10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
Bellwork
115
52
25
x = 81; 
y = 40.5
10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
10.6 Segments Lengths in Circles
Segments of the chord: 2 chords intersected inside the circle
Segments of Chords: If 2 chords intersect inside circle, then the
product of lengths of 1 chord = product of length of other chord
C
B
E
A
D
EA * EB = EC * ED
Proportional? 
10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
Secant Segment: contains chord and has exactly one endpoint outside circle
External Segment: part of secant that is outside circle
secant segment
external segment
tangent segment
Segments of Secants Theorem:If 2 secant segments share same endpoint outside circle,
then the product of the lengths of 1 secant segment and its external segment =
product of lengths of other secant segment and its external segment.
E
A
B
D
C
EA * EB = EC * ED
10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
Segments of Secants & Tangents Theorem: If a secant seg. & tangent seg.
share endpoint outside circle, then lengths of secant seg. * its external
segment = (length of tangent seg)2
E
C
D
A
EA2 = EC * ED
10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
10.6 Segment Lengths in Circles
HW pg. 692 #3­18
March 17, 2015
10.6 HW
pg. 692 #3‐18

10.6 notes