)	
   could	
   reach	
   stage	
   one	
  
compared	
   to	
   the	
   control	
   where	
   oocytes	
  
development	
  was	
  not	
  stopped	
  (figure	
  2).	
  This	
  shows	
  the	
  retardation	
  
effects	
   in	
   ovary	
   growth	
   of	
   DEHP	
   using	
   environmentally	
   relevant	
  
concentrations.	
  
	
  
In	
  2004,	
  Chikae	
  et	
  al.	
  also	
  conducted	
  an	
  in	
  vivo	
  study	
  on	
  the	
  negative	
  
(irreversible)	
  effects	
  that	
  DEHP	
  exposure	
  using	
  pre-­‐hatched	
  Medaka	
  
would	
   have	
   on	
   adulthood	
   (5-­‐6	
   months	
   post	
   hatch).	
   Treatments	
   of	
  
water	
   containing	
   nominal	
   DEHP	
   concentrations	
   of	
   0.01,	
   0.1,	
   1,	
   10	
  
Figure	
  2:	
  Ovaries	
  of	
  
females	
  medaka	
  after	
  
3	
  months.	
  A)	
  control,	
  
developed	
  to	
  stage	
  3	
  
B)	
  DEHP	
  (10μg/L)	
  
stuck	
  in	
  stage	
  1	
  (Kim	
  
et	
  al.,	
  2002)	
  
  21	
  
μg/L	
   and	
   a	
   control	
   were	
   used	
   to	
   expose	
   1-­‐day-­‐old	
   fertilized	
   eggs.	
  
Once	
  hatched	
  the	
  fish	
  were	
  transferred	
  to	
  DEHP	
  free	
  water	
  for	
  5-­‐6	
  
months.	
  	
  
	
  
At	
  the	
  beginning	
  (pre-­‐hatch)	
  over	
  90%	
  of	
  the	
  eggs	
  in	
  each	
  treatment	
  
showed	
   signs	
   of	
   eye	
   development	
   (eyeing)	
   except	
   at	
   10μg/L	
   were	
  
only	
   83%	
   were	
   found	
   eyeing.	
   Of	
   those	
   eggs	
   that	
   had	
   successful	
  
eyeing,	
   over	
   90%	
   continued	
   to	
   hatch	
   in	
   each	
   treatment.	
   The	
   only	
  
significant	
   difference	
   was	
   a	
   decrease	
   in	
   hatching	
   time	
   seen	
   at	
   the	
  
0.1μg/L	
   (P<0.005)	
   and	
   1μg/L	
   DEHP	
   treatments	
   compared	
   to	
   the	
  
control.	
   In	
   adulthood,	
   after	
   no	
   DEHP	
   exposure	
   for	
   5-­‐6	
   months,	
  
irreversible	
   effects	
   were	
   significant	
   compared	
   to	
   the	
   control.	
   Post-­‐
hatch	
  mortality	
  was	
  significantly	
  increased	
  in	
  the	
  0.01,	
  0.1	
  and	
  1μg/L	
  
treatments	
   (P<0.001,	
   <0.05	
   and	
   <0.001,	
   respectively).	
   Sex	
   ratio	
  
within	
   the	
   0.01μg/L	
   treatment	
   was	
   significantly	
   altered	
   (4m:16f),	
  
which	
   may	
   have	
   been	
   due	
   to	
   increased	
   male	
   mortality	
   or	
  
feminization.	
   Body	
   weight	
   was	
   significant	
   different	
   in	
   male	
   fish	
  
within	
  the	
  treatment	
  0.1,	
  1μg/L	
  (P<0.05)	
  and	
  10μg/L	
  (P<0.01).	
  This	
  
study	
   shows	
   the	
   irreversible	
   effects	
   of	
   phthalate	
   exposure	
   in	
  
embryonic	
  states	
  of	
  medaka	
  fish.	
  
	
  
Norman	
   et	
   al.,	
   (2007)	
   studied	
   DEHP	
   (in	
   vivo)	
   on	
   Atlantic	
   salmon	
  
(Salmo	
   salar)	
   with	
   nominal	
  
concentrations	
   of	
   0,	
   400,	
   800	
   and	
  
1500mg	
  DEHP/kg	
  feed.	
  Here	
  levels	
  of	
  
DEHP	
   and	
   its	
   metabolite	
   mono-­‐
ethylhexyl	
   phthalate	
   (MEHP)	
   within	
  
fish	
   tissue	
   were	
   studied	
   after	
   acute	
  
exposure	
  (four	
  weeks)	
  of	
  DEHP.	
  Along	
  
side,	
   histological,	
   growth	
   and	
   liver	
  
effects	
  were	
  analyzed	
  after	
  one	
  month	
  
of	
  depuration	
  (no	
  exposure	
  to	
  DEHP).	
  
The	
   DEHP	
   concentration	
   in	
   the	
   fish	
  
tissue	
   post	
   acute	
   phase	
   was	
   three	
  
times	
  higher	
  than	
  the	
  concentration	
  of	
  
MEHP.	
   Control	
   fish	
   that	
   were	
   not	
  
Figure	
  3:	
  guppy	
  fish	
  at	
  day	
  
49	
  with	
  treatments	
  above.	
  
Grid	
  is	
  1mm	
  (Zanotelli	
  et	
  al.,	
  
2009).	
  
  22	
  
exposed	
   to	
   dietary	
   DEHP	
   showed	
   low	
   background	
   levels	
   of	
   DEHP	
  
(0.016	
  mg/kg	
  fish)	
  and	
  MEHP	
  (0.020	
  mg/kg	
  fish).	
  DEHP	
  and	
  MEHP	
  
concentrations	
   increased	
   in	
   tissue	
   as	
   treatment	
   concentration	
  
increased.	
  Both	
  were	
  eliminated	
  to	
  near	
  background	
  levels	
  one	
  week	
  
after	
  the	
  depuration	
  phase.	
  Mortality	
  in	
  all	
  groups	
  was	
  low	
  (4%)	
  and	
  
no	
   difference	
   in	
   weight	
   and	
   sex	
   ratio	
   was	
   recorded	
   between	
   the	
  
different	
  exposure	
  concentrations.	
  Within	
  each	
  treatment	
  a	
  few	
  fish	
  
(1%	
  of	
  400	
  and	
  1500mg	
  DEHP/kg	
  food)	
  were	
  observed	
  anatomically	
  
to	
  be	
  slightly	
  different	
  (increased	
  testes	
  size).	
  The	
  only	
  statistically	
  
difference	
  recorded	
  was	
  in	
  the	
  treatment	
  group	
  of	
  1500mg	
  DEHP/kg	
  
feed	
  where	
  6	
  out	
  of	
  the	
  202	
  fish	
  had	
  ovo-­‐testis	
  (P<0.014).	
  This	
  study	
  
showed	
  that	
  DEHP	
  had	
  no	
  short-­‐term	
  effects.	
  
	
  
Zanotelli	
   et	
   al.,	
   (2009)	
   conducted	
   a	
   study	
   focusing	
   on	
   the	
   growth	
  
(weight	
   and	
   length)	
   of	
   <1-­‐week-­‐old	
   (larval)	
   guppy	
   fish	
   (Poecilia	
  
reticulata).	
  The	
  guppy	
  fish	
  were	
  subjected	
  to	
  continuous	
  exposure	
  (in	
  
vivo)	
  to	
  DEHP	
  through	
  water	
  (0.1,	
  1,	
  10μg/L).	
  By	
  day	
  14	
  a	
  statistically	
  
significant	
  growth	
  inhibition	
  at	
  the	
  highest	
  DEHP	
  concentration	
  was	
  
observed	
  and	
  increased	
  with	
  time.	
  After	
  49	
  days	
  of	
  exposure,	
  DEHP	
  
treated	
  fish	
  were	
  compared	
  to	
  control	
  fish.	
  Length	
  showed	
  a	
  dose-­‐
dependent	
  decrease,	
  where	
  DEHP	
  exposed	
  fish	
  at	
  1	
  and	
  10μg/L	
  were	
  
15-­‐30%	
   shorter	
   (respectively)	
   than	
   the	
   control	
   and	
   weight	
   was	
  
decreased	
   by	
   as	
   much	
   as	
   40-­‐70%	
   respectively.	
   After	
   91	
   days	
   of	
  
chronic	
  exposure	
  to	
  environmentally	
  relevant	
  DEHP	
  concentrations	
  
the	
   fish	
   showed	
   a	
   significant	
   decrease	
   in	
   weight	
   and	
   length:	
   fish	
  
exposed	
  to	
  1	
  and	
  10μg/L	
  decreased	
  10%	
  and	
  26%	
  in	
  length	
  and	
  32	
  
and	
  61%	
  in	
  weight,	
  respectively	
  (figure	
  3	
  below).	
  There	
  was	
  a	
  higher	
  
level	
  of	
  significance	
  within	
  females	
  at	
  day	
  49,	
  with	
  all	
  concentrations	
  
showing	
   a	
   P<0.01,	
   where	
   as	
   with	
   male	
   fish	
   at	
   day	
   49	
   only	
   10μg	
  
DEHP/L	
  differed	
  form	
  the	
  control	
  with	
  P<0.01.	
  This	
  study	
  shows	
  that	
  
chronic	
   exposure	
   as	
   low	
   as	
   1μg	
   DEHP/L	
   show	
   a	
   time	
   and	
   dose	
  
dependent	
   relationship	
   when	
   it	
   comes	
   to	
   growth.	
   The	
   fish	
   used	
   in	
  
this	
  study	
  were	
  considerably	
  small	
  which	
  could	
  have	
  increased	
  the	
  
effects	
  observed.	
  
	
  
Carnevali	
   et	
  al.,	
  (2010)	
  experimented	
   on	
   the	
   effects	
   of	
   DEHP	
   using	
  
six-­‐month-­‐old	
  female	
  zebrafish	
  (Danio	
  rerio)	
  in	
  an	
  in	
  vivo	
  and	
  in	
  vitro	
  
  23	
  
study.	
   Environmentally	
   relevant	
   concentrations	
   of	
   0.02,	
   0.2,	
   2,	
   20,	
  
40μg/L	
  as	
  well	
  as	
  a	
  positive	
  control	
  were	
  used	
  to	
  study	
  the	
  impact	
  on	
  
fecundity,	
   ovulation	
   and	
   oocytes	
   maturation.	
   Fish	
   were	
   exposed	
  
through	
   water	
   to	
   DEHP	
   for	
   three	
   weeks	
   and	
   were	
   compared	
   to	
   a	
  
solvent	
   control.	
   Results	
   showed	
   that	
   fish	
   exposed	
   to	
   2μg/L	
   had	
   a	
  
significant	
  increase	
  in	
  the	
  number	
  of	
  vitellogenic	
  oocytes.	
  This	
  was	
  
associated	
   with	
   the	
   significant	
   decrease	
   in	
   pre-­‐vitellogenic	
   oocytes	
  
compared	
   to	
   the	
   control	
   (P<0.05).	
   Down	
   regulation	
   of	
   ovarian	
  
luteinizing	
   hormone	
   receptor	
   (LHR)	
   and	
   plasma	
   VTG	
   were	
  
significantly	
   different	
   compared	
   to	
   the	
   control	
   at	
   all	
   five	
   doses	
   of	
  
DEHP.	
  These	
  two	
  factors	
  clearly	
  show	
  the	
  estrogenic	
  activity	
  of	
  DEHP	
  
with	
   regards	
   to	
   the	
   inhibition	
   of	
   oocytes	
   maturation.	
   This	
   is	
   also	
  
supported	
   by	
   the	
   dose	
   dependent	
   increase	
   of	
   BMP15,	
   a	
   protein	
  
involved	
   in	
   oocytes	
   maturation.	
   After	
   the	
   three-­‐week	
   exposure	
  
period	
  the	
  female	
  fish	
  were	
  placed	
  into	
  a	
  mating	
  tank	
  with	
  control	
  
males,	
   showing	
   that	
   the	
   fecundity	
   of	
   embryos	
   was	
   severely	
  
compromised	
   compared	
   to	
   the	
   control.	
   This	
   study	
   shows	
   the	
  
concrete	
  risk	
  associated	
  with	
  aquatic	
  organisms	
  living	
  in	
  phthalate-­‐
polluted	
  areas.	
  
	
  
Another	
  in	
  vivo	
  and	
  in	
  vitro	
  experiment	
  on	
  DEHP	
  by	
  Uren-­‐Webster	
  et	
  
al.,	
   (2010)	
   studied	
   the	
   reproductive	
   health	
   of	
   male	
   zebra	
   fish.	
   16	
  
colonies	
  (male	
  and	
  female	
  pairs)	
  were	
  used	
  that	
  were	
  consistent	
  with	
  
egg	
   production	
   and	
   spawning	
   were	
   over	
   a	
   10	
   day	
   period.	
   Here	
  
instead	
  of	
  the	
  dietary	
  or	
  water	
  exposure	
  as	
  previous	
  studies	
  applied,	
  
the	
  DEHP	
  solution	
  was	
  injected	
  into	
  the	
  intraperitoneal	
  cavity.	
  This	
  
method	
  of	
  administration	
  allowed	
  all	
  fish	
  to	
  receive	
  the	
  same	
  dose	
  as	
  
well	
   as	
   being	
   able	
   to	
   target	
   male	
   specimens.	
   Environmentally	
  
relevant	
   concentrations	
   of	
   0.5mg	
   DEHP/kg	
   of	
   body	
   weight	
   (bw),	
  
range	
  within	
  measured	
  concentration	
  of	
  wild	
  fish,	
  50mg/kg	
  bw	
  and	
  
an	
   extremely	
   high	
   5000mg/kg	
   bw	
   was	
   used	
   to	
   assess	
   the	
  
mechanisms	
   of	
   phthalate	
   toxicity.	
   All	
   three	
   treatments	
   were	
  
compared	
  to	
  a	
  control.	
  The	
  fertilization	
  success	
  of	
  males	
  subjected	
  to	
  
5000mg/kg	
   bw	
   were	
   significantly	
   lower	
   than	
   the	
   other	
   three	
  
treatments	
  (P<0.001),	
  although	
  this	
  was	
  only	
  when	
  including	
  the	
  full	
  
10	
  day	
  exposure	
  period	
  (the	
  first	
  5	
  day	
  period	
  showed	
  no	
  significant	
  
difference).	
  	
  No	
  abnormal	
  embryo	
  development	
  or	
  embryo	
  survival	
  
  24	
  
effects	
   were	
   seen	
   in	
   the	
   treatments.	
   Histological	
   analysis	
   of	
   the	
  
gonads	
  showed	
  significantly	
  lower	
  numbers	
  of	
  spermatozoa	
  (sperm	
  
cell)	
  in	
  the	
  testes	
  of	
  males	
  injected	
  with	
  50mg/kg	
  of	
  bw	
  (P<0.05)	
  and	
  
5000mg/kg	
  bw	
  (P<0.01)	
  compared	
  to	
  the	
  control	
  fish.	
  On	
  the	
  other	
  
hand	
  there	
  was	
  a	
  significant	
  increase	
  in	
  the	
  number	
  of	
  spermatocytes	
  
(immature	
  male	
  germ	
  cell)	
  compared	
  to	
  the	
  control	
  in	
  both	
  50mg/kg	
  
bw	
  (P<0.05)	
  and	
  5000mg/kg	
  bw	
  (P<0.001).	
  
	
  
When	
   studying	
   at	
   the	
   liver,	
   a	
   statistically	
   significant	
   increase	
  
(P<0.05)	
   in	
   VTG	
   levels	
   was	
   recorded	
   in	
   the	
   treatment	
   5000mg/kg,	
  
which	
  showed	
  DEHP	
  to	
  have	
  estrogenic	
  activity,	
  as	
  VTG	
  should	
  not	
  
be	
  found	
  in	
  male	
  zebra	
  fish.	
  In	
  the	
  male	
  fish	
  a	
  significant	
  increase	
  in	
  
the	
  expression	
  of	
  the	
  genes	
  acox1	
  (acyl-­‐coenzyme	
  A	
  oxidase	
  1)	
  and	
  
ehhadh	
   (enoyl-­‐coenzyme	
   A	
   hydratase/3-­‐hydroxyacyl	
   coenzyme	
   A	
  
dehydrogenase)	
   that	
   are	
   both	
   involved	
   in	
   lipid	
   metabolism	
   was	
  
found.	
   Males	
   showed	
   no	
   alterations	
   in	
   swimming	
   and	
   feeding	
  
behavior	
   throughout	
   the	
   study	
   (compared	
   to	
   controls).	
   This	
   study	
  
used	
  mature	
  fish	
  which	
  are	
  known	
  to	
  be	
  less	
  sensitive	
  than	
  juvenile	
  
fish,	
   which	
   may	
   have	
   caused	
   the	
   conclusion	
   that	
   DEHP	
   at	
  
environmentally	
  relevant	
  concentrations	
  (0.5mg	
  DEHP/kg	
  bd)	
  show	
  
no	
  short	
  term	
  reproductive	
  effect.	
  
	
  
Lee	
  and	
  Liang	
  (2011)	
  studied	
  zebra	
  fish	
  offspring	
  and	
  exposed	
  them	
  
for	
   3	
   months	
   to	
   low	
   doses	
   of	
   DEHP	
   through	
   water	
   in	
   vivo.	
   2ml	
   of	
  
DEHP	
  was	
  placed	
  into	
  tanks	
  containing	
  110	
  liters	
  of	
  water,	
  and	
  every	
  
month	
  an	
  additional	
  0.1ml	
  of	
  DEHP	
  was	
  added.	
  They	
  observed	
  that	
  
DEHP	
   altered	
   the	
   sex	
   ratio	
   from	
   1:1	
   to	
   3:7,	
   although	
   they	
   failed	
   to	
  
specify	
   if	
   this	
   was	
   significant.	
   Decreases	
   in	
   growth	
   (length	
   and	
  
weight)	
   were	
   observed,	
   but	
   were	
   however	
   not	
   significant.	
   They	
  
concluded	
  that	
  DEHP	
  showed	
  no	
  effect.	
  
4.4.2	
  DBP	
  
	
  
In	
  Jarmolowicz	
  et	
  al.,	
  (2003)	
  DBP	
  concentrations	
  of	
  0.125,	
  0.25,	
  0.5,	
  1	
  
and	
   2g/Kg	
   feed	
   were	
   used	
   to	
   determine	
   the	
   impact	
   on	
   the	
  
reproductive	
   system	
   in	
   juvenile	
   European	
   pikeperch	
   (Sander	
  
lucioperca)	
  in	
  an	
  in	
  vivo	
  study.	
  A	
  total	
  of	
  40	
  fish	
  were	
  placed	
  into	
  each	
  
concentration	
  tank	
  with	
  a	
  control	
  tank	
  with	
  no	
  addition	
  of	
  DBP.	
  The	
  
  25	
  
experiment	
  was	
  divided	
  over	
  two	
  five	
  week	
  periods	
  the	
  first	
  being	
  
61-­‐96	
  days	
  post	
  hatch	
  and	
  the	
  second	
  97-­‐132	
  days	
  post	
  hatch.	
  In	
  the	
  
first	
   period	
   fish	
   were	
   fed	
   the	
   DBP	
   contaminated	
   feed.	
   During	
   the	
  
second	
  period	
  fish	
  were	
  fed	
  uncontaminated	
  feed.	
  15	
  fish	
  from	
  each	
  
tank	
  were	
  taken	
  for	
  histological	
  analysis	
  at	
  the	
  beginning	
  (60	
  days	
  
post	
  hatch),	
  after	
  the	
  1st	
  and	
  the	
  2nd	
  period.	
  There	
  were	
  no	
  negative	
  
changes	
   within	
   female	
   fish,	
   nor	
   in	
   survival	
   and	
   growth	
   rates	
  
(P<0.05).	
  	
  
	
  
After	
  96	
  days	
  post-­‐hatch	
  the	
  sex	
  ratio	
  in	
  treatment	
  groups	
  0.125	
  and	
  
025g/Kg	
  feed	
  was	
  1:1.	
  50%	
  of	
  the	
  males	
  in	
  those	
  two	
  groups	
  showed	
  
gonads	
   that	
   were	
   comparable	
   to	
   those	
   of	
   the	
   control	
   group.	
   The	
  
remaining	
  50%	
  showed	
  smaller	
  testes	
  size,	
  reduced	
  spermatogonia	
  
(any	
   cell	
   of	
   the	
   gonad	
   which	
   matured	
   form	
   a	
   spermatocytes)	
   and	
  
seminal	
  vesicles.	
  Increasing	
  concentration	
  of	
  DBP	
  showed	
  a	
  positive	
  
correlation	
  with	
  reduction	
  in	
  male	
  specimens	
  (P<0.05).	
  Fish	
  within	
  
the	
   treatment	
   group	
   2g/Kg	
   of	
   feed	
   had	
   a	
   significantly	
   altered	
   sex	
  
ratio	
   (P<0.05).	
   In	
   the	
   two	
   highest	
   DBP	
   concentration	
   tanks	
   (1	
   and	
  
2g/Kg	
   of	
   feed)	
   intersex	
   specimens	
   (6.7%)	
   were	
   recorded	
   although	
  
not	
  significant.	
  Jarmolowicz	
  et	
  al.	
  concluded	
  that	
  DBP	
  acts	
  as	
  an	
  anti-­‐
androgen	
   (blocking	
   endogenous	
   androgen	
   action)	
   creating	
   an	
  
‘estrogenic	
   environment’.	
   This	
   study	
   is	
   the	
   first	
   to	
   report	
   DBP	
  
disruption	
  in	
  sex	
  differentiation	
  in	
  fish.	
  
	
  
Ortiz-­‐Zarragoitia	
   and	
   Cajaraville	
   (2005)	
   used	
   high	
   DBP	
  
concentrations	
   of	
   500μg/L	
   to	
   observe	
   effects	
   on	
   the	
   liver	
  
peroxisomes,	
  enzyme	
  activity	
  of	
  Acyl-­‐CoA	
  oxidase	
  and	
  on	
  VTG	
  levels	
  
(In	
   vivo	
   and	
   in	
   vitro).	
   They	
   exposed	
   adult	
   male	
   zebra	
   fish	
   through	
  
water	
  for	
  15	
  days.	
  They	
  found	
  that	
  at	
  day	
  seven	
  the	
  surface	
  density	
  of	
  
liver	
  peroxisomes	
  had	
  significantly	
  increased	
  (P<0.05)	
  compared	
  to	
  
the	
   control	
   while	
   at	
   day	
   15	
   both	
   surface	
   density	
   and	
   numerical	
  
density	
  had	
  significantly	
  increased	
  from	
  the	
  control	
  (P<0.05).	
  Acyl-­‐
CoA	
   oxidase	
   showed	
   a	
   significant	
   increase	
   in	
   activity	
   at	
   both	
   time	
  
points	
  (days	
  7	
  and	
  15).	
  Surprisingly	
  DBP	
  showed	
  no	
  significant	
  effect	
  
on	
  VTG	
  levels.	
  They	
  concluded	
  that	
  DBP	
  shows	
  no	
  estrogenic	
  effect	
  in	
  
male	
  zebra	
  fish.	
  
	
  
  26	
  
The	
   next	
   year	
   (2006)	
   Ortiz-­‐Zarragoitia	
  
et	
  al.,	
  conducted	
  another	
  study	
  (in	
  vivo)	
  
on	
   DBP	
   and	
   the	
   Actyl-­‐CoA	
   oxidase	
  
enzyme,	
  peroxisomes	
  and	
  VTG,	
  but	
  also	
  
mortality.	
   This	
   study	
   was	
   conducted	
   in	
  
two	
  parts,	
  the	
  first	
  focusing	
  on	
  early	
  life	
  
exposure	
   and	
   the	
   second	
   focusing	
   on	
  
adult	
   life	
   exposure	
   and	
   their	
   offspring.	
  
For	
  the	
  first	
  experiment	
  zebra	
  fish	
  eggs	
  
were	
   exposed	
   (via	
   water)	
   to	
  
concentrations	
   of	
   25	
   and	
   100μg/L.	
   A	
  
solvent	
   control	
   was	
   used	
   to	
   compare	
  
results.	
   1-­‐2	
   hpf	
   eggs	
   were	
   exposed	
   for	
  
three	
   weeks.	
   Once	
   hatched	
   they	
   were	
  
transferred	
  to	
  a	
  larger	
  tank	
  and	
  exposed	
  
for	
  a	
  further	
  five	
  weeks.	
  Measurements	
  were	
  taken	
  at	
  4,	
  6,	
  10	
  days	
  
post	
   fertilization	
   (dpf)	
   and	
   3	
   and	
   5	
   weeks	
   post	
   fertilization	
   (wpf).	
  
Results	
  showed	
  that	
  survival	
  of	
  exposed	
  fish	
  did	
  not	
  differ	
  from	
  the	
  
controls.	
   However	
   anatomical	
   deformities	
   were	
   observed	
   in	
   both	
  
DBP	
   exposed	
   groups	
   (figure	
   4).	
   Spinal	
   cord	
   malformations	
   and	
  
hypertrophy	
   of	
   the	
   yolk	
   sack	
   were	
   noticed	
   in	
   infant	
   fish	
   and	
   in	
  
juvenile	
   fish	
   spinal	
   cord	
   and	
   swim	
   bladder	
   malformations	
   were	
  
apparent.	
   Although	
   Ortiz-­‐Zarragoitia	
   et	
   al.,	
   (2006)	
   fail	
   to	
   specify	
  
numbers	
  of	
  malformed	
  fish,	
  however	
  those	
  in	
  the	
  control	
  showed	
  no	
  
signs	
  of	
  malformation.	
  	
  
	
  
As	
  with	
  the	
  prior	
  study	
  in	
  2005,	
  here	
  too	
  they	
  found	
  that	
  the	
  number	
  
and	
   volume	
   of	
   peroxisome	
   density	
   as	
   well	
   as	
   the	
   Acyl-­‐CoA	
   oxidase	
  
enzyme	
   increased	
   significantly	
   in	
   the	
   100μg/L	
   treatment	
   at	
   five	
  
weeks	
  compared	
  to	
  the	
  control,	
  while	
  no	
  significant	
  differences	
  were	
  
recorded	
  in	
  the	
  25μg/L	
  treatment.	
  All	
  fish	
  within	
  the	
  25μg/L	
  were	
  
male	
   (testes	
   all	
   containing	
   spermatozoa	
   and	
   spermatogenic	
   cells)	
  
while	
   only	
   two	
   in	
   the	
   100μg/L	
   showed	
   both	
   pre-­‐vitellogenic	
   and	
  
vitellogenic	
   oocytes	
   therefore	
   classified	
   as	
   female	
   compared	
   to	
   the	
  
control	
  (6	
  female	
  and	
  4	
  male).	
  Only	
  the	
  100μg/L	
  treatment	
  caused	
  
effects	
  to	
  the	
  fish.	
  
	
  
Figure	
  4:	
  zebra	
  fish	
  A)	
  
control	
  at	
  7	
  dpf,	
  B)	
  DBP	
  
(100μg/L)	
  7	
  dpf	
  (Ortiz	
  –
Zarragoitia	
  et	
  al.,	
  2006)	
  
  27	
  
In	
  the	
  second	
  experiment	
  10	
  adult	
  female	
  zebra	
  fish	
  were	
  exposed	
  
via	
  water	
  for	
  15	
  days	
  to	
  100	
  and	
  500μg/L	
  of	
  DBP.	
  After	
  15	
  days	
  of	
  
exposure	
  each	
  female	
  was	
  paired	
  with	
  two	
  males	
  in	
  untreated	
  water	
  
and	
   left	
   to	
   reproduce	
   for	
   two	
   to	
   three	
   days.	
   After	
   spawning	
   the	
  
female	
   fish	
   were	
   sacrificed	
   and	
   liver,	
   brain	
   and	
   ovary	
   analysis.	
  
Embryos	
  produced	
  during	
  spawning	
  were	
  gathered	
  and	
  placed	
  into	
  
the	
   same	
   (treatment)	
   groups	
   as	
   their	
   female	
   parent	
   and	
   then	
  
transferred	
   to	
   untreated	
   water	
   for	
   27	
   days.	
   The	
   number	
   of	
   eggs	
  
produced	
  by	
  the	
  treated	
  females	
  did	
  not	
  differ	
  from	
  the	
  numbers	
  of	
  
the	
  control.	
  However,	
  mortality	
  showed	
  a	
  significant	
  dose	
  dependent	
  
relationship	
  such	
  as	
  in	
  the	
  highest	
  treatment	
  where	
  70%	
  mortality	
  
was	
  recorded	
  after	
  25	
  days.	
  VTG	
  expression,	
  liver	
  VTG	
  protein	
  levels,	
  
oocytes	
   and	
   ovary	
   development	
   showed	
   no	
   significant	
   difference	
  
compared	
  to	
  the	
  control.	
  Both	
  experiments	
  incorporated	
  mortality	
  of	
  
young	
  zerbra	
  fish,	
  however	
  exposure	
  to	
  phthalates	
  pre	
  fertilization	
  
increased	
   the	
   mortality	
   where	
   as	
   exposure	
   post	
   hatch	
   showed	
   no	
  
affect	
  on	
  mortality.	
  
	
  
Aoki	
  et	
  al.,	
  (2011)	
  conducted	
  the	
  most	
  recent	
  in	
  vivo	
  study	
  on	
  DBP.	
  
They	
   chose	
   adult	
   male	
   three-­‐spined	
   stickle	
   back	
   (Gasterosteus	
  
aculetaus).	
  Fish	
  were	
  exposed	
  through	
  water	
  for	
  22	
  days	
  to	
  nominal	
  
concentrations	
  of	
  50	
  and	
  100μg	
  DBP/L.	
  Throughout	
  the	
  experiment	
  
the	
  concentrations	
  of	
  DBP	
  were	
  measured	
  every	
  three	
  to	
  four	
  days	
  
(water	
   samples	
   ran	
   through	
   gas	
   chromatography	
   and	
   mass	
  
spectroscopy)	
  where	
  it	
  was	
  found	
  that	
  the	
  actual	
  concentration	
  was	
  
much	
  lower	
  than	
  their	
  original	
  calculated	
  input.	
  Mean	
  concentrations	
  
of	
   15	
   and	
   35	
   μg/L	
   were	
   recorded	
   at	
   the	
   50	
   and	
   100μg/L	
   tanks,	
  
respectively.	
  There	
  was	
  no	
  significant	
  difference	
  in	
  weight,	
  length	
  or	
  
gonado-­‐somatic	
   index	
   for	
   either	
   treatment	
   group	
   compared	
   to	
   the	
  
control.	
   They	
   did	
   find	
   that	
   testosterone	
   levels	
   and	
   oxidised	
  
testosterone	
  levels	
  were	
  significantly	
  higher	
  in	
  the	
  35μg/L	
  treatment	
  
group	
  (P<0.05)	
  compared	
  to	
  the	
  control.	
  Spiggin	
  (protein	
  glue)	
  was	
  
also	
  measured	
  in	
  the	
  kidneys,	
  where	
  it	
  was	
  found	
  to	
  have	
  a	
  negative	
  
correlation	
   with	
   DBP	
   concentration	
   with	
   only	
   the	
   highest	
   DBP	
  
concentration	
  showing	
  a	
  significant	
  decrease	
  in	
  spiggin	
  (P<0.011).	
  A	
  
slight	
   delay	
   in	
   nest	
   building	
   behavior	
   of	
   those	
   fish	
   in	
   the	
   35μg/L	
  
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis
A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

More Related Content

Similar to A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

Exposome
ExposomeExposome
GESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALGESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALAngela Köhler
 
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to HumansIARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
Omar Alonso Suarez Oquendo
 
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to HumansIARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
Omar Alonso Suarez Oquendo
 
eclampsia
eclampsiaeclampsia
eclampsia
Prabha Amandari
 
Annamalai and namasivayam 2015 (2) (4)
Annamalai and namasivayam 2015 (2) (4)Annamalai and namasivayam 2015 (2) (4)
Annamalai and namasivayam 2015 (2) (4)
Bruno Rocha
 
Atlas of oral disease a guide for daily practice 2016
Atlas of oral disease a guide for daily practice    2016Atlas of oral disease a guide for daily practice    2016
Atlas of oral disease a guide for daily practice 2016
Soe Kyaw
 
Bachelorproef Chris final
Bachelorproef Chris finalBachelorproef Chris final
Bachelorproef Chris finalChris Willems
 
Thesis
ThesisThesis
Thesis
Henry Banda
 
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
AaronJayAlcesto
 
Tennekes_Sanchez-Bayo_Toxicology_2013
Tennekes_Sanchez-Bayo_Toxicology_2013Tennekes_Sanchez-Bayo_Toxicology_2013
Tennekes_Sanchez-Bayo_Toxicology_2013Henk Tennekes
 
Isl1408681688437
Isl1408681688437Isl1408681688437
Isl1408681688437
Dr. Viswanathan Vadivel
 
Bookshelf nbk344402
Bookshelf nbk344402Bookshelf nbk344402
Bookshelf nbk344402
KessiVikaneswari2
 

Similar to A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis (20)

Thesis_SzabóPéter
Thesis_SzabóPéterThesis_SzabóPéter
Thesis_SzabóPéter
 
Hssttx3
Hssttx3Hssttx3
Hssttx3
 
Exposome
ExposomeExposome
Exposome
 
eth21627
eth21627eth21627
eth21627
 
thesis_Radivojevic
thesis_Radivojevicthesis_Radivojevic
thesis_Radivojevic
 
GESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALGESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINAL
 
Hssttx2
Hssttx2Hssttx2
Hssttx2
 
Thesis final copy
Thesis final copyThesis final copy
Thesis final copy
 
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to HumansIARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
 
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to HumansIARC Monographs on the Evaluation of Carcinogenic Risks to Humans
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
 
eclampsia
eclampsiaeclampsia
eclampsia
 
At
AtAt
At
 
Annamalai and namasivayam 2015 (2) (4)
Annamalai and namasivayam 2015 (2) (4)Annamalai and namasivayam 2015 (2) (4)
Annamalai and namasivayam 2015 (2) (4)
 
Atlas of oral disease a guide for daily practice 2016
Atlas of oral disease a guide for daily practice    2016Atlas of oral disease a guide for daily practice    2016
Atlas of oral disease a guide for daily practice 2016
 
Bachelorproef Chris final
Bachelorproef Chris finalBachelorproef Chris final
Bachelorproef Chris final
 
Thesis
ThesisThesis
Thesis
 
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
Thesis: Are E-cigarettes safe? The Analysis of E-liquids using GC-MS & SPME G...
 
Tennekes_Sanchez-Bayo_Toxicology_2013
Tennekes_Sanchez-Bayo_Toxicology_2013Tennekes_Sanchez-Bayo_Toxicology_2013
Tennekes_Sanchez-Bayo_Toxicology_2013
 
Isl1408681688437
Isl1408681688437Isl1408681688437
Isl1408681688437
 
Bookshelf nbk344402
Bookshelf nbk344402Bookshelf nbk344402
Bookshelf nbk344402
 

A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  • 1.         A   review   of   phthalates   and   the   associated   reproductive   and   developmental   toxicity   towards   fish.     Masters  literature  thesis  -­‐  12  EC   Emma  Greenwell  (10407995)   Biological  sciences:  Limnology  and  oceanography   Supervisor:  Liana  Bastos  Sales   Examiner:  Michiel  Kraak     20th  December  2013  –  27th  March  2014        
  • 2.   2   Table  of  Contents   I.  Abstract  ..............................................................................................................  4   II.  Introduction  .......................................................................................................  5   2.1  What  are  phthalates?  ................................................................................................................................  5   2.1.1  Common  phthalates  ...............................................................................................................................  5   2.2  Environmental  fate  of  phthalates  ........................................................................................................  6   2.2.1  Differences  in  seasons  ............................................................................................................................  8   2.3  Levels  in  the  environment  ......................................................................................................................  8   2.4  Half-­‐lives  .........................................................................................................................................................  9   2.5  Inside  the  organism  ................................................................................................................................  11   2.6  Modes  of  action  once  inside  an  organism  .....................................................................................  11   2.7  Environmental  risk  limits  ....................................................................................................................  12   2.8  Objective  ......................................................................................................................................................  12   III.  Method  ...........................................................................................................  13   IV.  Results  ............................................................................................................  13   4.1  Summary  of  literature  (1980-­‐1999)  ...............................................................................................  14   4.2  Literature  (1980-­‐1999)  ........................................................................................................................  16   4.3  Summary  of  literature  post  2000  .....................................................................................................  17   4.4  Literature  post  2000  ..............................................................................................................................  19   4.4.1  DEHP  ..........................................................................................................................................................  19   4.4.2  DBP  .............................................................................................................................................................  24   4.4.3  DEHP  and  DBP  .......................................................................................................................................  28   4.4.4  DINP  and  DIDP  ......................................................................................................................................  29   V.  Discussion  ........................................................................................................  29   5.2  DEHP  .............................................................................................................................................................  30   5.3  DBP  ................................................................................................................................................................  30   5.4  Nominal  concentration  experiments  with  DEHP  and  DBP  ....................................................  31   5.5  DINP  and  DIDP  ..........................................................................................................................................  32   5.6  Exposure  routes  .......................................................................................................................................  33   5.7  Problematic  variables  and  environmental  risk  limits  .............................................................  33   VI.  Conclusions  .....................................................................................................  34   6.1  Classification  of  phthalates  ..................................................................................................................  34   6.1.1  DEHP  ..........................................................................................................................................................  35   6.1.2  DBP  .............................................................................................................................................................  35   6.1.3  DINP  and  DIDNP  ...................................................................................................................................  35   4.9  Recommendations  ...................................................................................................................................  35   VII.  Author’s  remarks  ...........................................................................................  36   VIII.  References  ....................................................................................................  37    
  • 3.   3   GLOSSARY     Environmental  risk  limit  (ERL)  –  represent  the  potential  risk  of  the  substance   to  the  ecosystem  and  are  derived  using  data  from  ecotoxicology  and   environmental  chemistry.   Oocytes  –  a  cell  in  an  ovary,  which  might  undergo  meiotic  division  to  form  an   ovum.   Vitellogenin  –  a  protein  present  in  the  blood  from  which  the  substance  of  the   egg  yolk  is  derived.   Planktivores  –  An  organism  that  feeds  on  plankton.   Glucuronides  –  any  substance  produced  by  linking  a  glucuronic  acid  to  another   substance  (via  glycosidic  bonds).  This  method  (glucorinidation)  is  used  by   animals  to  help  excrete  toxic  substances  from  the  body.   Environmental  risk  assessmen  (ERA)  –  An  evaluation  of  the  interactions  of   agents,  human  and  ecological  resources.   No  observed  effect  concentration  (NOEC)  –  the  highest  treatment  (test   concentration)  of  a  substance  that  shows  no  statistical  effect  compared  to  a   control.   Predicted  no  effect  concentration  (PNEC)  –  the  concentration  below  which  a   specified  percentage  of  species  in  an  ecosystem  are  expected  to  be  protected.   Nominal  concentration  –  The  concentration  if  you  all  test  material  added  to  the   test  solution  dissolved.   Effective  concentrations  (EC50)  –  the  concentration  of  a  substance,  which   induces  a  response  halfway  between  the  baseline  and  maximum  after  a  specified   exposure  time.  The  number  refers  to  the  position  within  the  baseline-­‐maximum   scale.   Gonado-­‐somatic  index  –  calculation  of  the  gonad  mass  as  a  proportion  of  the   total  body  mass.   Spermatozoa  –  a  sperm  cell.   Spermatocyte  –  immature  male  germ  cell  which  undergoes  meiosis  developme   into  a  sperm  cell.   Spermatagonia  –  any  cell  of  the  male  gonad  that  mature  to  form  spermatocytes.   Hypertrophy  –  a  non-­‐tumorous  enlargement  of  an  organ  (or  part)  as  a  result  of   increased  cell  size  rather  than  cell  number.   Spiggin  –  a  glycoprotein  glue  used  by  three-­‐spined  sticklbacks  to  stick  their   nests  together.   Peroxidation  –  a  chemical  reaction  in  which  oxygen  atoms  are  formed  leading  to   production  of  peroxides.   Photodegradtion  /photodegradable  –  substances  capable  of  being  chemically   broken  down  by  prolonged  exposure  to  light.   Octanol-­‐water  partition  coefficient  (Kow)  –  a  coefficient  representing  the  ratio   of  the  solubility  of  a  compound  in  octanol  to  its  solubility  in  water.     Soil  organic  carbon-­‐water  partitioning  coefficient  (Koc)  –  the  ratio  of  the   mass  of  a  chemical  that  is  adsorbed  in  the  soil  per  unit  mass  of  organic  carbon  in   the  sol  per  the  equilibrium  chemical  concentration  in  solution.   Phytoremediation  –  the  use  of  plants  to  remove/neutralize  contaminants.  
  • 4.   4   I.  Abstract     Phthalates  are  endocrine  disrupting  compounds  produced  on  a  mass   scale   for   use   in   plastics.   They   are   not   chemically   bound   to   the   product  and  therefore  leach  into  the  environment  exposing  fish  to  a   range   of   endocrine   toxicities.   Environmental   risk   limits   (ERLs)   are   difficult   to   calculate   as   different   solubility,   exposure   method,   fish   species  and  even  age  all  combine  to  produce  different  toxicity  effects.   In   most   literature   environmental   phthalate   levels   were   above   the   ERL.   This   paper   focuses   on   what   are   associated   endocrine   toxicity   effects   (metabolic,   developmental   and   reproductive)   of   di-­‐2-­‐ethyl-­‐ hexyl   phthalate   (DEHP),   di-­‐butyl   phthalate   (DBP),   di-­‐isononyl   phthalate  (DINP)  and  di-­‐isodecyl  phthalate  (DIDP).  Results  consist  of   18  studies  on  phthalate  toxicity  filtered  to  only  include  results  from   DEHP,  DBP,  DINP  and  DIDP  on  fish  species.  A  mixture  of  effects  on   growth   inhibition,   VTG   level   alteration,   inhibition   of   oocyte   maturation,   increased   mortality,   spinal   deformities   and   maturation   inducing  hormone  alterations  etc.  were  observed  with  all  both  DEHP   and   DBP.   Effects   were   seen   to   be   more   potent   in   pre/early   life   exposure  compared  to  adults  and  sometimes  even  irreversible.  Both   DEHP   and   DBP   phthalates   produces   developmental   toxicity   effects   such   as   increased   mortality,   retardation   in   ovary   development,   decreases   in   body   weight   and   length,   inhibition   of   5α-­‐adione,   decreases   in   fertility   and   many   more.   The   order   of   literature   available   went   DEHP>DBP>DINP/DIDP.   For   the   latter   two   (DINP/DIDP)   only   one   study   was   found   post   year   2000.   The   availability   of   DEHP   and   DBP   information   allows   to   derive   reasonable   ERLs   values.   However   due   to   the   lack   of   DINP/DIDP   information   DEHP   is   used   as   a   proxy   for   DINP/DIDP   ERLs.   In   conjunction,  there  is  no  uniform  exposure  route  to  which  ERL’s  are   based  on  and  as  seen  in  the  results  different  exposure  routes  of  the   same  compound  can  produce  different  effects.  More  solid  guidelines   of  phthalate  testing  are  needed  on  all  compounds  especially  those  of   DINP  and  DIDP.      
  • 5.   5   II.  Introduction   2.1  What  are  phthalates?     Phthalates   are   chemical   compounds   used   to   reduce   the   chemical   affinity  between  plastic  molecules  therewith  increasing  the  flexibility   of   the   product   sometimes   making   up   50%   of   the   finished   plastic   product  (Oehlmann  et  al.,  2009;  OEHHA,  2009).  They  are  also  known   to   be   endocrine   disrupting   compounds   (EDCs)   (Ikele,   2011).   EDCs   may  be  natural  or  synthetic  compounds  that  interfere  with  endocrine   regulated   processes   such   as   growth   and   reproduction   (Crain   et  al.,   2008).   The   international   program   for   chemical   safety   defines   endocrine  disrupters  as  “exogenous  substances  that  alter  function(s)   of   the   endocrine   system   and   consequently   cause   adverse   health   effects  in  an  intact  organism  or  its  progeny  secondary  to  changes  in   the  endocrine  function”  (ECPI,  2009).     Production  of  phthalates  consists  of  around  1  billion  tones  per  year   worldwide.  They  are  present  in  the  medical  environment,  cosmetics,   computers,   children   toys,   food   packaging,   car   products   and   paint   making   them   an   unavoidable   part   of   modern   life   (Mankidy   et   al.,   2013;   OEHHA,   2009;   Guven   and   Coban,   2013   and   Carnevali   et   al.   2010).  Phthalates  are  not  chemically  bound  to  the  plastic  molecules   within   the   product   meaning   they   are   able   to   leach   out   into   the   environment   rendering   these   compounds   unstable   within   their   plastic  counterpart  (Oehlmann,  et  al.,  2009  and  Mankidy  et  al.,  2013).   Consequently   phthalates   are   ubiquitous   the   environmental   and   ecological  concerns  surrounding  them  are  increasing.   2.1.1  Common  phthalates     The  general  structure  of  phthalates  can  be   seen   in   figure   1   (to   the   right)   (R-­‐alkyl   chain).   The   most   common   phthalates   are   di-­‐n-­‐butyl   phthalate   (DBP)   and   di-­‐2-­‐ethyl-­‐ hexyl  phthalate  (DEHP)  (Jarmolowicz  et  al.,   2013;  Huang  et  al.,  2008  and  Uren-­‐Webster   et  al.,  2010).  These  two  specific  phthalates   Figure  1:  General  structure   of  phthalates  (Ogunfowokan   et  al.,  2006)  
  • 6.   6   occur  at  higher  concentrations  than  other  phthalates  (Van  Wezel  et   al.,   2000)   and   have   the   highest   toxicity   (out   8   common   phthalates   under  the  U.S.  environmental  protection  agency  (EPA)  management   plan)   to   terrestrial   and   aquatic   organisms   (EPA,   2012).   These   two   phthalates  produce  reproductive  and  developmental  toxicity  effects   (Jarmolowicz   et   al.,   2013;   Lee   and   Liang   2011   and   Zanotelli   et   al.,   2009).   Newer   phthalate   compounds   such   as   di-­‐isononyl   phthalate   (DINP)  and  di-­‐isodecyl  phthalate  (DIDP)  have  shown  to  have  no  (or   very  low)  toxic  effects  on  aquatic  organisms  (EPA,  2012;  Oehlmann  et   al.,  2009  and  Hallmark  2010)  despite  the  reproductive  development   effects  in  two  generations  of  rats  (OEHHA,  2010).   2.2  Environmental  fate  of  phthalates     Once  in  the  environment  phthalates  are  transported  through  water   where  they  may  be  dissolved  (water  sink)  or  due  to  its  low  solubility   end  up  within  the  sediment  (Huang  et  al.,  2008).  Here  the  phthalate   compounds   are   transferred   to   fish   and   other   aquatic   organisms   through   their   diet   or   by   water   (Jarmolowicz   et   al.,   2009).   Benthic   feeders   contain   higher   levels   of   phthalate   compounds   within   their   system   compared   to   planktivores   due   to   the   low   solubility   of   most   phthalates  (Huang  et  al.,  2008;  Oehlmann  et  al.,  2009;  Mankidy  et  al.,   2013  and  OEHHA,  2009).  The  levels  of  phthalates  within  water  are   affected  by  water  quality  such  as  chemical  oxygen  demand,  dissolved   oxygen,  ammonia-­‐nitrate,  suspended  solids  etc.  (Haung  et  al.,  2008).       Each   phthalate   has   a   different   molecular   weight   that   also   gives   it   different  properties.  A  high  molecular  weight  (HMW)  means  that  the   compound   may   be   less   biologically   available   while   low   molecular   weight  (LMW)  compounds  are  more  biologically  available  (Berge  et   al.,   2013).   This   makes   sense   with   some   literature   as   DBP   (MW   278.4g/mol)  has  a  lower  molecular  weight  then  DEHP  (390.6g/mol)   so  therefore  is  more  available  for  uptake  (Teil  et  al.,  2012).  In  France   three  fish  species  were  analyzed  to  see  which  phthalates  were  more   abundant  (Teil  et  al.,  2012).  Contradictory  to  Huang  et  al.,  2008)  DBP   was  the  main  phthalate  found  in  roach  (Rutilus  rutilus)  followed  by  
  • 7.   7   DEHP.  This  would  confirm  the  theory  that  LMW  compounds  are  more   readily  biologically  available  than  HMW.     The   gradients   for   soil   was   however   opposite   with   DEHP   being   the   main  phthalate,  but  this  too  would  fit  theory  that  phthalates  with  a   low  log  Kow  (inverse  of  octanol-­‐water  partition  coefficient,  related  to   aqueous   solubility)   are   better   at   forming   solutes   (dissolving)   than   phthalates  with  a  high  log  Kow.  DBP  has  a  log  Kow  of  4.75  while  DEHP   has  a  higher  one  at  7.5.  Phthalates  with  a  high  log  Kow  are  more  likely   to   have   a   higher   %   in   the   sediment   as   the   particles   that   do   not   dissolve  sink  towards  the  sediment  within  a  water  column  (Berge  et   al.,   2013).   As   DEHP   has   a   higher   log   Kow   it   means   that   it   will   be   present  in  larger  quantities  compared  to  DBP  in  sediment  samples.       When  looking  at  the  log  Kow  of  DINP  and  DIDP  both  have  a  value  of   8.8.  This  value  may  be  derived  from  another  phthalate,  which  makes   it  unreliable  toward  the  specific  phthalate  (ECPI  2014  and  Megaloid1   2013).  All  in  all  more  attention  should  be  placed  upon  sediment  as  it   tends   to   have   the   highest   levels,   even   during   different   seasons   (Figure   5)   (Sibali   et   al.,   2013).   All   phthalates   however   have   a   low   solubility   meaning   that   once   saturated   in   the   water,   particles   of   phthalate  will  join  the  sediment  (Sibali  et  al.,  2013).  Figure  5  shows   Figure  5:  Sediment  and  water  levels  of  phthalates  (DEHP,  DBP,  DEP  and  DMP  at   different  sample  sites  along  the  River  Jeksei  during  two  seasons  (Sibali  et  al.,  2013).  
  • 8.   8   the  differences  in  water  and  sediment  phthalate  levels  from  the  River   Jukskei,  South  Africa.   2.2.1  Differences  in  seasons     It   is   still   unclear   why   these   differences   in   seasons   arise.   For   atmospheric  phthalates  for  example  seasonal  differences  can  be  due   to  influences  of  emission  sources  such  as  the  burning  of  coal  in  cold   season   that   would   then   produce   phthalate   particulates   in   the   air   (Kong   et   al.,   2013).   Another   reason   could   be   a   meteorological   parameter.  Intense  sunlight  during  the  summer,  when  photochemical   reactions   are   increased   and   degrade   phthalates   lowering   the   concentrations   within   the   atmosphere.   Rain   can   also   be   a   culprit   through  diluting  and  washing  away  phthalates  particulates  (Kong  et   al.,  2013).       When  comparing  the  water  and  sediment  levels  in  the  graph  above  it   is   possible   that   the   high   winter   levels   are   due   to   a   lack   of   rain   therefore  concentrating  the  phthalates.  African  summer  (rain  period)   could  perhaps  dilute  the  phthalate  concentrations  within  the  water   and   sediment   therefore   lowering   the   concentrations   (Sibali   et   al.,   2013).   Plants   have   also   very   recently   been   shown   to   significantly   enhance   the   dissipation   of   phthalates   in   soil   in   three   ways:   phytoremediation,  increased  sorption  of  phthalates  to  soil  and  plant   promoted   biodegradation   (Li   et   al.,   2004).   This   could   be   another   explanation   for   the   lower   summer   concentrations   of   phthalates   in   figure   5.   Half-­‐lives   of   phthalates   can   also   be   increased   through   increased  sorption  and  cooler  temperatures  (Staples  et  al.,  1997  and   Kickham  et  al.,  2012).   2.3  Levels  in  the  environment     In  the  1990’s  the  levels  of  phthalates  in  river  water,  in  Manchester,   UK  for  example,  were  at  a  mean  of  21.5μg/L    ±12.5  and  1.3μg/L  ±0.9   for   DBP   and   DEHP   respectively   (Fatoki   and   Vernon,   1990).   High   standard  deviation  was  due  to  the  different  sample  station  along  the   river  Irwell.  However  surprisingly  levels  at  the  effluent  of  a  sewage   treatment   plant   were   the   lowest   at   6μg/L   for   DBP   while   all   other  
  • 9.   9   sample   sites   were   above   12.1μg/L.   For   DEHP   the   highest   concentration   was   found   at   the   sewage   treatment   plant   (1.9μg/L)   that  also  coincided  with  the  percentage  of  DEHP  found  in  the  samples   1.9%  for  DEHP  (79.4%  for  DBP).  This  contradicts  previous  research   claiming   that   DEHP   has   the   highest   environmental   levels.   However   this   could   be   due   to   the   higher   degradability   of   DEHP   under   anaerobic  conditions  (Huang  et  al.,  2008).  In  Germany  DEHP  surface   water   levels   ranged   between   0.33-­‐97.8μg/L   and   sediment   levels   varied   between   0.21-­‐8.44mg/kg   dry   weight   and   for   DBP   0.12-­‐ 8.80μg/L   and   0.06-­‐2.08mg/kg   dry   weight,   respectively   (Fromme   et   al.,   2002).   This   study   showed   both   phthalates   to   have   a   wide   variability  in  levels  throughout  Germany  although  DEHP  always  had   the  highest  levels.     In  the  Netherlands  environmental  measurements  were  taken  in  2005   and   it   was   found   that   DEHP   showed   the   highest   concentrations   in   both   mean   municipal   sewage   treatment   plant   and   industrial   waste   water  types  (Vethaak  et  al.,  2005).  Mean  municipal  sewage  treatment   plant  effluent  levels  were  around  1.5μg/L  and  industrial  wastewater   levels  were  150μg/L  compared  to  DBP  that  showed  levels  of  0.3  and   2.2μg/L.  70%  of  the  DEHP  and  DBP  samples  contained  levels  above   the  level  of  detection  (LOD)  although  only  30%  of  the  DBP  samples   were   above   the   LOD   in   the   sewage   treatment   plant   effluent   water.   Fish  muscle  concentrations  of  Bream  (Abramis  brama)  and  Flounder   (Platichthys  flesus)  showed  mean  concentrations  of  0.044μg  DBP/g,   0.153μg  DEHP/g  and  0.0078μg  DBP/g,  0.064μg  DEHP/g  in  each  fish   respectively   (Vethaak   et   al.,   2005).   It   seems   that   phthalate   concentration  varies  not  only  within  country  or  city  but  also  within   micro  environments  and  water  types.   2.4  Half-­‐lives     Half-­‐lives  of  phthalates  are  the  time  for  a  substance  to  fall  to  half  its   original  concentration  (i.e.  degrading)  (Staples  et  al.,  21997)  through   hydrolysis  of  ester  bindings  (Liang  et  al.,  2008)  and  the  range  of  half-­‐ lives  referring  to  phthalates  is  vast.    Staples  et  al.,  (1997)  reported  a   half-­‐life   of   28   day   on   average   for   phthalates   within   sewage   sludge,  
  • 10.   10   while   within   the   atmosphere   half-­‐lives   consist   of   around   one   day   (DBP-­‐<6  days,  DEHP-­‐<2  days,  DINP-­‐<2  days).  Within  sediment  half-­‐ lives  of  approximately  <one  week  –  several  months  may  be  recorded   and   within   surface   waters   <one   day   –   two   weeks   (Staples   et   al.,   1997).  Staples  et  al.  also  reported  a  half-­‐life  of  years  through  aqueous   hydrolysis  (DBP–22  years,  DEHP-­‐2000  years).  In  contrast  Yuan  et  al.   (2010)   reported   that   DBP   and   DEHP   had   half-­‐lives   of   1.6-­‐2.9   days   and   5.0-­‐8.3   days   within   sediment,   respectively.   It   has   also   been   postulated   that   DEHP   degrades   fairly   rapidly   under   aerobic   conditions   (Brooke   et   al.,   1991).   Microbial   degradation   has   shown   DBP  to  be  completely  degraded  within  28  days  (Liang  et  al.,  2008).  In   Turner  and  Rawling  (2000)  eight  phthalates  were  found  in  a  water   sample  and  half-­‐lives  were  measured.  On  average  the  phthalate  half-­‐ life  in  aerobic  conditions  was  between  2.4-­‐14.8  days  and  14-­‐34  days   under   anaerobic   conditions.   Other   studies   such   as   Yuwatini   et   al.,   (2006)   showed   that   DEHP   half   life   in   water   is   approximately   two   days   while   in   sediment   it   can   last   up   to   14   days.   Magdouli   et   al.,   (2013)   stated   that   half-­‐lives   of   DEHP   are   <one   month   in   aerobic   conditions  and  >one  month  in  anaerobic  conditions.  In  water  (with   sun)  under  acidic  conditions  half-­‐lives  can  be  around  390  days  while   in  neutral  conditions  may  be  up  to  1600  days.     From  above  it  is  clear  that  phthalate  half-­‐lives  may  have  wide  ranges.   This   is   due   to   the   different   environmental   compartments   in   which   the  phthalate  may  be  present  i.e.  atmosphere,  sediment,  water,  inside   the  organism  as  each  situation  will  affect  the  half-­‐life  as  well  as  what   process  of  degradation  is  measured.  This  makes  it  difficult  to  consent   on  fixed  half-­‐life  values.  In  general  it  is  thought  that  the  longer  the   phthalate  chain  (R  group  in  figure  1)  the  longer  the  half-­‐life  and  the   more   persistent   it   will   be   and   that   aerobic   conditions   will   almost   most  certainly  speed  up  degradation  compared  to  anaerobic  (Liang   et   al.,   2008).   The   organization   for   economic   co-­‐operation   and   development   (OECD)   has   guideline   tests   and   criteria   for   defining   ‘ready   biodegradability’.   Using   these   criteria,   >60%   removal   of   inorganic   carbon   within   a   10-­‐day   window   of   the   28-­‐day   test,   both   DBP  and  DEHP  are  readily  biodegradable  in  all  three  states  (water,   sediment   and   air).   Data   concerning   DINP   was   only   available   for  
  • 11.   11   atmospheric  half-­‐life  but  still  fits  within  the  criteria  for  bing  readily   biodegradable.  If  all  half-­‐life  tests  incorporated  these  test  guidelines   then  more  accurate  comparisons  could  be  made.   2.5  Inside  the  organism     Phthalate  accumulation  within  organisms  is  also  low,   partly   due   to   their  biodegradability  but  also  due  to  the  compound  itself  not  being   highly   accumulative   in   tissue,   rendering   phthalates   non   bio-­‐ accumulative  compounds  (Van  Den  Berg  et  al.,  2003;  Oehlmann  et  al.,   2009  and  Mankidy  et  al.,  2013).  Due  to  their  high  transformation  rate   phthalates   are   not   bio-­‐accumulative   (Mankidy   et  al.,   2013   and   Van   Den   Berg   et   al.   2003)   meaning   that   on   one   hand   the   phthalate   compound   is   transformed   into   a   metabolite   that   can   then   interact   with   receptors   and   enzymes   within   the   organism   (Euling   et   al.,   2013).  On  the  other  hand,  this  metabolism  also  produces  sulphates   and   other   glucuronides   that   assist   in   the   removal   of   the   parent   compound  (phthalate)  reducing  the  adverse  effects  of  the  phthalate   to  the  organism  and  also  through  the  food  chain  (Van  Den  Berg  et  al.,   2003  and  Van  Wezel  et  al.  2000).   2.6  Modes  of  action  once  inside  an  organism     Phthalates   being   EDC’s   have   a   multiple   array   of   modes   of   action   (MOA)  making  it  important  to  understand  how  the  EDC  interacts  on  a   cellular   level   (Nelson   and   Habibi,   2013).   Endogenous   hormones   (specifically  estrogen  and  androgen)  are  most  commonly  the  concern   when   regarding   phthalates.   Estrogenic   receptors   (ERs)   and   androgenic  receptors  (ARs)  are  important  in  reproduction  (ER  and   AR),  sexual  differentiation  (AR)  and  even  adult  sexual  behavior  (AR)   (Harbott   et   al.,   2007   and   Thibaut   and   Porte,   2004).   Peroxisome   proliferator   activated   receptors   (PPARs)   act   as   regulators   for   lipid   and   carbohydrate   metabolism   as   well   as   cell   differentiation   (Maradonna  et  al.,  2013).  Another  MOA  is  through  oxidative  damage   (OxD)   that   can   cause   disturbances   to   the   cellular   metabolism   (Harbott  et  al.,  2007).  All  these  receptors  are  present  on  cell  walls.   EDC’s  show  similar  biological  effects  to  estrogens  and  androgens  and   interfere  (agonistically/antagonistically)  with  the  cell  receptors  (Van  
  • 12.   12   den   Berg   et   al.,   2003)   either   decreasing   or   increasing   gene   expression,   production   of   hormones,   enzymes   and   phase   II   metabolites  affecting  the  level  of  active  hormones  present  within  an   organisms  (Thibaut  and  Porte,  2004).   2.7  Environmental  risk  limits     The  European  commission  previously  considered  the  four  phthalates   (DEHP,   DBP,   DINP   and   DIDP)   priority   substances   meaning   that   environmental   risk   assessments   (ERA)   must   have   been   carried   out   on   these   substances   (Oehlmann   et   al.,   2008).   ERA’s   compare   environmental   concentrations   or   predicted   environmental   concentrations   (PEC)   with   the   predicted   no-­‐effect   concentrations   (PNEC).  When  the  PEC/PNEC  ratio  is  <1  there  is  no  risk,  where  as  if   the  ratio  is  ≥1  there  is  a  potential  risk  meaning  strategies  must  be  put   in  place  to  reduce  the  concentrations.  For  the  EPA  to  recognize  acute   effects,   a   total   of   five   tests   must   be   completed   on   at   least   four   different   species   using   the   limit   of   solubility   concentration   (max.   3μg/L)   (Oelmann   et   al.,   2008).   By   2004   the   European   union   risk   assessment  reports  stated  that  for  DBP,  DINP  and  DIDP  there  was  no   need  for  testing  or  information.  DEHP  was  not  granted  similar  status   and  therefore  still  remained  on  the  priority  substance  list    in  2008   (EC,  2014  and  Oehlmann  et  al.,  2008).   2.8  Objective     This   paper   will   focus   on   plastic   derived   EDC   known   as   phthalates.   Background   on   phthalates   and   why   they   are   the   focus   of   research   will   be   given.   It   will   highlight   the   associated   endocrine   disruptions   (developmental  and  reproductive)  and  will  speculate  to  future  work.   In   previous   reviews,   fish   have   never   been   the   sole   focus   neither   experiment   set   up   explained.   It   has   been   approximately   13   years   since  the  last  review  that  incorporated  over  12  studies  (Van  Wezel  et   al.,  2000).  The  paper  will  focus  on  four  phthalates  allowing  a  more   refined  and  in  depth  review.        
  • 13.   13   III.  Method     For   this   paper   focus   was   on   the   compounds   DEHP,   DBP   DINP   and   DIDP  due  to  their  high  abundance  within  the  environment  (former   two)  and  acclaimed  ‘no  effects’  of  the  latter  two  (Oehlman  et  al.,  2009   and   Hallmark,   2010).   Searches   were   be   carried   out   on   ’google’   ‘google  scholar’  and  ‘Web  of  science’  focusing  mainly  on  publications   within   the   years   2000-­‐2014.   Searches   for   DEHP,   DBP,   DINP,   DIDP,   effects   of   DEHP/DBP/DINP/DIDP   on   aquatic   organisms/fish,   reproductive/developmental/metabolic   effects   of   phthalates,   vitellogenin   effects   of   phthalates,   intersex   caused   by   endocrine   disrupters,   and   environmental   phthalates   are   a   few   of   the   search   terms   used.   The   main   duration   of   research   lasted   approximately   3   weeks-­‐1  month  and  only  full  text  articles  were  incorporated  within   the  paper.   IV.  Results     A   total   of   46   papers   were   gathered   and   divided   into   sections   on   organism   toxicity   (≈18),   phthalate   levels   in   the   environment   (≈5),   general  information,  however  nearly  all  articles  had  multiple  section   uses.  Due  to  the  majority  of  organism  toxicity  publication  a  further   division   of   pre   2000   and   post   2000   research   as   well   as   compound   groups   were   added.   This   was   done   due   to   the   majority   of   papers   found  being  post  2000  and  to  separate  ‘recent  work’  from  ‘previous   work’.  All  publications  were  given  in  publication  date  order  (oldest-­‐ newest).     Most   experiments   within   the   ecotoxicology   field   focus   on   either   in   vivo   or   in   vitro   set-­‐ups.   The   former   refers   to   the   whole   organism   being   studied   allowing   observation   of   the   overall   effect   of   compounds   on   the   organism.   The   latter   refers   to   using   cells   in   controlled  environments  (such  as  petri  dishes,  assays,  etc)  where  for   example  assays  can  provide  information  on  the  mechanism  of  action   (MOA)  of  certain  compounds;  unfortunately  this  does  not  mimic  the   whole  organism  (Sohoni  and  Sumpter,  1998).  
  • 14.   14   4.1  Summary  of  literature  (1980-­‐1999)     Table  1:  ED  effects  of  phthalates  in  in  vitro  receptor  binding  affinity  tests.     Cell  type   Effect  (mM)   Remark   Original  references  (within   Van  Wezel  et  al.,  2000)   DBP   Trout  hepatocyte   EC50  =  1   REP:  6.7x10-­‐6   Jobling  et  al.,  1995   Trout  hepatic  cytosol   EC  10-­‐25  =  0.17   REP:  2x10-­‐5   Knudsen  and  Pottinger,  1999   DEHP   Trout  hepatocyte   EC75  =  1   REP:  1x10-­‐5   Jobling  et  al.,  1995   Trout  hepatic  cytosol   EC10-­‐25  =  0.17   REP:  2x10-­‐5   Knudsen  and  Pottinger,  1999   DINP   Trout  hepatic  cytosol   No  effect  at  0.17   -­‐   Knudsen  and  Pottinger,  1999     REP:  relative  potency  compared  with  17-­‐estradiol  (Based  of  appendices  by  Van  Wezel  et   al.,  2000).     Table  2:  Toxicity  data  for  DBP.     1-­‐Y:  chemical  analyzed  in  test  solution  and  N:  chemical  not  analyzed  in  test  solution  or   no   data.   2-­‐S:   static,   R:   Static   with   renewal   and   F:   flow   through.   3-­‐S:   survival,   R:   reproductive   and   G:   Growth.   *-­‐Average   of   results   (mg/L)   when   all   parameters   and   authors  were  the  same  (Based  of  appendices  by  Van  Wezel  et  al.,  2000).   Organism   Chemical   analysis1   Test   type2   Exp.   time   End   point3   Results   (mg/L)   Original  references  (within   Van  Wezel  et  al.,  2000)   Chronic  toxicity  to  freshwater  organisms:  NOEC  values   Oncorhynchus  mykiss   Y   P   60d   G   0.1   Rhodes  et  al.,  1995   Pimephales  promelas   Y   F   20d   G   0.56   McCarthy  and  Whitmore,   1985   Acute  toxicity  to  freshwater  organisms:  L(E)C50  values   Brachydanio  rerio   Y   S,  R   96h   S   2.2   Scholz,  1994   Lepomis   macrochirus*   N   S   96h   S   1.6   Mayer  and  Ellersieck,  1986   Lepomis  macrochirus   N   F   96h   S   1.6   Mayer  and  Ellersieck,  1986   Oncorhynchus   mykiss*   N   S   96h   S   4.4   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   N   F   96h   S   1.5   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   Y   -­‐   96h   S   1.2-­‐1.8   Hrudey  et  al.,  1976   Oncorhynchus  mykiss   Y   F   96h   S   1.6   Adams  et  al.,  1995   Perca  flavescens   N   F   96h   S   0.35   Mayer  and  Ellersieck,  1986   Pimephales  promelas   N   S   96h   S   1.3   Mayer  and  Ellersieck,  1986   Pimephales  promelas   N   F   96h   S   4   Mayer  and  Ellersieck,  1986   Pimephales  promelas   N   -­‐   96h   S   2   McCarthy  and  Whitmore,   1985   Pimephales  promelas   Y   S   96h   S   1.5   Adams  et  al.,  1995   Pimephales   promelas*   Y   F   96h   S   0.97   DeFoe  et  al.,1990   Pimephales  promelas   Y   F   96h   S   0.92   Adams  et  al.,  1995  
  • 15.   15   Table  3:  Toxicity  data  for  DEHP.     Organism   Chemical   analysis1   Test   type2   Exp.   time   End   point3   Results   (mg/L)   Original  references  (within  Van   Wezel  et  al.,  2000)   Chronic  toxicity  to  freshwater  organisms:  NOEC  values   Brachydanio  rerio   N   R   35d   S,  G   ≥0.32   Canton  et  al.,  1984   Gasterosteus   aculeatus   N   -­‐   28d   S,  G   ≥0.32   Van  den  Dikkenberg  et  al.,  1989   Jordanella  floridae   N   S   28d   S,  G   ≥0.32   Adema  et  al.,  1981   Oncorhynchus  mykiss   Y   F   102d   S,  R   0.005   Mehrle  and  Mayer,  1976   Oncorhynchus  mykiss   Y   F   90d   S,  G,  R   >0.5   DeFoe  et  al.,  1990   Oncorhynchus  mykiss   Y   F   70d   S,  G,  R   >0.0073   Cohle  and  Stratton,  1992  (EU   draft)   Oryzias  latipes   Y   F   168d   G   0.55   DeFoe  et  al.,  1990     Oryzias  latipes   N   R   28d   S,  G   ≥0.32   Adema  et  al.,  1981   Pimephales  promelas   Y   F   56d   S,  G   0.062   Mehrle  and  Mayer,  1976   Poecilia  reticulata   N   -­‐   28d   S,  G   ≥0.32   Adema  et  al.,  1981   Acute  toxicity  to  freshwater  organisms:  L(E)C50  values   Brachydanio  rerio   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989   Brachydanio  rerio   Y   R   96h   S   >100   Scholz,  1995   Gasterosteus   aculeatus   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989   Ictalurus  punctatus   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973   Ictalurus  punctatus   Y   F   96h   S   >100   Johnson  and  Finley,  1980   Ictalurus  punctatus   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986   Ictalurus  punctatus   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986   Ictalurus  punctatus   N   F   96h   S   >0.2   Mayer  and  Ellersieck,  1986   Jordanella  floridae   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989   Lepomis  macrochirus   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973   Lepomis  macrochirus   N   S   96h   S   >250   Bionomics  Inc.,  1972   Lepomis  macrochirus   Y   F   96h   S   >100   Johnson  and  Finley,  1980   Lepomis  macrochirus   Y   S   96h   S   >0.2   Adams  et  al.,  1995   Lepomis  macrochirus   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986   Lepomis  macrochirus   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986   Lepomis  macrochirus   N   F   96h   S   >0.2   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973   Oncorhynchus  mykiss   -­‐   S   96h   S   >1000   Silvo,  1974  (EU  draft)   Oncorhynchus  mykiss   N   S   96h   S   >540   Hrudey  et  al.,  1976   Oncorhynchus  mykiss   Y   F   96h   S   >0.32   Adams  et  al.,  1995   Oncorhynchus  kisutch   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986   Oncorhynchus  kisutch   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986   Oncorhynchus  mykiss   Y   F   96h   S   >20   DeFoe  et  al.,  1990   Oryzias  latipes   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989   Oryzias  latipes   Y   F   96h   S   >0.67   DeFoe  et  al.,  1990   Pimephales  promelas   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973   Pimephales  promelas   Y   F   96h   S   >0.67   DeFoe  et  al.,  1990  
  • 16.   16   Pimephales  promelas   N   F   96h   S   >1   Mayer  and  Ellersieck,  1986   Pimephales  promelas   Y   F   96h   S   >0.33   DeFoe  et  al.,  1990   Pimephales  promelas   Y   S   96h   S   >0.16   Adams  et  al.,  1995     1-­‐Y:  chemical  analyzed  in  test  solution  and  N:  chemical  not  analyzed  in  test  solution  or   no   data.   2-­‐S:   static,   R:   Static   with   renewal   and   F:   flow   through.   3-­‐S:   survival,   R:   reproductive  and  G:  Growth.  EU  draft:  (DEHP)  (Based  of  appendices  by  Van  Wezel  et  al.,   2000).   4.2  Literature  (1980-­‐1999)     A  meta-­‐analysis  using  journals  from  1980-­‐1999  was  carried  out  by   Van  Wezel  et  al.,  2000.  Above  in  table  1,  2  and  3  a  summary  of  these   results   (no   observed   effect   concentration-­‐NOEC,   X%   effective   concentrations-­‐ECx,  chronic  and  acute  exposure)  concerning  fish  can   be  found.  They  found  minimal  difference  between  nominal  and  actual   concentrations   used   in   studies   concerning   DBP.   The   most   sensitive   freshwater   organism   was   Oncorhynchus   mykiss   that   showed   the   lowest   chronic   NOEC   at   0.1mg/L   (table   2).   Acute   toxicity   data   was   more  available  (see  table  5)  and  Van  Wezel  et  al.  reported  that  ‘no   useful  test’  regarding  soil  or  sediment  was  found.  When  comparing   chronic   and   acute   DEHP   results   it   was   found   that   both   categories   showed  no  effects  in  the  majority  of  the  studies  (even  at  the  highest   concentration   tested   acute:   0.55mg/L   and   chronic:   1x106mg/L).   When  effects  were  recorded  and  NOEC  could  be  produced  the  NOEC   was  above  the  water  solubility  of  phthalates  (3μg/L).     With  all  the  data  available  the  authors  derived  an  ERL  for  the  aquatic   and   sediment   environments.   For   DBP   this   was   done   by   using   the   lowest  NOEC  (0.1mg/L)  and  applying  an  assessment  factor  of  10.  For   sediment  due  to  lack  of  data  the  ERL  was  derived  by  multiplying  the   lowest   Koc,   partition   coefficient   between   organic   carbon   in   the   soil/sediment  and  water,  value  (1.2x103L/kg:  12mg/kg).  For  DEHP,   due   to   no   effects   observed,   the   NOEC   for   the   only   soil   organisms   (Rana  arvalis  –  frog)  was  used  10mg/kg  fresh  weight  and  applying  a   factor   of   10.   The   ERL   for   soil   was   then   used   to   derive   an   ERL   for   water  by  combining  with  the  lowest  soil/sediment  Koc.   The  derived  ERLs  for  DBP:  10μg/L  and  0.7mg/Kg  fresh  weight  and   DEHP:   0.19μg/L   and   1.0mg/Kg   fresh   weight.   When   surface   water  
  • 17.   17   samples   were   taken   at   different   location   in   the   Netherlands   they   found   that   DBP   levels   were   rarely   above   the   ERL   (both   water   and   sediment)   derived   in   this   study.   For   DEHP   however   unexpected   levels   3-­‐20   times   higher   than   the   derived   ERL   for   water   were   observed   and   sediment   levels   were   also   much   higher   than   the   derived  sediment  ERL.     4.3  Summary  of  literature  post  2000     Table  4:  DBP  summary.       N-­‐Depicts  nominal  concentrations.  A-­‐depicts  acute  exposure  studies.  C-­‐depicts  chronic   exposure   studies.   []-­‐concentration   causing   significant   effects.   VTG-­‐vitellogenin.   D/hpf-­‐days/hours   post   fertilization.   Dep.-­‐depuration   (none   contaminated   water).  *-­‐<0.05,  **<0.01,  ***<0.001  significance  levels.   Species   Age,  sex,  exp.  type  and   concentration  (μg/L)   (unless  indicated)   Exposure   route  and   duration   Effects   Authors   Sander   lucioperca   Juvenile  (61  dph)   (in  vivo)   0.125,  0.25,  0.5,  1,   2g/Kg  feed   Food   5  weeks     *No  effects  on  female  fish,  growth   rate  and  survival.   *Increases  in  [DBP]  shows   decreases  in  male  specimens.   Jarmolowic z    et  al.,   (2003)   Danio  rerio   Adult  male   (in  vivo  and  in  vitro)   500   Water   15  days   Day  7:  *increase  in  surface  density   of  peroxisomes.     Day  15:  *increase  in  both  surface   density  and  numerical  density  of   peroxisomes.   Increase  in  activity  of  acyl-­‐CoA   oxidase.     Ortiz-­‐ Zarragoitia   and   Cajaraville   (2005)   Danio  rerio   1)  Embryos  (1-­‐2  hpf)   25,  100   2)  Adult  female   100,  500   (in  vivo)     Water   1:  8  weeks   2:  15  days   1)  [100]  Increase  in  number  and   volume  of  peroxisome  density  and   acyl-­‐CoA  oxidase  enzyme.   2)  Mortality  of  female  offspring   increased.   Ortiz-­‐ Zarragoitia     et  al.,   (2006)   Gasterosteus   aculetaus   Adult  male   (in  vivo)   N50,  N100   (Measured  levels  15,  35   respectively)   Water   22  days   [35*/**]  Increase  in  testosterone   and  oxidised  testosterone.   Decrease  in  spiggin  (protein  glue).     Aoki    et  al.,   (2011)   Cyprinus  carpio   (in  vitro)   100μM,  1mM   Incubated   in  vitro   [100]  Inhibited  formation  of  5α-­‐ Adione  and  synthesis  of  5α-­‐DHT.   [1]  Increased  synthesis  of   17α,20α/βDP     Thibaut  and   Porte   (2004)   Pimephales   promelis   1  hpf   (in  vivo  and  In  vitro)   1000   Water   96  hpf   None   Mankidy  et   al.,  (2013)    
  • 18.   18     Table  5:  DEHP  summary.     N-­‐Depicts   nominal   concentrations.   []-­‐concentration   causing   significant   effects.   Hpf-­‐ hours   post   fertilization.   Dph-­‐days   post   hatch.   Dep.-­‐depuration   (none   contaminated   water).  *-­‐<0.05,  **<0.01  significance  levels.         Species   Age,  sex,  exp.  type  and   concentration  (μg/L)   (unless  indicated)   Exposure   route  and   duration   Effects   Authors   Oryzias   laptipes     Adult  male   (in  vivo)   N0.1,  N0.3,  N1μmol     Water   2  weeks   None   Shioda  and   Wakabayashi   (2000)   Oryzias   laptipes     A)  a  few  days  old   10,  50,  100   C)  7  month   N1,  N10,  N50   (in  vivo  and  in  vitro)     Water   A:  5  days   C:  3  months   A)  [all]  VTG  protein  not  present  in   males.   C)  [N10*,  N50]*  GSI  lower  in  females   and  [Nall]  retardation  in  ovary  (oocyte)   development.   Kim  et  al.,   (2002)   Oryzias   laptipes   1dpf   (in  vivo)   N0.01,  N0.1,  N1,  N10   Water  Until   hatched   [N0.1,  N1]  Decreased  hatch  time.  Post  5-­‐ 6  months  dep.:  [N0.01***,  N0.1*,  N1***]   increased  mortality,  [N0.01*]  altered  sex   ratio.  [N0.1*,  N1*,  N10**]  decrease  in   male  body  weight.     Chikae  et  al.,   (2004)   Poecilia   reticulate     <1  week   (in  vivo)   0.1,  1,  10   Water   3  months   Day  14:  [10]  decrease  in  length  and   weight.   Day  49  and  91:  [1,  10]  decrease  in   length  and  weight  (more  significant  in   females  [all]**)     Zantonelli  et   al.,  (2009)   Danio  rerio     6  month  female   (in  vivo  and  In  vitro)   0.02,  0.2,  2,  20,  40   Water   3  weeks   [2]  Increase  in  VTG  oocytes  and   decrease  in  pre-­‐VTG  oocytes*.  [all]   down  regulation  of  LHR  and  plasma   VTG.     Carnevali  et   al.,  (2010)   Danio  rerio     Mature  males   (in  vivo)   0.5,  50,  5000  mg/kg   body  weight   Injection   on  day  1   and  5     [5000***]  Decrease  in  fertilization   success.   [50*,  5000**/***]  decrease  in  no.  of     spermatozoa  and  increase  in  no.  of   spermatocytes.   [5000*]  increase  in  VTG  levels  (males   should  not  have  VTG).   [5000**/*]  increase  expression  of  acox1   and  ehhadh.     Uren-­‐ Webster  et   al.,  (2010)   Cyprinus   carpio   (in  vitro)   100μM,  1mM   Incubated   in  vitro   [100]  Inhibited  formation  of  5α-­‐Adione.     Thibaut  and   Porte  (2004)   Pimephales   promelis   1  hpf   (in  vivo  and  In  vitro)   1000   Water   96  hpf   [1000**/*]  increase  in  embryo  mortality   and  increased  lipid  peroxidation     Mankidy  et   al.,  (2013)   (Salmo  salar)   4  weeks  post  hatch   (in  vivo)   N0,  N400,  N800,   N1500mg/kg  feed   Food   4  weeks   [DEHP]  3x  greater  then  MEHP   (metabolite).   1  week  after  dep.:  DEHP+MEHP  levels   returned  to  background  levels.   1  month  dep.:  [N1500*]  ovo-­‐testis   combo     Norman  et  al.,   (2007)  
  • 19.   19     Table  6:  DINP  and  DIDP  summary.     Species   Age,  sex,  exp.  type  and   concentration  (μg/L)   (unless  indicated)   Exposure   route  and   duration   Effects   Authors   Oryzias   laptipes     2  week  old  larvae   (in  vivo)   20μg/g  (for  both  DINP   and  DIDP)   Food   F0  till  gen.   F2-­‐42dph     DINP:  F0  Embryo  development   showed  decreases  in  red  blood  cell   pigment*.   DINP:  F1  survival  decreased*     Patyna  et  al.,   (2006)     Dph-­‐days  post  hatch.  *-­‐<0.05  significance  levels.  Patyna  et  al.  2006  uses  two  bioassays   for  a  single  effect.  Therefore  only  effects  proving  significant  on  both  assays  are  used  in   this  table.   4.4  Literature  post  2000   4.4.1  DEHP     In  2000  Shioda  and  wakabayashi  studied  the  effects  of  DEHP  (in  vivo)   on  the  number  of  eggs  produced  by  mating  couples  and  number  of   successful   hatchings   in   medaka   fish   (Oryzias   latipes).   For   this   experiments   groups   (one   male   and   two   females)   with   the   highest   number   of   fertilized   eggs   were   used.   Males   were   exposed   for   two   weeks  to  low  nominal  DEHP  concentrations  of  0.1,  0.3  and  1μmol/L     (through   means   of   water)   along   side   a   positive   (17   β–estradiol,   a   natural  estrogen)  and  negative  control  (tap  water).  Once  exposed  the   males   were   placed   back   into   their   original   group.   The   DEHP   concentrations  showed  no  significant  effects  on  number  of  eggs  and   hatchings,  which  could  be  due  to  the  extremely  low  concentrations   used.     Both  chronic  and  acute  exposures  of  DEHP  (in  vivo  and  in  vitro)  were   studied  by  Kim  et  al.  in  2002.  Japanese  Medaka  fish  (seven  months   old)  were  exposed  via  water  to  concentration  of  10,  50  and  100μg/L   of  DEHP  (for  acute  testing).  For  chronic  testing  fish  a  couple  days  old   were   exposed   to   nominal   concentrations   of   1,   10   and   50μg/L.   In   acute  exposure  (5  days)  it  was  found  that  the  protein  (200-­‐kDa)  used   for  identification  of  vitellogenin  (VTG)  proteins  were  not  present  in   male  Medaka  in  all  four  exposures  (including  the  control).  In  females   however   VTG   was   found   in   all   the   control   and   the   exposed   fish,   although   two   out   of   the   five   fish   in   1μg/L   exposed   tank   showed  
  • 20.   20   extremely  low  levels.  Overall,  acute  effects  of  DEHP  on  VTG  were  not   significant.     The  chronic  exposure  (three  months)  to  DEHP  showed  the  200-­‐kDa   protein  not  to  be  present  in  male  fish.  In  females  fish  however  the   protein   occurred   less   frequently   as   DEHP   concentration   increased.   The  weight  and  length  of  fish  used  in  the  chronic  exposure  showed   no  statistical  difference  in  all  treatments  showing  DEHP  to  have  no   effect  on  growth.  The  Gonado-­‐somatic  index  (GSI)  of  females  in  both   10  and  50μg/L  DEHP  treatments  was  statistically  lower  than  that  of   the  control  females  while  no  effect  was  found  on  male  fish  showing   DEHP  to  inhibit  the  development  of  Medaka  fish  ovaries.     Histology  of  both  the  gonads  and  ovaries  from   the   chronically   exposed   fish   were   also   looked   at.   Here   gonads   of   the   male   fish   were   not   deformed   compared   to   the   control,   while   the   oocytes  within  the  ovaries  of  female  fish  were.   In  the  control  females,  oocytes  were  developed   to   either   stage   two   or   three   (stage   three   allowing  them  to  be  fertilized).  In  all  1,  10  and   50μg/L   DEHP   treatments   only   37%,   0%   and   22%,   respectively,   of   the   fish   had   matured   oocytes  at  stage  three  compared  to  54%  of  the   control   –   taking   note   that   10μg/L   showed   no   stage  three  development.  Along  side,  only  26%,   25%  and  12%  of  the  female  fish  (respectively  of   1,   10,   50μg/L   DEHP)   could   reach   stage   one   compared   to   the   control   where   oocytes   development  was  not  stopped  (figure  2).  This  shows  the  retardation   effects   in   ovary   growth   of   DEHP   using   environmentally   relevant   concentrations.     In  2004,  Chikae  et  al.  also  conducted  an  in  vivo  study  on  the  negative   (irreversible)  effects  that  DEHP  exposure  using  pre-­‐hatched  Medaka   would   have   on   adulthood   (5-­‐6   months   post   hatch).   Treatments   of   water   containing   nominal   DEHP   concentrations   of   0.01,   0.1,   1,   10   Figure  2:  Ovaries  of   females  medaka  after   3  months.  A)  control,   developed  to  stage  3   B)  DEHP  (10μg/L)   stuck  in  stage  1  (Kim   et  al.,  2002)  
  • 21.   21   μg/L   and   a   control   were   used   to   expose   1-­‐day-­‐old   fertilized   eggs.   Once  hatched  the  fish  were  transferred  to  DEHP  free  water  for  5-­‐6   months.       At  the  beginning  (pre-­‐hatch)  over  90%  of  the  eggs  in  each  treatment   showed   signs   of   eye   development   (eyeing)   except   at   10μg/L   were   only   83%   were   found   eyeing.   Of   those   eggs   that   had   successful   eyeing,   over   90%   continued   to   hatch   in   each   treatment.   The   only   significant   difference   was   a   decrease   in   hatching   time   seen   at   the   0.1μg/L   (P<0.005)   and   1μg/L   DEHP   treatments   compared   to   the   control.   In   adulthood,   after   no   DEHP   exposure   for   5-­‐6   months,   irreversible   effects   were   significant   compared   to   the   control.   Post-­‐ hatch  mortality  was  significantly  increased  in  the  0.01,  0.1  and  1μg/L   treatments   (P<0.001,   <0.05   and   <0.001,   respectively).   Sex   ratio   within   the   0.01μg/L   treatment   was   significantly   altered   (4m:16f),   which   may   have   been   due   to   increased   male   mortality   or   feminization.   Body   weight   was   significant   different   in   male   fish   within  the  treatment  0.1,  1μg/L  (P<0.05)  and  10μg/L  (P<0.01).  This   study   shows   the   irreversible   effects   of   phthalate   exposure   in   embryonic  states  of  medaka  fish.     Norman   et   al.,   (2007)   studied   DEHP   (in   vivo)   on   Atlantic   salmon   (Salmo   salar)   with   nominal   concentrations   of   0,   400,   800   and   1500mg  DEHP/kg  feed.  Here  levels  of   DEHP   and   its   metabolite   mono-­‐ ethylhexyl   phthalate   (MEHP)   within   fish   tissue   were   studied   after   acute   exposure  (four  weeks)  of  DEHP.  Along   side,   histological,   growth   and   liver   effects  were  analyzed  after  one  month   of  depuration  (no  exposure  to  DEHP).   The   DEHP   concentration   in   the   fish   tissue   post   acute   phase   was   three   times  higher  than  the  concentration  of   MEHP.   Control   fish   that   were   not   Figure  3:  guppy  fish  at  day   49  with  treatments  above.   Grid  is  1mm  (Zanotelli  et  al.,   2009).  
  • 22.   22   exposed   to   dietary   DEHP   showed   low   background   levels   of   DEHP   (0.016  mg/kg  fish)  and  MEHP  (0.020  mg/kg  fish).  DEHP  and  MEHP   concentrations   increased   in   tissue   as   treatment   concentration   increased.  Both  were  eliminated  to  near  background  levels  one  week   after  the  depuration  phase.  Mortality  in  all  groups  was  low  (4%)  and   no   difference   in   weight   and   sex   ratio   was   recorded   between   the   different  exposure  concentrations.  Within  each  treatment  a  few  fish   (1%  of  400  and  1500mg  DEHP/kg  food)  were  observed  anatomically   to  be  slightly  different  (increased  testes  size).  The  only  statistically   difference  recorded  was  in  the  treatment  group  of  1500mg  DEHP/kg   feed  where  6  out  of  the  202  fish  had  ovo-­‐testis  (P<0.014).  This  study   showed  that  DEHP  had  no  short-­‐term  effects.     Zanotelli   et   al.,   (2009)   conducted   a   study   focusing   on   the   growth   (weight   and   length)   of   <1-­‐week-­‐old   (larval)   guppy   fish   (Poecilia   reticulata).  The  guppy  fish  were  subjected  to  continuous  exposure  (in   vivo)  to  DEHP  through  water  (0.1,  1,  10μg/L).  By  day  14  a  statistically   significant  growth  inhibition  at  the  highest  DEHP  concentration  was   observed  and  increased  with  time.  After  49  days  of  exposure,  DEHP   treated  fish  were  compared  to  control  fish.  Length  showed  a  dose-­‐ dependent  decrease,  where  DEHP  exposed  fish  at  1  and  10μg/L  were   15-­‐30%   shorter   (respectively)   than   the   control   and   weight   was   decreased   by   as   much   as   40-­‐70%   respectively.   After   91   days   of   chronic  exposure  to  environmentally  relevant  DEHP  concentrations   the   fish   showed   a   significant   decrease   in   weight   and   length:   fish   exposed  to  1  and  10μg/L  decreased  10%  and  26%  in  length  and  32   and  61%  in  weight,  respectively  (figure  3  below).  There  was  a  higher   level  of  significance  within  females  at  day  49,  with  all  concentrations   showing   a   P<0.01,   where   as   with   male   fish   at   day   49   only   10μg   DEHP/L  differed  form  the  control  with  P<0.01.  This  study  shows  that   chronic   exposure   as   low   as   1μg   DEHP/L   show   a   time   and   dose   dependent   relationship   when   it   comes   to   growth.   The   fish   used   in   this  study  were  considerably  small  which  could  have  increased  the   effects  observed.     Carnevali   et  al.,  (2010)  experimented   on   the   effects   of   DEHP   using   six-­‐month-­‐old  female  zebrafish  (Danio  rerio)  in  an  in  vivo  and  in  vitro  
  • 23.   23   study.   Environmentally   relevant   concentrations   of   0.02,   0.2,   2,   20,   40μg/L  as  well  as  a  positive  control  were  used  to  study  the  impact  on   fecundity,   ovulation   and   oocytes   maturation.   Fish   were   exposed   through   water   to   DEHP   for   three   weeks   and   were   compared   to   a   solvent   control.   Results   showed   that   fish   exposed   to   2μg/L   had   a   significant  increase  in  the  number  of  vitellogenic  oocytes.  This  was   associated   with   the   significant   decrease   in   pre-­‐vitellogenic   oocytes   compared   to   the   control   (P<0.05).   Down   regulation   of   ovarian   luteinizing   hormone   receptor   (LHR)   and   plasma   VTG   were   significantly   different   compared   to   the   control   at   all   five   doses   of   DEHP.  These  two  factors  clearly  show  the  estrogenic  activity  of  DEHP   with   regards   to   the   inhibition   of   oocytes   maturation.   This   is   also   supported   by   the   dose   dependent   increase   of   BMP15,   a   protein   involved   in   oocytes   maturation.   After   the   three-­‐week   exposure   period  the  female  fish  were  placed  into  a  mating  tank  with  control   males,   showing   that   the   fecundity   of   embryos   was   severely   compromised   compared   to   the   control.   This   study   shows   the   concrete  risk  associated  with  aquatic  organisms  living  in  phthalate-­‐ polluted  areas.     Another  in  vivo  and  in  vitro  experiment  on  DEHP  by  Uren-­‐Webster  et   al.,   (2010)   studied   the   reproductive   health   of   male   zebra   fish.   16   colonies  (male  and  female  pairs)  were  used  that  were  consistent  with   egg   production   and   spawning   were   over   a   10   day   period.   Here   instead  of  the  dietary  or  water  exposure  as  previous  studies  applied,   the  DEHP  solution  was  injected  into  the  intraperitoneal  cavity.  This   method  of  administration  allowed  all  fish  to  receive  the  same  dose  as   well   as   being   able   to   target   male   specimens.   Environmentally   relevant   concentrations   of   0.5mg   DEHP/kg   of   body   weight   (bw),   range  within  measured  concentration  of  wild  fish,  50mg/kg  bw  and   an   extremely   high   5000mg/kg   bw   was   used   to   assess   the   mechanisms   of   phthalate   toxicity.   All   three   treatments   were   compared  to  a  control.  The  fertilization  success  of  males  subjected  to   5000mg/kg   bw   were   significantly   lower   than   the   other   three   treatments  (P<0.001),  although  this  was  only  when  including  the  full   10  day  exposure  period  (the  first  5  day  period  showed  no  significant   difference).    No  abnormal  embryo  development  or  embryo  survival  
  • 24.   24   effects   were   seen   in   the   treatments.   Histological   analysis   of   the   gonads  showed  significantly  lower  numbers  of  spermatozoa  (sperm   cell)  in  the  testes  of  males  injected  with  50mg/kg  of  bw  (P<0.05)  and   5000mg/kg  bw  (P<0.01)  compared  to  the  control  fish.  On  the  other   hand  there  was  a  significant  increase  in  the  number  of  spermatocytes   (immature  male  germ  cell)  compared  to  the  control  in  both  50mg/kg   bw  (P<0.05)  and  5000mg/kg  bw  (P<0.001).     When   studying   at   the   liver,   a   statistically   significant   increase   (P<0.05)   in   VTG   levels   was   recorded   in   the   treatment   5000mg/kg,   which  showed  DEHP  to  have  estrogenic  activity,  as  VTG  should  not   be  found  in  male  zebra  fish.  In  the  male  fish  a  significant  increase  in   the  expression  of  the  genes  acox1  (acyl-­‐coenzyme  A  oxidase  1)  and   ehhadh   (enoyl-­‐coenzyme   A   hydratase/3-­‐hydroxyacyl   coenzyme   A   dehydrogenase)   that   are   both   involved   in   lipid   metabolism   was   found.   Males   showed   no   alterations   in   swimming   and   feeding   behavior   throughout   the   study   (compared   to   controls).   This   study   used  mature  fish  which  are  known  to  be  less  sensitive  than  juvenile   fish,   which   may   have   caused   the   conclusion   that   DEHP   at   environmentally  relevant  concentrations  (0.5mg  DEHP/kg  bd)  show   no  short  term  reproductive  effect.     Lee  and  Liang  (2011)  studied  zebra  fish  offspring  and  exposed  them   for   3   months   to   low   doses   of   DEHP   through   water   in   vivo.   2ml   of   DEHP  was  placed  into  tanks  containing  110  liters  of  water,  and  every   month  an  additional  0.1ml  of  DEHP  was  added.  They  observed  that   DEHP   altered   the   sex   ratio   from   1:1   to   3:7,   although   they   failed   to   specify   if   this   was   significant.   Decreases   in   growth   (length   and   weight)   were   observed,   but   were   however   not   significant.   They   concluded  that  DEHP  showed  no  effect.   4.4.2  DBP     In  Jarmolowicz  et  al.,  (2003)  DBP  concentrations  of  0.125,  0.25,  0.5,  1   and   2g/Kg   feed   were   used   to   determine   the   impact   on   the   reproductive   system   in   juvenile   European   pikeperch   (Sander   lucioperca)  in  an  in  vivo  study.  A  total  of  40  fish  were  placed  into  each   concentration  tank  with  a  control  tank  with  no  addition  of  DBP.  The  
  • 25.   25   experiment  was  divided  over  two  five  week  periods  the  first  being   61-­‐96  days  post  hatch  and  the  second  97-­‐132  days  post  hatch.  In  the   first   period   fish   were   fed   the   DBP   contaminated   feed.   During   the   second  period  fish  were  fed  uncontaminated  feed.  15  fish  from  each   tank  were  taken  for  histological  analysis  at  the  beginning  (60  days   post  hatch),  after  the  1st  and  the  2nd  period.  There  were  no  negative   changes   within   female   fish,   nor   in   survival   and   growth   rates   (P<0.05).       After  96  days  post-­‐hatch  the  sex  ratio  in  treatment  groups  0.125  and   025g/Kg  feed  was  1:1.  50%  of  the  males  in  those  two  groups  showed   gonads   that   were   comparable   to   those   of   the   control   group.   The   remaining  50%  showed  smaller  testes  size,  reduced  spermatogonia   (any   cell   of   the   gonad   which   matured   form   a   spermatocytes)   and   seminal  vesicles.  Increasing  concentration  of  DBP  showed  a  positive   correlation  with  reduction  in  male  specimens  (P<0.05).  Fish  within   the   treatment   group   2g/Kg   of   feed   had   a   significantly   altered   sex   ratio   (P<0.05).   In   the   two   highest   DBP   concentration   tanks   (1   and   2g/Kg   of   feed)   intersex   specimens   (6.7%)   were   recorded   although   not  significant.  Jarmolowicz  et  al.  concluded  that  DBP  acts  as  an  anti-­‐ androgen   (blocking   endogenous   androgen   action)   creating   an   ‘estrogenic   environment’.   This   study   is   the   first   to   report   DBP   disruption  in  sex  differentiation  in  fish.     Ortiz-­‐Zarragoitia   and   Cajaraville   (2005)   used   high   DBP   concentrations   of   500μg/L   to   observe   effects   on   the   liver   peroxisomes,  enzyme  activity  of  Acyl-­‐CoA  oxidase  and  on  VTG  levels   (In   vivo   and   in   vitro).   They   exposed   adult   male   zebra   fish   through   water  for  15  days.  They  found  that  at  day  seven  the  surface  density  of   liver  peroxisomes  had  significantly  increased  (P<0.05)  compared  to   the   control   while   at   day   15   both   surface   density   and   numerical   density  had  significantly  increased  from  the  control  (P<0.05).  Acyl-­‐ CoA   oxidase   showed   a   significant   increase   in   activity   at   both   time   points  (days  7  and  15).  Surprisingly  DBP  showed  no  significant  effect   on  VTG  levels.  They  concluded  that  DBP  shows  no  estrogenic  effect  in   male  zebra  fish.    
  • 26.   26   The   next   year   (2006)   Ortiz-­‐Zarragoitia   et  al.,  conducted  another  study  (in  vivo)   on   DBP   and   the   Actyl-­‐CoA   oxidase   enzyme,  peroxisomes  and  VTG,  but  also   mortality.   This   study   was   conducted   in   two  parts,  the  first  focusing  on  early  life   exposure   and   the   second   focusing   on   adult   life   exposure   and   their   offspring.   For  the  first  experiment  zebra  fish  eggs   were   exposed   (via   water)   to   concentrations   of   25   and   100μg/L.   A   solvent   control   was   used   to   compare   results.   1-­‐2   hpf   eggs   were   exposed   for   three   weeks.   Once   hatched   they   were   transferred  to  a  larger  tank  and  exposed   for  a  further  five  weeks.  Measurements  were  taken  at  4,  6,  10  days   post   fertilization   (dpf)   and   3   and   5   weeks   post   fertilization   (wpf).   Results  showed  that  survival  of  exposed  fish  did  not  differ  from  the   controls.   However   anatomical   deformities   were   observed   in   both   DBP   exposed   groups   (figure   4).   Spinal   cord   malformations   and   hypertrophy   of   the   yolk   sack   were   noticed   in   infant   fish   and   in   juvenile   fish   spinal   cord   and   swim   bladder   malformations   were   apparent.   Although   Ortiz-­‐Zarragoitia   et   al.,   (2006)   fail   to   specify   numbers  of  malformed  fish,  however  those  in  the  control  showed  no   signs  of  malformation.       As  with  the  prior  study  in  2005,  here  too  they  found  that  the  number   and   volume   of   peroxisome   density   as   well   as   the   Acyl-­‐CoA   oxidase   enzyme   increased   significantly   in   the   100μg/L   treatment   at   five   weeks  compared  to  the  control,  while  no  significant  differences  were   recorded  in  the  25μg/L  treatment.  All  fish  within  the  25μg/L  were   male   (testes   all   containing   spermatozoa   and   spermatogenic   cells)   while   only   two   in   the   100μg/L   showed   both   pre-­‐vitellogenic   and   vitellogenic   oocytes   therefore   classified   as   female   compared   to   the   control  (6  female  and  4  male).  Only  the  100μg/L  treatment  caused   effects  to  the  fish.     Figure  4:  zebra  fish  A)   control  at  7  dpf,  B)  DBP   (100μg/L)  7  dpf  (Ortiz  – Zarragoitia  et  al.,  2006)  
  • 27.   27   In  the  second  experiment  10  adult  female  zebra  fish  were  exposed   via  water  for  15  days  to  100  and  500μg/L  of  DBP.  After  15  days  of   exposure  each  female  was  paired  with  two  males  in  untreated  water   and   left   to   reproduce   for   two   to   three   days.   After   spawning   the   female   fish   were   sacrificed   and   liver,   brain   and   ovary   analysis.   Embryos  produced  during  spawning  were  gathered  and  placed  into   the   same   (treatment)   groups   as   their   female   parent   and   then   transferred   to   untreated   water   for   27   days.   The   number   of   eggs   produced  by  the  treated  females  did  not  differ  from  the  numbers  of   the  control.  However,  mortality  showed  a  significant  dose  dependent   relationship  such  as  in  the  highest  treatment  where  70%  mortality   was  recorded  after  25  days.  VTG  expression,  liver  VTG  protein  levels,   oocytes   and   ovary   development   showed   no   significant   difference   compared  to  the  control.  Both  experiments  incorporated  mortality  of   young  zerbra  fish,  however  exposure  to  phthalates  pre  fertilization   increased   the   mortality   where   as   exposure   post   hatch   showed   no   affect  on  mortality.     Aoki  et  al.,  (2011)  conducted  the  most  recent  in  vivo  study  on  DBP.   They   chose   adult   male   three-­‐spined   stickle   back   (Gasterosteus   aculetaus).  Fish  were  exposed  through  water  for  22  days  to  nominal   concentrations  of  50  and  100μg  DBP/L.  Throughout  the  experiment   the  concentrations  of  DBP  were  measured  every  three  to  four  days   (water   samples   ran   through   gas   chromatography   and   mass   spectroscopy)  where  it  was  found  that  the  actual  concentration  was   much  lower  than  their  original  calculated  input.  Mean  concentrations   of   15   and   35   μg/L   were   recorded   at   the   50   and   100μg/L   tanks,   respectively.  There  was  no  significant  difference  in  weight,  length  or   gonado-­‐somatic   index   for   either   treatment   group   compared   to   the   control.   They   did   find   that   testosterone   levels   and   oxidised   testosterone  levels  were  significantly  higher  in  the  35μg/L  treatment   group  (P<0.05)  compared  to  the  control.  Spiggin  (protein  glue)  was   also  measured  in  the  kidneys,  where  it  was  found  to  have  a  negative   correlation   with   DBP   concentration   with   only   the   highest   DBP   concentration  showing  a  significant  decrease  in  spiggin  (P<0.011).  A   slight   delay   in   nest   building   behavior   of   those   fish   in   the   35μg/L