SlideShare a Scribd company logo
1 of 25
CHAPTER 7
Transmission Media
CECS 474 Computer Network Interoperability
Notes for Douglas E. Comer, Computer Networks and Internets (5th Edition)
Tracy Bradley Maples, Ph.D.
Computer Engineering & Computer Science
Cal ifornia State University, Long Beach
Transmission Media
All computer communication involves encoding data in a form of energy, and
sending the energy across a transmission medium (i.e., the network links).
Guided and Unguided Media
Links can be categorized by the type of path used:
• Guided Media: communication follows an exact path (such as a wire)
• Unguided Media: communication follows no specific path (such as a
radio transmission)
Forms of Energy
Links can be categorized by the type of energy used for transmission:
• Electrical Energy is used on wires
• Radio Frequency Transmission is used for wireless
• Light is used for optical fibers and lazers
Taxonomy by Forms of Energy
Characteristics of links
Links can be implemented on a variety of different physical media.
Links propagate signals.
When transmitting electrical signals over a transmission line, attenuation (the
signals get smaller) and distortion (the signals get misshapen) occur.
The extent of attenuation and distortion is based on:
• the type of transmission medium
• the bit rate of the data being transmitted
• the distance between the two transmitting devices
Electrical energy always flows along a complete circuit so two wires are
needed.
Background Radiation and Electrical Noise
Three important facts about wiring:
1. Noise (also called random electromagnetic radiation) permeates the
environment.
• Even communication systems generate minor amounts of electrical
noise as a side-effect of normal operation.
2. Noise can interfere with signals used for communication
• When it hits metal, electromagnetic radiation produces a small signal
3. Because it absorbs radiation, metal acts as a shield preventing noise from
reaching the wiring
• Thus, placing enough metal between a source of noise and a
communication medium can prevent noise from interfering
Copper Wire
Example 1: Twisted pair lines
A pair of wires are twisted together (signal wire and ground reference wire).
Multiple twisted pairs can be enclosed within the same cable.
Shielded twisted pairs (STP) are also used to reduce the effects of interference.
• Cat-5 is suitable for 10 - 100 Mbps for short distances (< 100m)
• In telephone networks, unshielded twisted pairs (UTP) are extensively used
with sophisticated driver and receiver circuits yielding higher bps over
longer distances
• Suffer from "skin effect" (i.e., the current of the wires flows only on the
outer surface of the wire). Result: Increases electrical resistance at higher
frequencies
When two wires run in parallel:
• there is a high probability that
one of them is closer to the
source of electromagnetic
radiation than the other
• one wire tends to act as a shield
that absorbs some of the
electromagnetic radiation
• thus, the second wire receives
less energy.
Example: In the figure, a total of 32 units of radiation strikes in each case.
In (a): the top wire absorbs 20 units, and the bottom wire absorbs 12, producing a
difference of 8
In (b): each of the two wires is on top one-half of the time, which means that each
wire absorbs the same amount of radiation
Why is Twisted Pair “twisted”?
Types of Twisted Pair
One variation is known as shielded twisted pair (STP)
• The cable has a thinner, more flexible metal shield surrounding one or
more twisted pairs of wires.
• In most versions of STP cable, the shield consists of metal foil, similar to
the aluminum foil used in a kitchen.
Example 2: Coaxial cable
Coaxial cable reduces "skin effect”
The shield in a coaxial cable forms a flexible cylinder around the inner wire
that provides a barrier to electromagnetic radiation from any direction
The barrier also prevents signals on the inner wire from radiating
electromagnetic energy
ThinNet: Supports 10-100 Mbps over ~200 meters
ThickNet: Supports 10-100 Mbps over ~500 meters
Glass Fibers (or Optical Fibers)
Optical fiber:
• carries the transmitted information as a fluctuating beam of light
• is immune to electromagnetic interference and crosstalk
• is good for security, because it is difficult to tap an optical fiber cable
• supports transmission rates of hundreds of megabits per second over
several kilometers.
Components:
• Single glass fiber for each signal
• Optical transmitter (light-emitting diode (LED) or injection diode (ILD))
converts from electrical signals to a light signal
• Optical Receiver (photodiode or photo transistor) converts from light
signals to electrical
Types of Optical Fiber
Multimode stepped index
• Cladding and core each have a
different but uniform refractive
index
• Signal has a wider pulse width =>
modest bit rates
Multimode graded index
• Core material has a variable
refractive index
• Light is refracted by an increasing
amount as it moves away from the
core => narrows pulse width
Monomode
• Reduces core diameter to that of a
single wavelength (3-10
micrometers)
• Light propagates along a single path
=> width of output signal = width of
input signal
Comparing Copper Wiring and Fiber
Radio
A network that uses electromagnetic radio waves is said to operate at radio
frequency. The transmissions are referred to as RF transmissions.
The lower frequency radio transmission can be used to replace fixed wire links.
Data rates are typically in the tens of kbps to hundreds of Mbps.
Electromagnetic (Radio) Spectrum
As the figure below shows:
• one part of the spectrum corresponds to infrared light described above
• the spectrum used for RF communications spans frequencies from
approximately 3 KHz to 300 GHz
• it includes frequencies allocated to radio and television broadcast as well as
satellite and microwave communications
Satellites
Satellites transmit data as electromagnetic (radio) waves through free space.
• A satellite contains a transponder that consists of a radio receiver and
transmitter.
• A transponder (covering a
particular range of frequencies)
receives the signal and
retransmits it
• A single satellite usually
contains 6-12 transponders
that operate independently.
• Each transponder uses a
different frequency
(or channel).
Geosynchronous (or Geostationary) Satellites
• Geosynchronous (or geostationary) satellites are placed in an orbit that is
synchronized with the earth’s rotation.
• From Geostationary Earth Orbit (GEO) a satellite appears to remain in
exactly the same point in the sky.
• GEO is approximately
36,000 kilometers or
20,000 miles from earth.
• GEO satellites are
sometimes called
“high earth orbit” satellites.
• A maximum of 45-90
satellites can be in GEO
to avoid interference with
each other.
Geosynchronous (or Geostationary) Satellites (cont’d)
How many GEO communication satellites are possible?
There is a limited amount of “space” available in the geosynchronous orbit above
the equator…
• Because communication satellites using a given frequency must be separated
from one another to avoid interference.
• The minimum separation depends on the power of the transmitters (but may
require an angular separation of between 4 and 8 degrees).
• As technology evolves, it is possible to allocate more satellites in orbit.
What is the minimum number of satellites
needed to cover the earth? Three
Consider the figure, which illustrates
three GEO satellites positioned around
the equator with 120 degree separation
In the figure, the size of the earth
and the distance of the satellites are
drawn to scale
Low Earth Orbit Satellites
Low Earth Orbit (LEO) satellites orbit at 200-400 miles above earth.
• Their period of rotation is very fast (e.g., an orbit can be completed in ~1.5
hours).
• A LEO satellite can only be used by ground stations when its orbit passes
overhead.
• Ground stations must continually be changed to point at the satellite.
• These satellites are cheaper but they wear out more quickly (run out of fuel).
Low Earth Orbit Satellite Arrays
In this scheme, a set of satellites is arranged so that each point on the ground has
at least one satellite overhead at all times.
• This requires sophisticated communication between the satellites.
• 66 satellites are required to provide service over the entire earth.
Example: The failed Iridium Project
Satellite Summary
Microwave
Microwave transmissions are electromagnetic radiation beyond the frequency
range (i.e., a higher range) used for radio and TV.
Microwaves can be aimed in a single direction.
• helps prevent interception
• can not go through metal
• can carry more information than lower frequency RF
Infrared
Example: Remote controls for TVs, VCRs, etc.
Infrared communication:
• is good for a single room
• must point at the receiver
• is cheap
• needs no antennae
• can be used to set-up a computer network in a single room
Light from a Laser
Light from a laser can be transmitted through the air (not just through fiber
optics) to send information.
The laser beam must be sent in a straight line between the transmitter and the
receiver (e.g., point-to-point).
Laser beams cannot penetrate snow, fog, vegetation, etc.
Our Goal
In networking, we are interested in the number of bits we can successfully
transmit per second (or bps) across the network.
The bps is dependent on the type of transmission medium used.
Digital Throughput vs. Bandwidth
The relationship between digital throughput and bandwidth is given by:
Nyquist's Theorem:
D = 2 B log2 K
where:
• D is the maximum data rate
• B is the hardware bandwidth
• K is the number of values used to encode the data
Example 1: RS-232
K = 2, because RS-232 only uses two values, +15 or -15 volts.
D = 2 B log2 2 = 2 B
Example 2: Phase-shift Encoding
Suppose K = 8 (the number of possible shifts)
D = 2 B log2 8 = 2 B * 3 = 6 B
The Reality of Nyquist’s Theorem
Physics tells us that real systems emit and absorb energy and
any unwanted energy is called noise.
In Nyquist's Theorem, a noise-free system is assumed.
Nyquist's Theorem only works in theory.
We turn to Shannon's Theorem to correct for noise.
Digital Throughput vs. Bandwidth (Again)
The real relationship (with noise accounted for) between digital throughput and
bandwidth is given by:
Shannon's Theorem:
C = B log2 (1 + S/N)
where:
• C is the effective channel capacity in bits per second
• B is the hardware bandwidth
• S is the average power (signal)
• N is the noise
• S/N is the signal-to-noise ratio
Example: Conventional Telephone System
• Engineered for voice
• Bandwidth is 3000 Hz
• Signal-to-noise ratio is approximately 1000
• Effective capacity =
3000 log2 (1 + 1000) = ~ 30,000 bps
Thus, based on Shannon’s Theorem:
Dialup modems have little hope of exceeding 28.8 Kbps
But???:
In the late 1990’s 56 kbit modems were created.
Conclusions
Nyquist's Theorem means that finding a way to encode more bits per cycle
improves the data rate.
Shannon's Theorem means that no amount of clever engineering can
overcome the fundamental physical limits of a real transmission system.

More Related Content

Similar to 474-Ch7-TransmissionMedia.pptx

Lecture .06 media
Lecture .06 mediaLecture .06 media
Lecture .06 mediaAsim khan
 
Transmission Media and Switching.pdf
Transmission Media and Switching.pdfTransmission Media and Switching.pdf
Transmission Media and Switching.pdfHemantBansal35
 
Data Transmission Media
Data Transmission MediaData Transmission Media
Data Transmission MediaA. S. M. Shafi
 
transmission media_final.pdf
transmission media_final.pdftransmission media_final.pdf
transmission media_final.pdfPoonamDahiya20
 
Transmission media.pptx
Transmission media.pptxTransmission media.pptx
Transmission media.pptxaakritii765
 
Lecture3 Physical Layer
Lecture3 Physical LayerLecture3 Physical Layer
Lecture3 Physical LayerWaqas !!!!
 
Presentation on Transmission Media
Presentation on Transmission MediaPresentation on Transmission Media
Presentation on Transmission MediaSyed Ahmed Zaki
 
Mobile Computing
Mobile Computing Mobile Computing
Mobile Computing Ramesh Babu
 
Comm. and data communication
Comm. and data communicationComm. and data communication
Comm. and data communicationdeterminant342
 
The transmission media
The transmission mediaThe transmission media
The transmission mediaAmit Chaudhary
 
Transmission media and communication protocols
Transmission media and communication protocolsTransmission media and communication protocols
Transmission media and communication protocolsRichard M Pradeep
 
Dcn data link_layer
Dcn data link_layerDcn data link_layer
Dcn data link_layermangal das
 
Mobile Computing UNIT-I TO III
Mobile Computing UNIT-I TO IIIMobile Computing UNIT-I TO III
Mobile Computing UNIT-I TO IIIRamesh Babu
 
CN R16 -UNIT-2.pdf
CN R16 -UNIT-2.pdfCN R16 -UNIT-2.pdf
CN R16 -UNIT-2.pdfJoshuaeeda1
 
Transmission media
Transmission mediaTransmission media
Transmission mediaextraganesh
 

Similar to 474-Ch7-TransmissionMedia.pptx (20)

Lecture .06 media
Lecture .06 mediaLecture .06 media
Lecture .06 media
 
Transmission Media and Switching.pdf
Transmission Media and Switching.pdfTransmission Media and Switching.pdf
Transmission Media and Switching.pdf
 
Data Transmission Media
Data Transmission MediaData Transmission Media
Data Transmission Media
 
transmission media_final.pdf
transmission media_final.pdftransmission media_final.pdf
transmission media_final.pdf
 
Transmission media.pptx
Transmission media.pptxTransmission media.pptx
Transmission media.pptx
 
Media
MediaMedia
Media
 
Lecture3 Physical Layer
Lecture3 Physical LayerLecture3 Physical Layer
Lecture3 Physical Layer
 
Presentation on Transmission Media
Presentation on Transmission MediaPresentation on Transmission Media
Presentation on Transmission Media
 
Mobile Computing
Mobile Computing Mobile Computing
Mobile Computing
 
Comm. and data communication
Comm. and data communicationComm. and data communication
Comm. and data communication
 
Lec transmission line
Lec transmission lineLec transmission line
Lec transmission line
 
The transmission media
The transmission mediaThe transmission media
The transmission media
 
Rothman
RothmanRothman
Rothman
 
Rothmans
RothmansRothmans
Rothmans
 
Transmission media and communication protocols
Transmission media and communication protocolsTransmission media and communication protocols
Transmission media and communication protocols
 
Cn lec-02
Cn lec-02Cn lec-02
Cn lec-02
 
Dcn data link_layer
Dcn data link_layerDcn data link_layer
Dcn data link_layer
 
Mobile Computing UNIT-I TO III
Mobile Computing UNIT-I TO IIIMobile Computing UNIT-I TO III
Mobile Computing UNIT-I TO III
 
CN R16 -UNIT-2.pdf
CN R16 -UNIT-2.pdfCN R16 -UNIT-2.pdf
CN R16 -UNIT-2.pdf
 
Transmission media
Transmission mediaTransmission media
Transmission media
 

Recently uploaded

Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...MyIntelliSource, Inc.
 
Unveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time ApplicationsUnveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time ApplicationsAlberto González Trastoy
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...MyIntelliSource, Inc.
 
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️Delhi Call girls
 
Clustering techniques data mining book ....
Clustering techniques data mining book ....Clustering techniques data mining book ....
Clustering techniques data mining book ....ShaimaaMohamedGalal
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsJhone kinadey
 
Test Automation Strategy for Frontend and Backend
Test Automation Strategy for Frontend and BackendTest Automation Strategy for Frontend and Backend
Test Automation Strategy for Frontend and BackendArshad QA
 
Diamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionDiamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionSolGuruz
 
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfThe Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfkalichargn70th171
 
How To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsHow To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsAndolasoft Inc
 
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️anilsa9823
 
Unlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language ModelsUnlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language Modelsaagamshah0812
 
Active Directory Penetration Testing, cionsystems.com.pdf
Active Directory Penetration Testing, cionsystems.com.pdfActive Directory Penetration Testing, cionsystems.com.pdf
Active Directory Penetration Testing, cionsystems.com.pdfCionsystems
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about usDynamic Netsoft
 
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...gurkirankumar98700
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdfWave PLM
 
why an Opensea Clone Script might be your perfect match.pdf
why an Opensea Clone Script might be your perfect match.pdfwhy an Opensea Clone Script might be your perfect match.pdf
why an Opensea Clone Script might be your perfect match.pdfjoe51371421
 

Recently uploaded (20)

Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Unveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time ApplicationsUnveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
 
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
call girls in Vaishali (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝✔️✔️
 
Clustering techniques data mining book ....
Clustering techniques data mining book ....Clustering techniques data mining book ....
Clustering techniques data mining book ....
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial Goals
 
Test Automation Strategy for Frontend and Backend
Test Automation Strategy for Frontend and BackendTest Automation Strategy for Frontend and Backend
Test Automation Strategy for Frontend and Backend
 
Diamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionDiamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with Precision
 
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfThe Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
 
Call Girls In Mukherjee Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
Call Girls In Mukherjee Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...Call Girls In Mukherjee Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
Call Girls In Mukherjee Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
 
How To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsHow To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.js
 
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
 
Microsoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdfMicrosoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdf
 
Unlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language ModelsUnlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language Models
 
Active Directory Penetration Testing, cionsystems.com.pdf
Active Directory Penetration Testing, cionsystems.com.pdfActive Directory Penetration Testing, cionsystems.com.pdf
Active Directory Penetration Testing, cionsystems.com.pdf
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about us
 
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...
(Genuine) Escort Service Lucknow | Starting ₹,5K To @25k with A/C 🧑🏽‍❤️‍🧑🏻 89...
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf
 
why an Opensea Clone Script might be your perfect match.pdf
why an Opensea Clone Script might be your perfect match.pdfwhy an Opensea Clone Script might be your perfect match.pdf
why an Opensea Clone Script might be your perfect match.pdf
 

474-Ch7-TransmissionMedia.pptx

  • 1. CHAPTER 7 Transmission Media CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5th Edition) Tracy Bradley Maples, Ph.D. Computer Engineering & Computer Science Cal ifornia State University, Long Beach
  • 2. Transmission Media All computer communication involves encoding data in a form of energy, and sending the energy across a transmission medium (i.e., the network links). Guided and Unguided Media Links can be categorized by the type of path used: • Guided Media: communication follows an exact path (such as a wire) • Unguided Media: communication follows no specific path (such as a radio transmission) Forms of Energy Links can be categorized by the type of energy used for transmission: • Electrical Energy is used on wires • Radio Frequency Transmission is used for wireless • Light is used for optical fibers and lazers
  • 3. Taxonomy by Forms of Energy
  • 4. Characteristics of links Links can be implemented on a variety of different physical media. Links propagate signals. When transmitting electrical signals over a transmission line, attenuation (the signals get smaller) and distortion (the signals get misshapen) occur. The extent of attenuation and distortion is based on: • the type of transmission medium • the bit rate of the data being transmitted • the distance between the two transmitting devices Electrical energy always flows along a complete circuit so two wires are needed.
  • 5. Background Radiation and Electrical Noise Three important facts about wiring: 1. Noise (also called random electromagnetic radiation) permeates the environment. • Even communication systems generate minor amounts of electrical noise as a side-effect of normal operation. 2. Noise can interfere with signals used for communication • When it hits metal, electromagnetic radiation produces a small signal 3. Because it absorbs radiation, metal acts as a shield preventing noise from reaching the wiring • Thus, placing enough metal between a source of noise and a communication medium can prevent noise from interfering
  • 6. Copper Wire Example 1: Twisted pair lines A pair of wires are twisted together (signal wire and ground reference wire). Multiple twisted pairs can be enclosed within the same cable. Shielded twisted pairs (STP) are also used to reduce the effects of interference. • Cat-5 is suitable for 10 - 100 Mbps for short distances (< 100m) • In telephone networks, unshielded twisted pairs (UTP) are extensively used with sophisticated driver and receiver circuits yielding higher bps over longer distances • Suffer from "skin effect" (i.e., the current of the wires flows only on the outer surface of the wire). Result: Increases electrical resistance at higher frequencies
  • 7. When two wires run in parallel: • there is a high probability that one of them is closer to the source of electromagnetic radiation than the other • one wire tends to act as a shield that absorbs some of the electromagnetic radiation • thus, the second wire receives less energy. Example: In the figure, a total of 32 units of radiation strikes in each case. In (a): the top wire absorbs 20 units, and the bottom wire absorbs 12, producing a difference of 8 In (b): each of the two wires is on top one-half of the time, which means that each wire absorbs the same amount of radiation Why is Twisted Pair “twisted”?
  • 8. Types of Twisted Pair One variation is known as shielded twisted pair (STP) • The cable has a thinner, more flexible metal shield surrounding one or more twisted pairs of wires. • In most versions of STP cable, the shield consists of metal foil, similar to the aluminum foil used in a kitchen.
  • 9. Example 2: Coaxial cable Coaxial cable reduces "skin effect” The shield in a coaxial cable forms a flexible cylinder around the inner wire that provides a barrier to electromagnetic radiation from any direction The barrier also prevents signals on the inner wire from radiating electromagnetic energy ThinNet: Supports 10-100 Mbps over ~200 meters ThickNet: Supports 10-100 Mbps over ~500 meters
  • 10. Glass Fibers (or Optical Fibers) Optical fiber: • carries the transmitted information as a fluctuating beam of light • is immune to electromagnetic interference and crosstalk • is good for security, because it is difficult to tap an optical fiber cable • supports transmission rates of hundreds of megabits per second over several kilometers. Components: • Single glass fiber for each signal • Optical transmitter (light-emitting diode (LED) or injection diode (ILD)) converts from electrical signals to a light signal • Optical Receiver (photodiode or photo transistor) converts from light signals to electrical
  • 11. Types of Optical Fiber Multimode stepped index • Cladding and core each have a different but uniform refractive index • Signal has a wider pulse width => modest bit rates Multimode graded index • Core material has a variable refractive index • Light is refracted by an increasing amount as it moves away from the core => narrows pulse width Monomode • Reduces core diameter to that of a single wavelength (3-10 micrometers) • Light propagates along a single path => width of output signal = width of input signal
  • 13. Radio A network that uses electromagnetic radio waves is said to operate at radio frequency. The transmissions are referred to as RF transmissions. The lower frequency radio transmission can be used to replace fixed wire links. Data rates are typically in the tens of kbps to hundreds of Mbps. Electromagnetic (Radio) Spectrum As the figure below shows: • one part of the spectrum corresponds to infrared light described above • the spectrum used for RF communications spans frequencies from approximately 3 KHz to 300 GHz • it includes frequencies allocated to radio and television broadcast as well as satellite and microwave communications
  • 14. Satellites Satellites transmit data as electromagnetic (radio) waves through free space. • A satellite contains a transponder that consists of a radio receiver and transmitter. • A transponder (covering a particular range of frequencies) receives the signal and retransmits it • A single satellite usually contains 6-12 transponders that operate independently. • Each transponder uses a different frequency (or channel).
  • 15. Geosynchronous (or Geostationary) Satellites • Geosynchronous (or geostationary) satellites are placed in an orbit that is synchronized with the earth’s rotation. • From Geostationary Earth Orbit (GEO) a satellite appears to remain in exactly the same point in the sky. • GEO is approximately 36,000 kilometers or 20,000 miles from earth. • GEO satellites are sometimes called “high earth orbit” satellites. • A maximum of 45-90 satellites can be in GEO to avoid interference with each other.
  • 16. Geosynchronous (or Geostationary) Satellites (cont’d) How many GEO communication satellites are possible? There is a limited amount of “space” available in the geosynchronous orbit above the equator… • Because communication satellites using a given frequency must be separated from one another to avoid interference. • The minimum separation depends on the power of the transmitters (but may require an angular separation of between 4 and 8 degrees). • As technology evolves, it is possible to allocate more satellites in orbit. What is the minimum number of satellites needed to cover the earth? Three Consider the figure, which illustrates three GEO satellites positioned around the equator with 120 degree separation In the figure, the size of the earth and the distance of the satellites are drawn to scale
  • 17. Low Earth Orbit Satellites Low Earth Orbit (LEO) satellites orbit at 200-400 miles above earth. • Their period of rotation is very fast (e.g., an orbit can be completed in ~1.5 hours). • A LEO satellite can only be used by ground stations when its orbit passes overhead. • Ground stations must continually be changed to point at the satellite. • These satellites are cheaper but they wear out more quickly (run out of fuel). Low Earth Orbit Satellite Arrays In this scheme, a set of satellites is arranged so that each point on the ground has at least one satellite overhead at all times. • This requires sophisticated communication between the satellites. • 66 satellites are required to provide service over the entire earth. Example: The failed Iridium Project
  • 19. Microwave Microwave transmissions are electromagnetic radiation beyond the frequency range (i.e., a higher range) used for radio and TV. Microwaves can be aimed in a single direction. • helps prevent interception • can not go through metal • can carry more information than lower frequency RF Infrared Example: Remote controls for TVs, VCRs, etc. Infrared communication: • is good for a single room • must point at the receiver • is cheap • needs no antennae • can be used to set-up a computer network in a single room
  • 20. Light from a Laser Light from a laser can be transmitted through the air (not just through fiber optics) to send information. The laser beam must be sent in a straight line between the transmitter and the receiver (e.g., point-to-point). Laser beams cannot penetrate snow, fog, vegetation, etc. Our Goal In networking, we are interested in the number of bits we can successfully transmit per second (or bps) across the network. The bps is dependent on the type of transmission medium used.
  • 21. Digital Throughput vs. Bandwidth The relationship between digital throughput and bandwidth is given by: Nyquist's Theorem: D = 2 B log2 K where: • D is the maximum data rate • B is the hardware bandwidth • K is the number of values used to encode the data Example 1: RS-232 K = 2, because RS-232 only uses two values, +15 or -15 volts. D = 2 B log2 2 = 2 B Example 2: Phase-shift Encoding Suppose K = 8 (the number of possible shifts) D = 2 B log2 8 = 2 B * 3 = 6 B
  • 22. The Reality of Nyquist’s Theorem Physics tells us that real systems emit and absorb energy and any unwanted energy is called noise. In Nyquist's Theorem, a noise-free system is assumed. Nyquist's Theorem only works in theory. We turn to Shannon's Theorem to correct for noise.
  • 23. Digital Throughput vs. Bandwidth (Again) The real relationship (with noise accounted for) between digital throughput and bandwidth is given by: Shannon's Theorem: C = B log2 (1 + S/N) where: • C is the effective channel capacity in bits per second • B is the hardware bandwidth • S is the average power (signal) • N is the noise • S/N is the signal-to-noise ratio
  • 24. Example: Conventional Telephone System • Engineered for voice • Bandwidth is 3000 Hz • Signal-to-noise ratio is approximately 1000 • Effective capacity = 3000 log2 (1 + 1000) = ~ 30,000 bps Thus, based on Shannon’s Theorem: Dialup modems have little hope of exceeding 28.8 Kbps But???: In the late 1990’s 56 kbit modems were created.
  • 25. Conclusions Nyquist's Theorem means that finding a way to encode more bits per cycle improves the data rate. Shannon's Theorem means that no amount of clever engineering can overcome the fundamental physical limits of a real transmission system.