SlideShare a Scribd company logo
1 of 43
Paweł Widera, PhD
School of Computing Science
Newcastle University, Newcastle, UK
0/31
Disclosure Information
I have no financial relationships with commercial interests to disclose.
My presentation does not include discussion of off-label or investigational use.
A machine learning “APPROACH”
to recruitment in OA
Paweł Widera
pawel.widera@ncl.ac.uk
01100010011000110011000100111111110011011110001TCTTTGATACTACGATATGCCCAGTAGGAACCATTTAGAAGTCGCTTGT
10011000100100101000100111101011100000100001110ATTGCTCAAACGTAGGGTAACCGCCGATGAGGTGTTGTTTTGAGGGGT
01000011010010101001011100001010110001010110101GTTGTTACCCATGGGATAGTTAGAAGGG GGATGATCTCACTCTCGTGGC
11000011100110100001111010100000110000101110011AGTGCGTCCCGTACACTTAAGTGGGACTGTCCGTTAATAGGTCTCCGGT
00010110111000110111101101000101001000010110110CTCCTTGCGCACCCGCTCTAGCTGATATGTGCCGTATGGCGAAGCAAA
10100100000000100011100011011011111011001111000AAACACCGGTTCTAGTTTAAGTACGACCCGGGTCGCTCTGGGCATCAT
10111011010011010011110101100101110001101011010AAGCAGGTATAGTGGGAGACAGGCACACCATTAGTTTTAGATGTTCTT
01000100011100001000101000111010110111011001111TGACCACGCTCTAAAGGTCGGCGAGCTTGTCCGCGTTGGGACCGCGTT
00110000110001011110001011001011100111101101100CTCGCCCCGCTTGGGATTGTGATTGTGTAGCTATGACGGAGGGTTTAGG
00010011111110110000011000011100101001101010111AGGCCAGTCTCCCTTCACTGTTTCCCATCACCCCTAGGCTCAAGTATGA
01010111110010001010011001100010010111000110101AGCTGGCGCAGAATCCAGCTTACCGAGGAGCGCGACAGGGAATACTA
10101101001010111010100011111001101101001000101TAATTGAGTCCCTCCCGCATGGCCTGACCGCGGCAGGTTCGTAATGTAG
00101110101010010011101100011111100011100101001GCAGGCAAACATGTCTACTTTACGATGTAGAGTCGTATACAACTGGGA
11110110011001110111011000001011111111110011100AGTCGAGGTGTAAGACCAAGCCCCGGGCGGTGCGGCCTTCGATACAGC
10000110110010110001001010011100111000010010110ATTGTACACATTCTTACGGTAAGTTAAAATCGAGGTGGACAATTAGCC
11001110110001001100110011011100111010110000111TTAAGCATTCTAACGTGCCTACAGTGATAGCTCCAATTGATTCCCTGGA
11001010000100000010110001011000110001010010101AGTCCTGTGAAGCATAGCGGTACTTGCGTTTATCATAGCATGCTGAATC
01110001010101100001111011100001000000011010001GGTGTTCGCGAAATATTCATGCGTGATAGCTACTTTTGTGCCTTGTAAA
00100101101100000010010110100110001010110010111GCGCGAGTCTCCTCGTATCTCCTTTGCGATAGCGAAAAACAAAAAGTA
01000100001001101110101110111101011000011100101AGGCGCCATGTAGTAGGTTAACGCTCAGCGTGGGACCGCCTGCACCTA
11110011010011001111100011011111001110101001110TTCAAGGGAGACCACATTTATTAGTGCTTTAATGACCGTTGGAACCAC
00011000111100010001000100000101010101000010111TGGAAGGCTGTCACTCTGGGGAATTTTCCATCACGGTTAGGGATGTAG
10011001111011100010100011001001110111101000111CAACGATAAAGCAACGCTAGATGGGCATATAGTTACAAGGTTGGCAGC
00001100110100101110111110011011000101100011100GCCGTAATTTCTCAAAGTGGCCAATGGCTGTTATTATAGTACAAACATA
01001101001011010100011001111101001011100110001CGTCGCTGTTGTTTGTCCCAAGGTGTTGTGTTACACAGGCTAACAGAC
101101001000I000011010011010001C01011100000010111TTTTATATCAATATCTTCGACACAGGGASCTGAGGTTGTGTGCTCCCAT
T
OARSI World Congress on Osteoarthritis
Toronto, Canada
2019-05-02
1/31
WP1 Leaders
Christoph Ladel
John Loughlin
WP3 Leaders
Floris Lafeber
Agnès Lalande
Data analysis / Machine learning
Jaume Bacardit
Paweł Widera
Paco Welsing
Data harmonisation
Samuel Danso
Paweł Widera
Paco Welsing
Sjaak Peelen
CHECK
Anne Marijnissen
Eefje van Helvoort
MUST
Ida Haugen
Janicke Magnus
Mari Skinnes
DIGICOD
Francis Berenbaum
Jeremie Sellam
PROCOAC
Francisco Blanco
Joana Silva
Carlos Tilve
HOSTAS
Margreet Kloppenburg
Marieke Leof
Jose Krol
Principal Investigators
Jonathan Larkin
Harrie Weinans
2/31
Outline
1 Introduction
2 Machine learning
3 Recruitment design
Cross-cohort harmonisation
Patient selection
Screening stage
4 Recruitment in practice
5 Summary
3/31
APPROACH main objectives
Recruit Collect data Discover
recruit patients for the APPROACH cohort
(who would progress enough in 2 years time)
take as many measurements as possible (at
baseline and 6, 12 and 24 months follow-up visits)
discover attributes and phenotypes related to progression
4/31
APPROACH cohort
new longitudinal cohort focused on fast knee OA progressors
recruited from 5 existing European OA cohorts using machine
learning models trained to estimate progression probability
KL grade JSN grade JSW follow-up active years
CHECK
MUST
HOSTAS
✓
✓
✓
✓
✓ 1–10 years
—
2–4 years
2006–2016
2010–2013
2009–2017
DIGICOD
PROCOAC ✓
1 year
2–9 years
2013–2017
1991–2016
5/31
Recruitment idea
cohort 1
cohort 2
cohort 5
ML model
APPROACH
cohort
6/31
Machine learning from historical data
PATIENTS DATA
a1 |a2 |a3 | ... | aN
a1 |a2 |a3 | ... | aN
.
.
.
a1 |a2 |a3 | ... | aN
CATEGORIES
pa in
no progression
.
.
.
structure
MACHINE
LEARNING
ALGORITHM
ML MODEL
(predictor)
PREDICTED
CATEGORIES
pain
structure
.
.
.
no progression
+
7/31
builds computational models from input examples,
and uses them to predict outputs categories
INPUT LEARNING OUTPUT
Input data
0 1 2 3 4 5 6 7 8
inclusion
ΔJSW
ΔJSW
patient
periods
Progression periods
duration: 2+ years
ACR clinical criteria
satisfied at inclusion
8/31
Output categories
Structure periods
minimum total JSW, must decrease by at least 0.3mm per year
Pain periods
must experience progressive or intense sustained pain
pain increase must be at least 5 WOMAC points per year
pain at the follow-up must be significant (≥ 40 WOMAC points)
special exception: rapid pain progression (≥ 10 points per year)
9/31
Output categories
Structure periods
minimum total JSW, must decrease by at least 0.3mm per year
Pain periods
must experience progressive or intense sustained pain
pain increase must be at least 5 WOMAC points per year
pain at the follow-up must be significant ( ≥ 40 WOMAC points)
special exception: rapid pain progression ( ≥ 10 points per year)
Predicted categories
N: non-progressors
P: increased or stable pain
S: structural progression
P+S: both
9/31
Outline
1 Introduction
2 Machine learning
3 Recruitment design
Cross-cohort harmonisation
Patient selection
Screening stage
4 Recruitment in practice
5 Summary
10/31
Learning strategies
balanced random subsets (20% of the examples)
full imbalance set (63% N, 12% P,20% S, 5%P+S)
Data preprocessing
precise attribute type
nominal (left, right)
ordinal (l0w, medium, high)
continuous (1.2, 2.4, 3.7)
missing values imputation
Classification algorithms
single model
(LR, k-NN, SVC, RF)
4 sub-models (one vs. rest)
2 sub-models (per label: P | S)
11/31
11/31
Learning strategies
balanced random subsets (20% of the examples)
full imbalance set (63% N, 12% P,20% S, 5%P+S)
Data preprocessing
precise attribute type
nominal (left, right)
ordinal (l0w, medium, high)
continuous (1.2, 2.4, 3.7)
missing values imputation
Classification algorithms
single model
(LR, k-NN, SVC, RF)
4 sub-models (one vs. rest)
2 sub-models (per label: P | S)
Learning strategies
balanced random subsets (20% of the examples)
full imbalance set (63% N, 12% P,20% S, 5%P+S)
Data preprocessing
precise attribute type
nominal (left, right)
ordinal (l0w, medium, high)
continuous (1.2, 2.4, 3.7)
missing values imputation
Classification algorithms
single model
(LR, k-NN, SVC, RF)
4 sub-models (one vs. rest)
2 sub-models (per label: P | S)
11/31
Validation
10 repeats of 10-fold cross-validation (CV)
25 models trained per fold
median model score from the median CV-repeat
10-fold CV — training vs. test
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
.. . .. . .. . . . .
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
CV repeats — randomised partitions
CV 1 CV 2 .. . CV 10
model 1 model 1 model 1
model 2 model 2 model 2
. . . . . . . . .
model 25 model 25 model 25
12/31
12/31
Validation
10 repeats of 10-fold cross-validation (CV)
25 models trained per fold
median model score from the median CV-repeat
10-fold CV — training vs. test
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
.. . .. . .. . . . .
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
CV repeats — randomised partitions
CV 1 CV 2 .. . CV 10
model 1 model 1 model 1
model 2 model 2 model 2
. . . . . . . . .
model 25 model 25 model 25
Validation
10 repeats of 10-fold cross-validation (CV)
25 models trained per fold
median model score from the median CV-repeat
10-fold CV — training vs. test
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
.. . .. . .. . . . .
fold 1 fold 2 . . . fold 9 fold 10
fold 1 fold 2 . . . fold 9 fold 10
CV repeats — randomised partitions
CV 1 CV 2 .. . CV 10
model 1 model 1 model 1
model 2 model 2 model 2
. . . . . . . . .
model 25 model 25 model 25
12/31
Model performance
FPR (probability of falsealarm)
1.0
TPR(probabilityofdetection)
AUC = 0.81
P
FPR (probability of falsealarm)
0.8
0.6
0.4
0.2
0.0
0.8
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.
6
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0
AUC = 0.69
13/31
S
A look inside the models
P S
SHAP TreeExplainer [Lundberg et al., 2018][Lundberg and Lee, 2017]
14/31
Outline
1 Introduction
2 Machine learning
3 Recruitment design
Cross-cohort harmonisation
Patient selection
Screening stage
4 Recruitment in practice
5 Summary
15/31
Challenges arising from the data
differences in
collected data
differences in
visits timing
decisions on
out-dated
information
1 cohorts other than CHECK cannot be used in model training
(not enough data to define progression)
2 the date of last visit differs across cohorts and patients
3 model prediction confidence gets worse for older data
16/31
Harmonisation to CHECK
CHECK
training
periods patients
HOSTAS
H
O
S
T
A
S
Harmonisation
semantic processing
common data concepts
mapping between the concepts
syntactic processing
data transformation
17/31
Baseline shift
2017 20192014
last visit
baseline shift
progression
APPROACH lifespan
Model training
using harmonised CHECK periods
baseline shift of 0, 2, 3 and 5 years
Consequences
need to train separate model
for each cohort and each shift
18/31
Baseline shift
2017 20192014
last visit
baseline shift
progression
APPROACH lifespan
Model training
using harmonised CHECK periods
baseline shift of 0, 2, 3 and 5 years
Consequences
need to train separate model
for each cohort and each shift
18/31
Multi-model prediction
MUST MODEL
5 years shift
id1 | p1(S) | p1(P) | score1
id2 | p2(S) | p2(P) | score2
.
.
.
idN | pN(S) | pN(P) | scoreN
RANKINGPATIENTS DATA PREDICTION
MUST
2011
2012
2013
HOSTAS
2011
2012
2013
2014
2015
MUST MODEL
3 years shift
HOSTAS MODEL
5 years shift
HOSTAS MODEL
3 years shift
HOSTAS MODEL
2 years shift
id1 | p1(S) | p1(P) | score1
id2 | p2(S) | p2(P) | score2
.
.
.
idN | pN(S) | pN(P) | scoreN
19/31
Ranking based on model confidence
patient 1 patient 2 patient N
probabilities
P S
0.823 0.466
0.839 0.447
0.679 0.586
0.728 0.528
0.801 0.454
ranking of patients
MACHINE LEARNING MODEL
the ML model is composed of two
sub-models, separately predicting
pain (P) and structure (S) related
progression
the outcome of the model is per
patient probability of becoming an
OA progressor
the probabilities are used to rank the
patients
top patients in the ranking are more
likely to progress
20/31
Example of combined ranking
Top 16 Bottom 16
ID P S year score ID P S year score
249 0.703 0.238 2013 0.617390 78 0.062 0.221 2011 0.150398
389 0.583 0.226 2012 0.477706 241 0.074 0.209 2011 0.150398
626 0.493 0.232 2013 0.475673 583 0.061 0.193 2012 0.149984
370 0.588 0.242 2011 0.441096 447 0.076 0.177 2012 0.149394
461 0.616 0.122 2012 0.435782 297 0.110 0.168 2011 0.147741
450 0.539 0.182 2012 0.425743 242 0.050 0.227 2011 0.147209
597 0.529 0.185 2012 0.421610 551 0.050 0.197 2012 0.145851
546 0.532 0.181 2012 0.421019 268 0.046 0.226 2011 0.144552
532 0.565 0.145 2012 0.419248 368 0.082 0.159 2012 0.142308
92 0.555 0.224 2011 0.413993 250 0.058 0.204 2011 0.139238
376 0.499 0.192 2012 0.408029 569 0.079 0.152 2012 0.136403
385 0.530 0.158 2012 0.406257 599 0.077 0.130 2013 0.135813
397 0.510 0.178 2012 0.406257 307 0.084 0.166 2011 0.132860
505 0.470 0.214 2012 0.403895 69 0.047 0.197 2011 0.129672
484 0.520 0.157 2012 0.399762 548 0.065 0.178 2011 0.129140
177 0.436 0.240 2012 0.399171 302 0.072 0.143 2011 0.114260
MUST
2011 260
2012 254
2013 25
when combining rankings, models using older data are trusted less
21/31
Example of combined ranking
Top 16 Bottom 16
ID P S year score ID P S year score
249 0.703 0.238 2013 0.617390 78 0.062 0.221 2011 0.150398
389 0.583 0.226 2012 0.477706 241 0.074 0.209 2011 0.150398
626 0.493 0.232 2013 0.475673 583 0.061 0.193 2012 0.149984
370 0.588 0.242 2011 0.441096 447 0.076 0.177 2012 0.149394
461 0.616 0.122 2012 0.435782 297 0.110 0.168 2011 0.147741
450 0.539 0.182 2012 0.425743 242 0.050 0.227 2011 0.147209
597 0.529 0.185 2012 0.421610 551 0.050 0.197 2012 0.145851
546 0.532 0.181 2012 0.421019 268 0.046 0.226 2011 0.144552
532 0.565 0.145 2012 0.419248 368 0.082 0.159 2012 0.142308
92 0.555 0.224 2011 0.413993 250 0.058 0.204 2011 0.139238
376 0.499 0.192 2012 0.408029 569 0.079 0.152 2012 0.136403
385 0.530 0.158 2012 0.406257 599 0.077 0.130 2013 0.135813
397 0.510 0.178 2012 0.406257 307 0.084 0.166 2011 0.132860
505 0.470 0.214 2012 0.403895 69 0.047 0.197 2011 0.129672
484 0.520 0.157 2012 0.399762 548 0.065 0.178 2011 0.129140
177 0.436 0.240 2012 0.399171 302 0.072 0.143 2011 0.114260
MUST
2011 260
2012 254
2013 25
when combining rankings, models using older data are trusted less
21/31
Two-stage recruitment process
new patients
CHECK
cohort 1
cohort 4
selection criteria
ML model 1
ML model 4
ML model 0 screening
ML model
M
E
A
S
U
R
E
M
E
N
T
S
APPROACH
cohort
SELECTION SCREENING
H
H
22/31
23/31
What we expect?
enrol 75% of screened patients (the most likely to progress)
Screening model attributes
basic: age, sex, BMI
pain intensity: KOOS, NRS
KIDA: bone density, eminence height, joint
space width, varus angle, osteophyte area
prediction model N only P only S P + S
uninformed selection 60% 13% 21% 6%
screening model (top 150 patients) 29% 30% 18% 23%
selection best (CHECK 2y shift, top 150) 35% 31% 21% 14%
selection worst (MUST 5y shift, top 60) 55% 32% 7% 7%
*(optimistic estimate on CHECK data)
23/31
What we expect?
enrol 75% of screened patients (the most likely to progress)
Screening model attributes
basic: age, sex, BMI
pain intensity: KOOS, NRS
KIDA: bone density, eminence height, joint
space width, varus angle, osteophyte area
prediction model N only P only S P + S
uninformed selection 60% 13% 21% 6%
screening model (top 150 patients) 29% 30% 18% 23%
selection best (CHECK 2y shift, top 150) 35% 31% 21% 14%
selection worst (MUST 5y shift, top 60) 55% 32% 7% 7%
*(optimistic estimate on CHECK data)
Outline
1 Introduction
2 Machine learning
3 Recruitment design
Cross-cohort harmonisation
Patient selection
Screening stage
4 Recruitment in practice
5 Summary
24/31
Why we use ranking?
SERGAS
02
SERGAS
03
SERGAS
01
threshold
YES
NO
NO
Case-by-case enrolment
requires an acceptance
threshold defined up-front
Ranking-based enrolment
given enough patients in the
initial ranking, decisions for
next patients are easier
25/31
Why we use ranking?
SERGAS
02
SERGAS
03
SERGAS
01
APPROACH
NO
YES
YES
YES
NO
YES
YES
YESLUMC 03
UMCU 02
APHP 02
UMCU 04
LUMC 01
APHP 01
UMCU 03
LUMC 04
APHP 04
UMCU 01
LUMC 02
APHP 03
NO
YES
YES
YES
NO
YES
?
Case-by-case enrolment
requires an acceptance
threshold defined up-front
Ranking-based enrolment
given enough patients in the
initial ranking, decisions for
next patients are easier
25/31
Recruitment data flow
Utrecht
Processing server
(Lygature)
SCREENING
clinical
data
knee X-ray
Oslo
A Coruña
Leiden
Paris
eCRF
(Servier)
KIDA analysis
(UMCU)
TranSMART
(TraiT)
Predictor
(NU)
scores & decisions
26/31
ranking
(NU)
XNAT
(Lygature)
Decision support and progress monitoring
27/31
Outline
1 Introduction
2 Machine learning
3 Recruitment design
Cross-cohort harmonisation
Patient selection
Screening stage
4 Recruitment in practice
5 Summary
28/31
Summary
Highlights
CHECK data used as a proxy for training ML models for all cohorts
two-phase recruitment based on ML model predictions
multi-model selection from data of variable age
screening visit to make enrolment decisions on up-to-date data
patients ranking instead of individual decisions (choice in context)
web application for decision support and progress monitoring
29/31
Acknowledgement and disclaimer
Acknowledgement
The research leading to these results has received support from the Innovative
Medicines Initiative Joint Undertaking under grant Agreement no. 115770,
resources of which are composed of financial contribution from the European Union’s
Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind
contribution. See: https://www.imi.eur0pa.eu.
Disclaimer
This communication reflects the views of the APPROACH consortium and neither IMI
nor the European Union and EFPIA are liable for any use that may be made of the
information contained herein.
30/31
References
Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2018).
Consistent individualized feature attribution for tree ensembles.
Computing Research Repository, arXiv:1802.03888v2.
Lundberg, S. M. and Lee, S.-I. (2017).
A unified approach to interpreting model predictions.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems (NIPS 2017), pages 4765–4774, Long Beach, CA, USA.
31/31
Outline
6 Appendix
1/2
Ranking functions
sum
score = P + S
scaled sum
score =
P
max(P)
+
S
max(S)
z-score sum
score =
P − µP
+
S − µS
σP σS
P S score P S score P S score
0.782 0.544 1.326 0.782 0.544 1.798 0.707 0.597 4.6
0.724 0.584 1.308 0.707 0.597 1.791 0.724 0.584 4.555
... ... ... ... ... ... ... ... ...
0.112 0.175 0.287 0.112 0.175 0.41 0.106 0.179 -3.819
0.106 0.179 0.285 0.106 0.179 0.409 0.112 0.175 -3.828
Key findings
sum of z-scores — best for selection without shift
simple sum — best for selection with large shift (≥ 3years)
2/2

More Related Content

Similar to A machine learning “APPROACH” to recruitment in OA

statistical quality control
statistical quality controlstatistical quality control
statistical quality controlVicky Raj
 
Acceptance sampling (SQC)
Acceptance sampling (SQC)Acceptance sampling (SQC)
Acceptance sampling (SQC)nilesh sadaphal
 
Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Rahul Gupta
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)Usman Khalid
 
Statistical process control (spc)
Statistical process control (spc)Statistical process control (spc)
Statistical process control (spc)Dinah Faye Indino
 
Statistical process control ppt @ bec doms
Statistical process control ppt @ bec domsStatistical process control ppt @ bec doms
Statistical process control ppt @ bec domsBabasab Patil
 
Quality Control Chart
 Quality Control Chart Quality Control Chart
Quality Control ChartAshish Gupta
 
Statisticalqualitycontrol
StatisticalqualitycontrolStatisticalqualitycontrol
Statisticalqualitycontrolceutics1315
 
Stochastic Process
Stochastic ProcessStochastic Process
Stochastic Processknksmart
 
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...CHENNAKESAVA KADAPA
 
Solution to final exam engineering statistics 2014 2015
Solution to final exam engineering statistics 2014 2015Solution to final exam engineering statistics 2014 2015
Solution to final exam engineering statistics 2014 2015Chenar Salam
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals J. García - Verdugo
 
Med day presentation
Med day presentationMed day presentation
Med day presentationCarsten Lund
 
14. Statistical Process Control.pptx
14. Statistical Process Control.pptx14. Statistical Process Control.pptx
14. Statistical Process Control.pptxSarthakGupta856447
 

Similar to A machine learning “APPROACH” to recruitment in OA (20)

Facility Location
Facility Location Facility Location
Facility Location
 
statistical quality control
statistical quality controlstatistical quality control
statistical quality control
 
Acceptance sampling (SQC)
Acceptance sampling (SQC)Acceptance sampling (SQC)
Acceptance sampling (SQC)
 
ch04 (1).ppt
ch04 (1).pptch04 (1).ppt
ch04 (1).ppt
 
Ch04
Ch04Ch04
Ch04
 
Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)
 
Six sigma
Six sigmaSix sigma
Six sigma
 
Statistical process control (spc)
Statistical process control (spc)Statistical process control (spc)
Statistical process control (spc)
 
Statistical process control ppt @ bec doms
Statistical process control ppt @ bec domsStatistical process control ppt @ bec doms
Statistical process control ppt @ bec doms
 
BIIntro.ppt
BIIntro.pptBIIntro.ppt
BIIntro.ppt
 
Quality Control Chart
 Quality Control Chart Quality Control Chart
Quality Control Chart
 
Statisticalqualitycontrol
StatisticalqualitycontrolStatisticalqualitycontrol
Statisticalqualitycontrol
 
Statisticalqualitycontrol
StatisticalqualitycontrolStatisticalqualitycontrol
Statisticalqualitycontrol
 
Stochastic Process
Stochastic ProcessStochastic Process
Stochastic Process
 
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
 
Solution to final exam engineering statistics 2014 2015
Solution to final exam engineering statistics 2014 2015Solution to final exam engineering statistics 2014 2015
Solution to final exam engineering statistics 2014 2015
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
 
Med day presentation
Med day presentationMed day presentation
Med day presentation
 
14. Statistical Process Control.pptx
14. Statistical Process Control.pptx14. Statistical Process Control.pptx
14. Statistical Process Control.pptx
 

More from OARSI

How to Become More Involved in Peer Review
How to Become More Involved in Peer ReviewHow to Become More Involved in Peer Review
How to Become More Involved in Peer ReviewOARSI
 
What do we want to see addressed by a reviewer?
What do we want to see addressed by a reviewer?What do we want to see addressed by a reviewer?
What do we want to see addressed by a reviewer?OARSI
 
So You Want To Be a Reviewer?
So You Want To Be a Reviewer? So You Want To Be a Reviewer?
So You Want To Be a Reviewer? OARSI
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...OARSI
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...OARSI
 
How to write an effective review (and help editors and authors)
How to write an effective review (and help editors and authors)How to write an effective review (and help editors and authors)
How to write an effective review (and help editors and authors)OARSI
 
Overview of the Editorial Process
Overview of the Editorial ProcessOverview of the Editorial Process
Overview of the Editorial ProcessOARSI
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...OARSI
 
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...OARSI
 
Imaging of Synovitis in OA
Imaging of Synovitis in OAImaging of Synovitis in OA
Imaging of Synovitis in OAOARSI
 
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analyses
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analysesNuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analyses
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analysesOARSI
 
Osteoarthriits Imaging: 2018 Year in Review
Osteoarthriits Imaging: 2018 Year in ReviewOsteoarthriits Imaging: 2018 Year in Review
Osteoarthriits Imaging: 2018 Year in ReviewOARSI
 
Vincent the Lumper!
Vincent the Lumper!Vincent the Lumper!
Vincent the Lumper!OARSI
 
OA White Paper: Broader Implications for Advocacy, Health Policy & Research
OA White Paper: Broader Implications for Advocacy, Health Policy & ResearchOA White Paper: Broader Implications for Advocacy, Health Policy & Research
OA White Paper: Broader Implications for Advocacy, Health Policy & ResearchOARSI
 
Structural Targets for Prevention of Post Traumatic OA
Structural Targets for Prevention of Post Traumatic OAStructural Targets for Prevention of Post Traumatic OA
Structural Targets for Prevention of Post Traumatic OAOARSI
 
Building a translational team for impacting public policy Pre-Congress Worksh...
Building a translational team for impacting public policyPre-Congress Worksh...Building a translational team for impacting public policyPre-Congress Worksh...
Building a translational team for impacting public policy Pre-Congress Worksh...OARSI
 
An industry point of view for building a translational team
An industry point of view for building a translational teamAn industry point of view for building a translational team
An industry point of view for building a translational teamOARSI
 
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...OARSI
 
Understanding the Accelerated Pathway
Understanding the Accelerated PathwayUnderstanding the Accelerated Pathway
Understanding the Accelerated PathwayOARSI
 
Approval of Therapeutics for Osteoarthritis in 2019
Approval of Therapeutics for Osteoarthritis in 2019Approval of Therapeutics for Osteoarthritis in 2019
Approval of Therapeutics for Osteoarthritis in 2019OARSI
 

More from OARSI (20)

How to Become More Involved in Peer Review
How to Become More Involved in Peer ReviewHow to Become More Involved in Peer Review
How to Become More Involved in Peer Review
 
What do we want to see addressed by a reviewer?
What do we want to see addressed by a reviewer?What do we want to see addressed by a reviewer?
What do we want to see addressed by a reviewer?
 
So You Want To Be a Reviewer?
So You Want To Be a Reviewer? So You Want To Be a Reviewer?
So You Want To Be a Reviewer?
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...
 
How to write an effective review (and help editors and authors)
How to write an effective review (and help editors and authors)How to write an effective review (and help editors and authors)
How to write an effective review (and help editors and authors)
 
Overview of the Editorial Process
Overview of the Editorial ProcessOverview of the Editorial Process
Overview of the Editorial Process
 
Real-life examples of manuscript reviews Comparison and contrast of useful ...
Real-life examples of manuscript reviews  Comparison and contrast of  useful ...Real-life examples of manuscript reviews  Comparison and contrast of  useful ...
Real-life examples of manuscript reviews Comparison and contrast of useful ...
 
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...
Statistical Review of Basic Science Manuscripts at Osteoarthritis and Cartila...
 
Imaging of Synovitis in OA
Imaging of Synovitis in OAImaging of Synovitis in OA
Imaging of Synovitis in OA
 
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analyses
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analysesNuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analyses
Nuts & Bolts of Systematic Reviews, Meta-analyses & Network Meta-analyses
 
Osteoarthriits Imaging: 2018 Year in Review
Osteoarthriits Imaging: 2018 Year in ReviewOsteoarthriits Imaging: 2018 Year in Review
Osteoarthriits Imaging: 2018 Year in Review
 
Vincent the Lumper!
Vincent the Lumper!Vincent the Lumper!
Vincent the Lumper!
 
OA White Paper: Broader Implications for Advocacy, Health Policy & Research
OA White Paper: Broader Implications for Advocacy, Health Policy & ResearchOA White Paper: Broader Implications for Advocacy, Health Policy & Research
OA White Paper: Broader Implications for Advocacy, Health Policy & Research
 
Structural Targets for Prevention of Post Traumatic OA
Structural Targets for Prevention of Post Traumatic OAStructural Targets for Prevention of Post Traumatic OA
Structural Targets for Prevention of Post Traumatic OA
 
Building a translational team for impacting public policy Pre-Congress Worksh...
Building a translational team for impacting public policyPre-Congress Worksh...Building a translational team for impacting public policyPre-Congress Worksh...
Building a translational team for impacting public policy Pre-Congress Worksh...
 
An industry point of view for building a translational team
An industry point of view for building a translational teamAn industry point of view for building a translational team
An industry point of view for building a translational team
 
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...
Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, a...
 
Understanding the Accelerated Pathway
Understanding the Accelerated PathwayUnderstanding the Accelerated Pathway
Understanding the Accelerated Pathway
 
Approval of Therapeutics for Osteoarthritis in 2019
Approval of Therapeutics for Osteoarthritis in 2019Approval of Therapeutics for Osteoarthritis in 2019
Approval of Therapeutics for Osteoarthritis in 2019
 

Recently uploaded

Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...narwatsonia7
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Miss joya
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiNehru place Escorts
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Call Girl Chennai Indira 9907093804 Independent Call Girls Service Chennai
Call Girl Chennai Indira 9907093804 Independent Call Girls Service ChennaiCall Girl Chennai Indira 9907093804 Independent Call Girls Service Chennai
Call Girl Chennai Indira 9907093804 Independent Call Girls Service ChennaiNehru place Escorts
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Miss joya
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls ServiceMiss joya
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 

Recently uploaded (20)

Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Call Girl Chennai Indira 9907093804 Independent Call Girls Service Chennai
Call Girl Chennai Indira 9907093804 Independent Call Girls Service ChennaiCall Girl Chennai Indira 9907093804 Independent Call Girls Service Chennai
Call Girl Chennai Indira 9907093804 Independent Call Girls Service Chennai
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 

A machine learning “APPROACH” to recruitment in OA

  • 1. Paweł Widera, PhD School of Computing Science Newcastle University, Newcastle, UK 0/31 Disclosure Information I have no financial relationships with commercial interests to disclose. My presentation does not include discussion of off-label or investigational use.
  • 2. A machine learning “APPROACH” to recruitment in OA Paweł Widera pawel.widera@ncl.ac.uk 01100010011000110011000100111111110011011110001TCTTTGATACTACGATATGCCCAGTAGGAACCATTTAGAAGTCGCTTGT 10011000100100101000100111101011100000100001110ATTGCTCAAACGTAGGGTAACCGCCGATGAGGTGTTGTTTTGAGGGGT 01000011010010101001011100001010110001010110101GTTGTTACCCATGGGATAGTTAGAAGGG GGATGATCTCACTCTCGTGGC 11000011100110100001111010100000110000101110011AGTGCGTCCCGTACACTTAAGTGGGACTGTCCGTTAATAGGTCTCCGGT 00010110111000110111101101000101001000010110110CTCCTTGCGCACCCGCTCTAGCTGATATGTGCCGTATGGCGAAGCAAA 10100100000000100011100011011011111011001111000AAACACCGGTTCTAGTTTAAGTACGACCCGGGTCGCTCTGGGCATCAT 10111011010011010011110101100101110001101011010AAGCAGGTATAGTGGGAGACAGGCACACCATTAGTTTTAGATGTTCTT 01000100011100001000101000111010110111011001111TGACCACGCTCTAAAGGTCGGCGAGCTTGTCCGCGTTGGGACCGCGTT 00110000110001011110001011001011100111101101100CTCGCCCCGCTTGGGATTGTGATTGTGTAGCTATGACGGAGGGTTTAGG 00010011111110110000011000011100101001101010111AGGCCAGTCTCCCTTCACTGTTTCCCATCACCCCTAGGCTCAAGTATGA 01010111110010001010011001100010010111000110101AGCTGGCGCAGAATCCAGCTTACCGAGGAGCGCGACAGGGAATACTA 10101101001010111010100011111001101101001000101TAATTGAGTCCCTCCCGCATGGCCTGACCGCGGCAGGTTCGTAATGTAG 00101110101010010011101100011111100011100101001GCAGGCAAACATGTCTACTTTACGATGTAGAGTCGTATACAACTGGGA 11110110011001110111011000001011111111110011100AGTCGAGGTGTAAGACCAAGCCCCGGGCGGTGCGGCCTTCGATACAGC 10000110110010110001001010011100111000010010110ATTGTACACATTCTTACGGTAAGTTAAAATCGAGGTGGACAATTAGCC 11001110110001001100110011011100111010110000111TTAAGCATTCTAACGTGCCTACAGTGATAGCTCCAATTGATTCCCTGGA 11001010000100000010110001011000110001010010101AGTCCTGTGAAGCATAGCGGTACTTGCGTTTATCATAGCATGCTGAATC 01110001010101100001111011100001000000011010001GGTGTTCGCGAAATATTCATGCGTGATAGCTACTTTTGTGCCTTGTAAA 00100101101100000010010110100110001010110010111GCGCGAGTCTCCTCGTATCTCCTTTGCGATAGCGAAAAACAAAAAGTA 01000100001001101110101110111101011000011100101AGGCGCCATGTAGTAGGTTAACGCTCAGCGTGGGACCGCCTGCACCTA 11110011010011001111100011011111001110101001110TTCAAGGGAGACCACATTTATTAGTGCTTTAATGACCGTTGGAACCAC 00011000111100010001000100000101010101000010111TGGAAGGCTGTCACTCTGGGGAATTTTCCATCACGGTTAGGGATGTAG 10011001111011100010100011001001110111101000111CAACGATAAAGCAACGCTAGATGGGCATATAGTTACAAGGTTGGCAGC 00001100110100101110111110011011000101100011100GCCGTAATTTCTCAAAGTGGCCAATGGCTGTTATTATAGTACAAACATA 01001101001011010100011001111101001011100110001CGTCGCTGTTGTTTGTCCCAAGGTGTTGTGTTACACAGGCTAACAGAC 101101001000I000011010011010001C01011100000010111TTTTATATCAATATCTTCGACACAGGGASCTGAGGTTGTGTGCTCCCAT T OARSI World Congress on Osteoarthritis Toronto, Canada 2019-05-02 1/31
  • 3. WP1 Leaders Christoph Ladel John Loughlin WP3 Leaders Floris Lafeber Agnès Lalande Data analysis / Machine learning Jaume Bacardit Paweł Widera Paco Welsing Data harmonisation Samuel Danso Paweł Widera Paco Welsing Sjaak Peelen CHECK Anne Marijnissen Eefje van Helvoort MUST Ida Haugen Janicke Magnus Mari Skinnes DIGICOD Francis Berenbaum Jeremie Sellam PROCOAC Francisco Blanco Joana Silva Carlos Tilve HOSTAS Margreet Kloppenburg Marieke Leof Jose Krol Principal Investigators Jonathan Larkin Harrie Weinans 2/31
  • 4. Outline 1 Introduction 2 Machine learning 3 Recruitment design Cross-cohort harmonisation Patient selection Screening stage 4 Recruitment in practice 5 Summary 3/31
  • 5. APPROACH main objectives Recruit Collect data Discover recruit patients for the APPROACH cohort (who would progress enough in 2 years time) take as many measurements as possible (at baseline and 6, 12 and 24 months follow-up visits) discover attributes and phenotypes related to progression 4/31
  • 6. APPROACH cohort new longitudinal cohort focused on fast knee OA progressors recruited from 5 existing European OA cohorts using machine learning models trained to estimate progression probability KL grade JSN grade JSW follow-up active years CHECK MUST HOSTAS ✓ ✓ ✓ ✓ ✓ 1–10 years — 2–4 years 2006–2016 2010–2013 2009–2017 DIGICOD PROCOAC ✓ 1 year 2–9 years 2013–2017 1991–2016 5/31
  • 7. Recruitment idea cohort 1 cohort 2 cohort 5 ML model APPROACH cohort 6/31
  • 8. Machine learning from historical data PATIENTS DATA a1 |a2 |a3 | ... | aN a1 |a2 |a3 | ... | aN . . . a1 |a2 |a3 | ... | aN CATEGORIES pa in no progression . . . structure MACHINE LEARNING ALGORITHM ML MODEL (predictor) PREDICTED CATEGORIES pain structure . . . no progression + 7/31 builds computational models from input examples, and uses them to predict outputs categories INPUT LEARNING OUTPUT
  • 9. Input data 0 1 2 3 4 5 6 7 8 inclusion ΔJSW ΔJSW patient periods Progression periods duration: 2+ years ACR clinical criteria satisfied at inclusion 8/31
  • 10. Output categories Structure periods minimum total JSW, must decrease by at least 0.3mm per year Pain periods must experience progressive or intense sustained pain pain increase must be at least 5 WOMAC points per year pain at the follow-up must be significant (≥ 40 WOMAC points) special exception: rapid pain progression (≥ 10 points per year) 9/31
  • 11. Output categories Structure periods minimum total JSW, must decrease by at least 0.3mm per year Pain periods must experience progressive or intense sustained pain pain increase must be at least 5 WOMAC points per year pain at the follow-up must be significant ( ≥ 40 WOMAC points) special exception: rapid pain progression ( ≥ 10 points per year) Predicted categories N: non-progressors P: increased or stable pain S: structural progression P+S: both 9/31
  • 12. Outline 1 Introduction 2 Machine learning 3 Recruitment design Cross-cohort harmonisation Patient selection Screening stage 4 Recruitment in practice 5 Summary 10/31
  • 13. Learning strategies balanced random subsets (20% of the examples) full imbalance set (63% N, 12% P,20% S, 5%P+S) Data preprocessing precise attribute type nominal (left, right) ordinal (l0w, medium, high) continuous (1.2, 2.4, 3.7) missing values imputation Classification algorithms single model (LR, k-NN, SVC, RF) 4 sub-models (one vs. rest) 2 sub-models (per label: P | S) 11/31
  • 14. 11/31 Learning strategies balanced random subsets (20% of the examples) full imbalance set (63% N, 12% P,20% S, 5%P+S) Data preprocessing precise attribute type nominal (left, right) ordinal (l0w, medium, high) continuous (1.2, 2.4, 3.7) missing values imputation Classification algorithms single model (LR, k-NN, SVC, RF) 4 sub-models (one vs. rest) 2 sub-models (per label: P | S)
  • 15. Learning strategies balanced random subsets (20% of the examples) full imbalance set (63% N, 12% P,20% S, 5%P+S) Data preprocessing precise attribute type nominal (left, right) ordinal (l0w, medium, high) continuous (1.2, 2.4, 3.7) missing values imputation Classification algorithms single model (LR, k-NN, SVC, RF) 4 sub-models (one vs. rest) 2 sub-models (per label: P | S) 11/31
  • 16. Validation 10 repeats of 10-fold cross-validation (CV) 25 models trained per fold median model score from the median CV-repeat 10-fold CV — training vs. test fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 .. . .. . .. . . . . fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 CV repeats — randomised partitions CV 1 CV 2 .. . CV 10 model 1 model 1 model 1 model 2 model 2 model 2 . . . . . . . . . model 25 model 25 model 25 12/31
  • 17. 12/31 Validation 10 repeats of 10-fold cross-validation (CV) 25 models trained per fold median model score from the median CV-repeat 10-fold CV — training vs. test fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 .. . .. . .. . . . . fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 CV repeats — randomised partitions CV 1 CV 2 .. . CV 10 model 1 model 1 model 1 model 2 model 2 model 2 . . . . . . . . . model 25 model 25 model 25
  • 18. Validation 10 repeats of 10-fold cross-validation (CV) 25 models trained per fold median model score from the median CV-repeat 10-fold CV — training vs. test fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 .. . .. . .. . . . . fold 1 fold 2 . . . fold 9 fold 10 fold 1 fold 2 . . . fold 9 fold 10 CV repeats — randomised partitions CV 1 CV 2 .. . CV 10 model 1 model 1 model 1 model 2 model 2 model 2 . . . . . . . . . model 25 model 25 model 25 12/31
  • 19. Model performance FPR (probability of falsealarm) 1.0 TPR(probabilityofdetection) AUC = 0.81 P FPR (probability of falsealarm) 0.8 0.6 0.4 0.2 0.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0. 6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 AUC = 0.69 13/31 S
  • 20. A look inside the models P S SHAP TreeExplainer [Lundberg et al., 2018][Lundberg and Lee, 2017] 14/31
  • 21. Outline 1 Introduction 2 Machine learning 3 Recruitment design Cross-cohort harmonisation Patient selection Screening stage 4 Recruitment in practice 5 Summary 15/31
  • 22. Challenges arising from the data differences in collected data differences in visits timing decisions on out-dated information 1 cohorts other than CHECK cannot be used in model training (not enough data to define progression) 2 the date of last visit differs across cohorts and patients 3 model prediction confidence gets worse for older data 16/31
  • 23. Harmonisation to CHECK CHECK training periods patients HOSTAS H O S T A S Harmonisation semantic processing common data concepts mapping between the concepts syntactic processing data transformation 17/31
  • 24. Baseline shift 2017 20192014 last visit baseline shift progression APPROACH lifespan Model training using harmonised CHECK periods baseline shift of 0, 2, 3 and 5 years Consequences need to train separate model for each cohort and each shift 18/31
  • 25. Baseline shift 2017 20192014 last visit baseline shift progression APPROACH lifespan Model training using harmonised CHECK periods baseline shift of 0, 2, 3 and 5 years Consequences need to train separate model for each cohort and each shift 18/31
  • 26. Multi-model prediction MUST MODEL 5 years shift id1 | p1(S) | p1(P) | score1 id2 | p2(S) | p2(P) | score2 . . . idN | pN(S) | pN(P) | scoreN RANKINGPATIENTS DATA PREDICTION MUST 2011 2012 2013 HOSTAS 2011 2012 2013 2014 2015 MUST MODEL 3 years shift HOSTAS MODEL 5 years shift HOSTAS MODEL 3 years shift HOSTAS MODEL 2 years shift id1 | p1(S) | p1(P) | score1 id2 | p2(S) | p2(P) | score2 . . . idN | pN(S) | pN(P) | scoreN 19/31
  • 27. Ranking based on model confidence patient 1 patient 2 patient N probabilities P S 0.823 0.466 0.839 0.447 0.679 0.586 0.728 0.528 0.801 0.454 ranking of patients MACHINE LEARNING MODEL the ML model is composed of two sub-models, separately predicting pain (P) and structure (S) related progression the outcome of the model is per patient probability of becoming an OA progressor the probabilities are used to rank the patients top patients in the ranking are more likely to progress 20/31
  • 28. Example of combined ranking Top 16 Bottom 16 ID P S year score ID P S year score 249 0.703 0.238 2013 0.617390 78 0.062 0.221 2011 0.150398 389 0.583 0.226 2012 0.477706 241 0.074 0.209 2011 0.150398 626 0.493 0.232 2013 0.475673 583 0.061 0.193 2012 0.149984 370 0.588 0.242 2011 0.441096 447 0.076 0.177 2012 0.149394 461 0.616 0.122 2012 0.435782 297 0.110 0.168 2011 0.147741 450 0.539 0.182 2012 0.425743 242 0.050 0.227 2011 0.147209 597 0.529 0.185 2012 0.421610 551 0.050 0.197 2012 0.145851 546 0.532 0.181 2012 0.421019 268 0.046 0.226 2011 0.144552 532 0.565 0.145 2012 0.419248 368 0.082 0.159 2012 0.142308 92 0.555 0.224 2011 0.413993 250 0.058 0.204 2011 0.139238 376 0.499 0.192 2012 0.408029 569 0.079 0.152 2012 0.136403 385 0.530 0.158 2012 0.406257 599 0.077 0.130 2013 0.135813 397 0.510 0.178 2012 0.406257 307 0.084 0.166 2011 0.132860 505 0.470 0.214 2012 0.403895 69 0.047 0.197 2011 0.129672 484 0.520 0.157 2012 0.399762 548 0.065 0.178 2011 0.129140 177 0.436 0.240 2012 0.399171 302 0.072 0.143 2011 0.114260 MUST 2011 260 2012 254 2013 25 when combining rankings, models using older data are trusted less 21/31
  • 29. Example of combined ranking Top 16 Bottom 16 ID P S year score ID P S year score 249 0.703 0.238 2013 0.617390 78 0.062 0.221 2011 0.150398 389 0.583 0.226 2012 0.477706 241 0.074 0.209 2011 0.150398 626 0.493 0.232 2013 0.475673 583 0.061 0.193 2012 0.149984 370 0.588 0.242 2011 0.441096 447 0.076 0.177 2012 0.149394 461 0.616 0.122 2012 0.435782 297 0.110 0.168 2011 0.147741 450 0.539 0.182 2012 0.425743 242 0.050 0.227 2011 0.147209 597 0.529 0.185 2012 0.421610 551 0.050 0.197 2012 0.145851 546 0.532 0.181 2012 0.421019 268 0.046 0.226 2011 0.144552 532 0.565 0.145 2012 0.419248 368 0.082 0.159 2012 0.142308 92 0.555 0.224 2011 0.413993 250 0.058 0.204 2011 0.139238 376 0.499 0.192 2012 0.408029 569 0.079 0.152 2012 0.136403 385 0.530 0.158 2012 0.406257 599 0.077 0.130 2013 0.135813 397 0.510 0.178 2012 0.406257 307 0.084 0.166 2011 0.132860 505 0.470 0.214 2012 0.403895 69 0.047 0.197 2011 0.129672 484 0.520 0.157 2012 0.399762 548 0.065 0.178 2011 0.129140 177 0.436 0.240 2012 0.399171 302 0.072 0.143 2011 0.114260 MUST 2011 260 2012 254 2013 25 when combining rankings, models using older data are trusted less 21/31
  • 30. Two-stage recruitment process new patients CHECK cohort 1 cohort 4 selection criteria ML model 1 ML model 4 ML model 0 screening ML model M E A S U R E M E N T S APPROACH cohort SELECTION SCREENING H H 22/31
  • 31. 23/31 What we expect? enrol 75% of screened patients (the most likely to progress) Screening model attributes basic: age, sex, BMI pain intensity: KOOS, NRS KIDA: bone density, eminence height, joint space width, varus angle, osteophyte area prediction model N only P only S P + S uninformed selection 60% 13% 21% 6% screening model (top 150 patients) 29% 30% 18% 23% selection best (CHECK 2y shift, top 150) 35% 31% 21% 14% selection worst (MUST 5y shift, top 60) 55% 32% 7% 7% *(optimistic estimate on CHECK data)
  • 32. 23/31 What we expect? enrol 75% of screened patients (the most likely to progress) Screening model attributes basic: age, sex, BMI pain intensity: KOOS, NRS KIDA: bone density, eminence height, joint space width, varus angle, osteophyte area prediction model N only P only S P + S uninformed selection 60% 13% 21% 6% screening model (top 150 patients) 29% 30% 18% 23% selection best (CHECK 2y shift, top 150) 35% 31% 21% 14% selection worst (MUST 5y shift, top 60) 55% 32% 7% 7% *(optimistic estimate on CHECK data)
  • 33. Outline 1 Introduction 2 Machine learning 3 Recruitment design Cross-cohort harmonisation Patient selection Screening stage 4 Recruitment in practice 5 Summary 24/31
  • 34. Why we use ranking? SERGAS 02 SERGAS 03 SERGAS 01 threshold YES NO NO Case-by-case enrolment requires an acceptance threshold defined up-front Ranking-based enrolment given enough patients in the initial ranking, decisions for next patients are easier 25/31
  • 35. Why we use ranking? SERGAS 02 SERGAS 03 SERGAS 01 APPROACH NO YES YES YES NO YES YES YESLUMC 03 UMCU 02 APHP 02 UMCU 04 LUMC 01 APHP 01 UMCU 03 LUMC 04 APHP 04 UMCU 01 LUMC 02 APHP 03 NO YES YES YES NO YES ? Case-by-case enrolment requires an acceptance threshold defined up-front Ranking-based enrolment given enough patients in the initial ranking, decisions for next patients are easier 25/31
  • 36. Recruitment data flow Utrecht Processing server (Lygature) SCREENING clinical data knee X-ray Oslo A Coruña Leiden Paris eCRF (Servier) KIDA analysis (UMCU) TranSMART (TraiT) Predictor (NU) scores & decisions 26/31 ranking (NU) XNAT (Lygature)
  • 37. Decision support and progress monitoring 27/31
  • 38. Outline 1 Introduction 2 Machine learning 3 Recruitment design Cross-cohort harmonisation Patient selection Screening stage 4 Recruitment in practice 5 Summary 28/31
  • 39. Summary Highlights CHECK data used as a proxy for training ML models for all cohorts two-phase recruitment based on ML model predictions multi-model selection from data of variable age screening visit to make enrolment decisions on up-to-date data patients ranking instead of individual decisions (choice in context) web application for decision support and progress monitoring 29/31
  • 40. Acknowledgement and disclaimer Acknowledgement The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant Agreement no. 115770, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. See: https://www.imi.eur0pa.eu. Disclaimer This communication reflects the views of the APPROACH consortium and neither IMI nor the European Union and EFPIA are liable for any use that may be made of the information contained herein. 30/31
  • 41. References Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2018). Consistent individualized feature attribution for tree ensembles. Computing Research Repository, arXiv:1802.03888v2. Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems (NIPS 2017), pages 4765–4774, Long Beach, CA, USA. 31/31
  • 43. Ranking functions sum score = P + S scaled sum score = P max(P) + S max(S) z-score sum score = P − µP + S − µS σP σS P S score P S score P S score 0.782 0.544 1.326 0.782 0.544 1.798 0.707 0.597 4.6 0.724 0.584 1.308 0.707 0.597 1.791 0.724 0.584 4.555 ... ... ... ... ... ... ... ... ... 0.112 0.175 0.287 0.112 0.175 0.41 0.106 0.179 -3.819 0.106 0.179 0.285 0.106 0.179 0.409 0.112 0.175 -3.828 Key findings sum of z-scores — best for selection without shift simple sum — best for selection with large shift (≥ 3years) 2/2