FACTORING
NOT PERFECT SQUARE TRINOMIAL
(GENERAL TRINOMIAL a = 1)
ACTIVITY I: AM I PERFECT OR NOT?
A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO
WHERE IT BELONGS.
m² + 12m + 36 16d² - 24d + 9
p² + 5p + 6 q² + q – 12
9n² + 30nd + 25d² v² + 4v – 21
121c² + 66c + 9 q² - 3q – 18
n² - 17n + 72 49g² - 84g + 36
PERFECT SQUARE
TRINOMIAL
NOT PERFECT SQUARE
TRINOMIAL
B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE
TRINOMIAL.
ACTIVITY I: AM I PERFECT OR NOT?
A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO
WHERE IT BELONGS.
PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL
m² + 12m + 36
16d² - 24d + 9
p² + 5p + 6
q² + q – 12
9n² + 30nd + 25d² v² + 4v – 21
121c² + 66c + 9 q² - 3q – 18
n² - 17n + 72
49g² - 84g + 36
ACTIVITY I: AM I PERFECT OR NOT?
PERFECT SQUARE TRINOMIAL FACTORS
B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE
TRINOMIAL.
m² + 12m + 36
16d² - 24d + 9
(m + 6)²
(4d – 3)²
9n² + 30nd + 25d² (3n + 5d)²
121c² + 66c + 9 (11c + 3)²
(7g – 6)²
49g² - 84g + 36
=
=
=
=
=
FACTORING
NOT PERFECT SQUARE TRINOMIAL
(GENERAL TRINOMIAL a = 1)
ACTIVITY I: AM I PERFECT OR NOT?
A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO
WHERE IT BELONGS.
PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL
m² + 12m + 36
16d² - 24d + 9
p² + 5p + 6
q² + q – 12
9n² + 30nd + 25d² v² + 4v – 21
121c² + 66c + 9 q² - 3q – 18
n² - 17n + 72
49g² - 84g + 36
HOW TO FACTOR GENERAL TRINOMIALS ax² +
bx + c WHERE a = 1?
NOT PERFECT SQUARE TRINOMIAL
p² + 5p + 6
q² + q – 12
v² + 4v – 21
q² - 3q – 18
n² - 17n + 72
HOW TO FACTOR GENERAL TRINOMIALS ax² +
bx + c WHERE a = 1?
EXAMPLE:
p² + 5p + 6 = ( )( )
FACTOR THE FIRST TERM
p² = p ● p
p p
FACTOR THE LAST TERM
6 1 ● 6
-1 ● -6
2 ● 3
-2 ● -3
THE SUM FACTOR THE LAST TERM
= 7
= -7
= +5
+ 2 + 3
HOW TO FACTOR GENERAL TRINOMIALS ax² +
bx + c WHERE a = 1?
EXAMPLE:
q² + q - 12 = ( )( )
FACTOR THE FIRST TERM
q² = q ● q
q q
FACTOR THE LAST TERM
-12 1 ● -12
-1 ● 12
4 ● -3
-4 ● 3
THE SUM FACTOR THE LAST TERM
= -11
= 11
= +1
+ 4 - 3
HOW TO FACTOR GENERAL TRINOMIALS ax² +
bx + c WHERE a = 1?
EXAMPLE:
v² + 4v - 21 = ( )( )
FACTOR THE FIRST TERM
v² = v ● v
v v
FACTOR THE LAST TERM
-21 -7 ● 3
7 ● -3
1 ● -21
-1 ● 21
THE SUM FACTOR THE LAST TERM
= -4
= +4
= -20
+ 7 - 3
HOW TO FACTOR GENERAL TRINOMIALS ax² +
bx + c WHERE a = 1?
EXAMPLE:
n² - 17n + 72 = ( )( )
FACTOR THE FIRST TERM
n² = n ● n
n n
FACTOR THE LAST TERM
72 8 ● 9
-8 ● -9
1 ● 72
-1 ● -72
THE SUM FACTOR THE LAST TERM
= 17
= -17
= 73
- 8 - 9
q² - 3q – 18
DRILL
1. m² + m – 90
(m-9)(m+10)
2. m² + 2m – 24
(m+6)(m-4)
3. k² - 13k + 40
(k-5)(k-8)
4. x² - x -56
(x+7)(x-8)
5. x² - 15x +50
(x-10)(x-5)
FACTOR
BINGO
GAME
Caption
FACTOR
THANK YOU FOR
LISTENING!

4. FACTORING NOT PST A=1.pptx MATHEMATICS

  • 1.
    FACTORING NOT PERFECT SQUARETRINOMIAL (GENERAL TRINOMIAL a = 1)
  • 2.
    ACTIVITY I: AMI PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36 PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL.
  • 3.
    ACTIVITY I: AMI PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36
  • 4.
    ACTIVITY I: AMI PERFECT OR NOT? PERFECT SQUARE TRINOMIAL FACTORS B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL. m² + 12m + 36 16d² - 24d + 9 (m + 6)² (4d – 3)² 9n² + 30nd + 25d² (3n + 5d)² 121c² + 66c + 9 (11c + 3)² (7g – 6)² 49g² - 84g + 36 = = = = =
  • 5.
    FACTORING NOT PERFECT SQUARETRINOMIAL (GENERAL TRINOMIAL a = 1)
  • 6.
    ACTIVITY I: AMI PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36
  • 7.
    HOW TO FACTORGENERAL TRINOMIALS ax² + bx + c WHERE a = 1? NOT PERFECT SQUARE TRINOMIAL p² + 5p + 6 q² + q – 12 v² + 4v – 21 q² - 3q – 18 n² - 17n + 72
  • 8.
    HOW TO FACTORGENERAL TRINOMIALS ax² + bx + c WHERE a = 1? EXAMPLE: p² + 5p + 6 = ( )( ) FACTOR THE FIRST TERM p² = p ● p p p FACTOR THE LAST TERM 6 1 ● 6 -1 ● -6 2 ● 3 -2 ● -3 THE SUM FACTOR THE LAST TERM = 7 = -7 = +5 + 2 + 3
  • 9.
    HOW TO FACTORGENERAL TRINOMIALS ax² + bx + c WHERE a = 1? EXAMPLE: q² + q - 12 = ( )( ) FACTOR THE FIRST TERM q² = q ● q q q FACTOR THE LAST TERM -12 1 ● -12 -1 ● 12 4 ● -3 -4 ● 3 THE SUM FACTOR THE LAST TERM = -11 = 11 = +1 + 4 - 3
  • 10.
    HOW TO FACTORGENERAL TRINOMIALS ax² + bx + c WHERE a = 1? EXAMPLE: v² + 4v - 21 = ( )( ) FACTOR THE FIRST TERM v² = v ● v v v FACTOR THE LAST TERM -21 -7 ● 3 7 ● -3 1 ● -21 -1 ● 21 THE SUM FACTOR THE LAST TERM = -4 = +4 = -20 + 7 - 3
  • 11.
    HOW TO FACTORGENERAL TRINOMIALS ax² + bx + c WHERE a = 1? EXAMPLE: n² - 17n + 72 = ( )( ) FACTOR THE FIRST TERM n² = n ● n n n FACTOR THE LAST TERM 72 8 ● 9 -8 ● -9 1 ● 72 -1 ● -72 THE SUM FACTOR THE LAST TERM = 17 = -17 = 73 - 8 - 9
  • 12.
    q² - 3q– 18
  • 13.
  • 14.
    1. m² +m – 90 (m-9)(m+10)
  • 15.
    2. m² +2m – 24 (m+6)(m-4)
  • 16.
    3. k² -13k + 40 (k-5)(k-8)
  • 17.
    4. x² -x -56 (x+7)(x-8)
  • 18.
    5. x² -15x +50 (x-10)(x-5)
  • 19.
  • 20.
  • 21.