Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Qrs and crt final in english


Published on

  • Be the first to comment

  • Be the first to like this

Qrs and crt final in english

  1. 1. Value of the ECG before and after cardiacresynchronization therapy Sergio L. Pinski Cleveland Clinic Florida Weston, FL USA
  2. 2. Value of QRS in CRTBefore implant– Patient selection– Stimulation site selection ?After implant– Confirm biventricular capture– Predict response– Optimize programming
  3. 3. Mechanisms of CRTReduction in mechanical dyssynchronyof the LVReverse remodeling of the LVOptimization of left heart AV intervalReduction of mitral regurgitationImprovement in LV diastolic function
  4. 4. Identifying Responders In most studies, 20-30% of patients are non responders Poor patient selection: there is not enough ventricular dyssynchrony – A wide QRS (ie > 120 ms) is necessary but not sufficient to predict a positive response – Nonviable myocardium Failure to resynchronize – Electrode in non optimal position – Inadequate A-V (o V-V) delay. – Arrhythmias (rapid AF, frequent ventricular ectopy)
  5. 5. Relation between intrinsic QRS withand improvement with stimulation Kass DA, et al. Circulation 1999;99:1567
  6. 6. Forest plot of parallel-arm randomized clinical trialscomparing outcomes by strata of baseline QRS duration Bryant et al. J Electrocardiol 2013
  7. 7. Impact of QRS Duration on Clinical Event Reduction With Cardiac ResynchronizationTherapy: Meta-analysis of Randomized Controlled Trials Sipahi et al. Arch Intern Med 2011; 171:1454
  8. 8. Random-effects meta-analyses of the weighted mean difference in baseline QRS duration between responders and non-responders to CRT, using remodeling definition of response Bryant et al. J Electrocardiol 2013
  9. 9. QRS duration and morphology in consecutive pts undergoing CRT at Cleveland Clinic Ohio Dupont et al. JACC 2012; 60:592
  10. 10. Significance of QRS morphology in determining theprevalence of mechanical dyssynchrony in heartfailure patients eligible for CRT Haghjoo M et al. Europace 2008;10:566-571
  11. 11. Cumulative probability of heart failure (HF) event or death according to treatment (cardiac resynchronization therapy with defibrillator [CRT-D] versus implantable cardioverter defibrillator [ICD] only) in patients with left bundle-branch block (LBBB), non-... Zareba W et al. Circulation 2011;123:1061-1072
  12. 12. Relative risk of primary end point (heart failure event or death) by treatment (CRT-D versus ICD only) according to selected clinical characteristics in patients with or without LBBB Zareba et al. Circulation 2011;123:1061
  13. 13. QRS Axis and the Benefit of CRT in Patients with Mildly Symptomatic Heart Failure in MADIT‐ CRT Brenyo et al. J Cardiovasc Electrophysiol 2012
  14. 14. Figure 2 Sipahi et al. Amer Heart J 2012; 163:260 I:10.1016/j.ahj.2011.11.014 )
  15. 15. Bundle-Branch Block Morphology as a Predictor of OutcomeAfter CRTD in 15,000 Medicare Patients Bilchick et al. Circulation 2010;122:2022
  16. 16. Gold standard for LBBBNo pathology correlateEndocardial catheter mappingEcho doppler studies showingdelay in contraction of LV free wallvs. septum
  17. 17. Conventional definition of LBBB1. QRS duration ≥ 120 ms in adults2. Broad notched or slurred R wave in leads I, aVL, V5, and V6 and anoccasional RS pattern in V5 and V6 attributed to displaced transition of QRScomplex.3. Absent q waves in leads I, V5, and V6, but in aVL, a narrow q wave may bepresent in the absence of myocardial pathology.4. R peak time greater than 60 ms in leads V5 and V6 but normal in leads V1,V2, and V3, when small initial r waves can be discerned in the above leads.5. ST and T waves usually opposite in direction to QRS.6. Positive T wave in leads with upright QRS may be normal (positiveconcordance).7. Depressed ST segment and/or negative T wave in leads with negative QRS(negative concordance) are abnormal8. The appearance of LBBB may change the mean QRS axis in the frontalplane to the right, to the left, or to a superior, in some cases in a rate-dependent manner
  18. 18. Auricchio et al. Circulation 2004;109:1133
  19. 19. Timing of electrical activation (depolarization) wavefronts in normal conduction (A) and LBBB (B), shown in sagittal view. Strauss D G et al. Circ Arrhythm Electrophysiol 2008;1:327-336
  20. 20. Strauss et al. Am J Cardiol 2011;107:927
  21. 21. Strauss et al. Am J Cardiol 2011;107:927
  22. 22. “True” LBBBnegative terminal deflectionin V1 (QS or rS)> 140 ms in men, >130 ms inwomenMid QRS notching Strauss et al. Am J Cardiol 2011;107:927
  23. 23. Combined effects of conduction defects and hypertrophyon QRS duration. Strauss DG. J Electrocardiol 2012;45:635
  24. 24. New “gold standard” for thedefinition of LBBB High probability of improvement with CRT
  25. 25. 2004QRS 100 msAug 5, 2012QRS 121 msSep 28, 2012QRS 150 ms
  26. 26. Oct 9, 2012QRS 172 msOct 16, 2012BiVQRS 114 ms
  27. 27. ECG Criteria of True Left Bundle Branch Block: A Simple Sign to Predict a Better Clinical Response to CRT Mascioli et al. PACE 2012; 35:927
  28. 28. Patients with longer LV activation have better outcome with CRT Eitel et al. Europace 2012; 14:358
  29. 29. QRS morphology with biventricular stimulationLocation of RV electrodeLocation of wire in coronary wirePresence of fusion with intrinsicconductionV-V timing (simultaneous versussequential).Latency, exit block with epicardialpacing from coronary vein
  30. 30. Barold & Herweg. Cardiol J 2011; 18: 476
  31. 31. 9-17-20019-19-2001
  32. 32. Barold & Herweg. Cardiol J 2011; 18: 476
  33. 33. LV RVOTRVOT LV
  34. 34. LVApex
  35. 35. LVMid Septum
  36. 36. ECG Diagnosis of Biventricular Pacing in Patients with Nonapical Right Ventricular Leads Jastrzebski et al. PACE 2012; 35:1199
  37. 37. LV LVApex Apex
  38. 38. RVOT LV Apex
  39. 39. Barold & Herweg. Cardiol J 2011; 18: 610
  40. 40. Latency with LV pacing Barold & Herweg. Cardiol J 2011; 18: 610
  41. 41. Latency and slow conduction with LV pacing Barold & Herweg. Cardiol J 2011; 18: 610
  42. 42. Programming V-V timing to circumvent LV latency Herweg & Barold. PACE 2012;35:249
  43. 43. Baseline and paced QRS duration in responders and nonresponders Lecoq et al. EHJ 2005;26:1094
  44. 44. The QRS Narrowing Index Predicts Reverse LV Remodelling Following CRT Rickard et al. PACE 2011;34:604
  45. 45. QRS prolongation induced by CRTcorrelates with deterioration in LV function Rickard et al. Heart Rhythm 2012;9:1674
  46. 46. Jastrzebskiet al. Europace 2013; 15:258
  47. 47. Analysis of Ventricular Activation Using Surface ECG toPredict LV Reverse Volumetric Remodeling During CardiacResynchronization Therapy. Sweeney et al. Circulation. 121:626, 2010.
  48. 48. Strauss et al. Circ Arrhythm Electrophysiol 2008;1:327
  49. 49. Analysis of Ventricular Activation Using Surface ECG toPredict LV Reverse Volumetric Remodeling During CardiacResynchronization Therapy. Sweeney et al. Circulation. 121:626, 2010.
  50. 50. Predictors for Restoration of Normal LV Functionin Response to CRT Measured at Time of Implant Serdoz et al. Am J Cardiol 2011;108:75
  51. 51. Resolution of Left Bundle Branch Block?InducedCardiomyopathy by Cardiac Resynchronization Therapy Vaillant at al. JACC 2013
  52. 52. Optimization of the Interventricular Delay inCRT Using the QRS Width Tamborero et al. Am J Cardiol 2009; 2009;104:1407