Test setup
for virtual sensing
on mechatronic drivetrains
SBO-OptiWind open project meeting 2-12-2015
Bart Forrier
bart.forrier@kuleuven.be
Overview
1. Goal
2. Approach
3. Numerical validation
4. Experimental validation – test setup
5. Conclusions
Goal: improve mechatronic drivetrains
Energies 2014, 7(4), 2595-2630; doi:10.3390/en7042595
AC machine
nonlinear
transmission
Load
multi-physical, non-linear dynamic input
Tload
Approach: model-based virtual sensingPHYSICALVIRTUAL
Sensor data
Output
System info
Control input
Disturbance
Mechatronic drivetrain
• Multi-physical
• Nonlinear
• Motor measurements
Unscented Kalman Filter
• Nonlinear
• Unknown load
• State/input estimation
Numerical validation
1D/3D
1D
Reference model
UKF model
PHYSICALVIRTUAL
Forrier, B., Naets, F., & Desmet, W. (2015). Virtual sensing on mechatronic drivetrains using multiphysical models.
ECCOMAS Thematic Conference on Multibody Dynamics. Barcelona, Catalonia, Spain, 29 June - 2 July.
Numerical validation – results
• Noise reduction
• Input estimation
Low SNR
Measured
High SNR
Reference
Estimate
Reference
Estimate
Motor speed
Load torque
1D vs 3D
model mismatch
Measured
acceleration
Nonlinearity
Forrier, B., Naets, F., & Desmet, W. (2015). Virtual sensing on mechatronic drivetrains using multiphysical models.
ECCOMAS Thematic Conference on Multibody Dynamics. Barcelona, Catalonia, Spain, 29 June - 2 July.
v, i
(a,b,c)
ϑ,ω,α
ϑ,ω,α
T
Experimental setup
• AC induction machines
o 5,5 kW – FOC
o 18 Nm / 3000 rpm
o FOC
• Nonlinear driveline
o Cardan
o variable deflection angle
o easy replacement
• Stiff frame
Validation of load torque estimation
Model-based
state observer
Parameter
identification
Validation
RTT
Kalman-based estimation
Conclusion
Use operational information to improve mechatronic drivetrains
Obtain information by model-based virtual sensing
• Multiphysical 1D torsional model
• Combined input/state estimation
• Multiphysical measurements
Validation
• Numerical – 1D/3D reference
o Dynamic load torque estimation
• Experimental – test setup
o Design, construction, instrumentation
o Driveline dynamics & frame stiffness
o Dynamic load torque estimation
Thank you
Questions?

2015 12-02-opti wind-test-setup-validation-estimation-techniques-drivetrains-ku-leuven

  • 1.
    Test setup for virtualsensing on mechatronic drivetrains SBO-OptiWind open project meeting 2-12-2015 Bart Forrier bart.forrier@kuleuven.be
  • 2.
    Overview 1. Goal 2. Approach 3.Numerical validation 4. Experimental validation – test setup 5. Conclusions
  • 3.
    Goal: improve mechatronicdrivetrains Energies 2014, 7(4), 2595-2630; doi:10.3390/en7042595 AC machine nonlinear transmission Load multi-physical, non-linear dynamic input Tload
  • 4.
    Approach: model-based virtualsensingPHYSICALVIRTUAL Sensor data Output System info Control input Disturbance
  • 5.
    Mechatronic drivetrain • Multi-physical •Nonlinear • Motor measurements Unscented Kalman Filter • Nonlinear • Unknown load • State/input estimation Numerical validation 1D/3D 1D Reference model UKF model PHYSICALVIRTUAL Forrier, B., Naets, F., & Desmet, W. (2015). Virtual sensing on mechatronic drivetrains using multiphysical models. ECCOMAS Thematic Conference on Multibody Dynamics. Barcelona, Catalonia, Spain, 29 June - 2 July.
  • 6.
    Numerical validation –results • Noise reduction • Input estimation Low SNR Measured High SNR Reference Estimate Reference Estimate Motor speed Load torque 1D vs 3D model mismatch Measured acceleration Nonlinearity Forrier, B., Naets, F., & Desmet, W. (2015). Virtual sensing on mechatronic drivetrains using multiphysical models. ECCOMAS Thematic Conference on Multibody Dynamics. Barcelona, Catalonia, Spain, 29 June - 2 July.
  • 7.
    v, i (a,b,c) ϑ,ω,α ϑ,ω,α T Experimental setup •AC induction machines o 5,5 kW – FOC o 18 Nm / 3000 rpm o FOC • Nonlinear driveline o Cardan o variable deflection angle o easy replacement • Stiff frame
  • 8.
    Validation of loadtorque estimation Model-based state observer Parameter identification Validation RTT Kalman-based estimation
  • 9.
    Conclusion Use operational informationto improve mechatronic drivetrains Obtain information by model-based virtual sensing • Multiphysical 1D torsional model • Combined input/state estimation • Multiphysical measurements Validation • Numerical – 1D/3D reference o Dynamic load torque estimation • Experimental – test setup o Design, construction, instrumentation o Driveline dynamics & frame stiffness o Dynamic load torque estimation
  • 10.