SlideShare a Scribd company logo
1 of 9
Download to read offline
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 1/9
Federal Aviation
Administration
Fact Sheet – General Aviation Safety
For Immediate Release
April 4, 2018
Contact: Les Dorr
Phone: 202-267-3883
The Federal Aviation Administration (FAA) and industry are working on a number of
key initiatives to improve general aviation (GA) safety: the GA Joint Steering
Committee (GAJSC), Equip 2020 for ADS-B Out, new Airman Certification
Standards (ACS), streamlining aircraft certification, the Got Data? External Data
Initiative, and the Fly Safe outreach campaign on Loss of Control.
The United States has the largest and most diverse GA community in the world,
with more than 220,000 aircraft, including amateur-built aircraft, rotorcraft, balloons,
and highly sophisticated turbojets. By working together, and focusing on data driven
solutions, government and industry are making a difference to put the right
technologies, regulations, and education initiatives in place to improve safety.
The FAA’s goal is to reduce the GA fatal accident rate by 10 percent over a 10-year
period (2009-2018). Inflight loss of control – mainly stalls – accounts for the largest
number of GA fatal accidents. Although the fatal accident rate is beginning to
decline, last year (FY17) 347 people still died in 209 general aviation accidents
The FAA and industry are focused on reducing general aviation accidents by
primarily using a non-regulatory, proactive, data-driven strategy to get results
— similar to the strategy the FAA uses in commercial aviation.
Reducing Risk
Using data, the FAA and industry are working together to identify risk, pinpoint
trends through root cause analysis, and develop safety strategies. The FAA and the
GA community carry out this work through the GAJSC.
Formed in the mid-1990s, the GAJSC recently has renewed its efforts to
combat GA fatal accidents. The government and industry group uses the same
approach as the Commercial Aviation Safety Team (CAST). It uses a data-
driven, consensus-based approach to analyze safety data to develop specific
interventions that will mitigate the root causes of accidents.
Recent accomplishments include more than 39 safety enhancements, (such as
training, procedures, and technology) to address loss of control. Examples
include a streamlined policy for angle of attack (AOA) system approvals
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 2/9
(http://www.faa.gov/news/press_releases/news_story.cfm?newsId=15714) and outreach
to the GA community on loss of control topics.With powerplant system and
component failures being the third leading fatal GA accident category, the
GAJSC analyzed fatal GA accidents involving total or partial engine power
loss. The GAJSC approved and initiated implementation of ten SEs directed at
engine issues and focus on improving engine technology, aiding the pilot in
decision making post-engine failure, and improving resources available to
mechanics, as well as their education and training.
The GA JSC began its study into Controlled Flight Into Terrain (CFIT) accidents
in October 2017 and will finish its work sometime in 2018. CFIT is the second
largest risk in GA.
The GAJSC combines the expertise of many key decision makers across different
parts of the FAA, several government agencies, and stakeholder groups. The other
federal agencies are the National Aeronautics and Space Administration and the
National Transportation Safety Board (NTSB), which participates as an observer.
Industry participants include the Aircraft Owners and Pilots Association,
Experimental Aircraft Association, General Aviation Manufacturers Association,
Light Aircraft Manufacturers Association, National Business Aviation Association,
National Air Transportation Association, National Association of Flight Instructors,
Society of Aviation and Flight Educators, and the aviation insurance industry. The
European Aviation Safety Agency (EASA) also participates as an observer.
Other achievements include several web-based resource guides, information on
flying and medications, and overall GA community coordination on Loss of Control
and engine issue topics. Resources include targeted themes and articles in the FAA
Safety Briefing magazine.
The GA community and the FAA are moving toward using de-identified GA
operations data in the Aviation Safety Information Analysis and Sharing (ASIAS)
(http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=18195) program to
help identify risks before they become accidents. In March of 2014 the FAA started
a one-year project to illustrate the value, capabilities, and benefits of the ASIAS
program for the GA community. The project explored potential new information
sources such as General Aviation Flight Data Monitoring, voluntary safety reports,
manufacturer reports, and information collected from avionics and using new
common technologies such as iOS and Android personal electronic devices.
This project led to a broader expansion of GA in ASIAS. Tools are now available to
the GA community to help explore and understand their own flight data and look for
potential risks. Through this program, the FAA does not have access to any
individual pilot’s data as the system is hosted by a third party. The de-identified
aggregate data is used by the GA community through ASIAS to identify trends and
look for system risks that may need to be mitigated. Data from these programs will
be used for GA JSC initiatives and research conducted by the GA community. The
GAJSC is working with the community to incorporate their data into ASIAS so that it
may be used to identify risk.
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 3/9
New Technology
The NextGen program includes innovative technologies and procedures to make
flying safer, greener, and more efficient. In March 2015, the FAA achieved a major
milestone by completing one of the largest automation changeovers in the history of
the agency: a new high-altitude air traffic control system, known as En Route
Automation Modernization (ERAM)
(http://www.faa.gov/news/press_releases/news_story.cfm?newsId=18695) . This system will
accommodate the technologies of NextGen, giving the U.S. a more powerful air
traffic system.
The FAA is working with manufacturers to define equipage requirements and
support NextGen by streamlining the certification and installation of NextGen
technologies, such as Automatic Dependent Surveillance-Broadcast (ADS-B). It is a
foundation of NextGen and transforms aircraft surveillance using satellite-based
positioning.
ADS-B enhances GA pilots’ awareness of other traffic and improves safety in areas
that radar cannot reach, such as Alaska and the Gulf of Mexico. Pilots flying
properly equipped aircraft can see graphical weather information on cockpit
displays, where they are in relation to nearby aircraft, and flight information such as
temporary flight restrictions.
The full benefits of ADS-B can only be realized if all of the planes that fly in
controlled airspace are equipped. The FAA has set January 1, 2020, as the
deadline to equip for ADS-B Out in controlled airspace.
(http://www.faa.gov/nextgen/equipadsb/) DOT and the FAA offered a $500 rebate
(http://www.faa.gov/go/equipadsb) incentive for GA aircraft owners who equip their
aircraft with required avionics technology. Accelerating compliance is critical to
ensuring that pilots, manufacturers, and retail facilities have adequate time and
capacity to equip aircraft in a timely and efficient manner, ahead of a 2020
regulatory deadline. Although the agency is no longer accepting new rebate
reservations, owners who have an existing reservation should complete the final
steps (https://www.faa.gov/nextgen/equipadsb/rebate/) .
Airman Testing Standards and Training
In collaboration with aviation training community experts, the FAA has updated key
elements of the airman certification system to include an enhanced focus on risk
management. In June, the FAA replaced the Practical Test Standards (PTS) for the
Private Pilot certificate in the airplane category and the Instrument Rating (also in
the airplane category) with the corresponding Airman Certification Standards (ACS).
(http://www.faa.gov/training_testing/testing/)
The ACS improves the PTS by adding task-specific knowledge and risk
management elements to each PTS Area of Operation and Task. By integrating
knowledge and risk management requirements with skill tasks, the ACS offers a
comprehensive presentation of the standards for what an applicant needs to know,
consider, and do in order to pass both the knowledge and practical tests for a
certificate or rating. This format helps applicants, instructors, evaluators, and other
stakeholders understand what the FAA expects in each phase of the certification
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 4/9
process, from the FAA knowledge exam to the practical test. It also helps everyone
understand how knowledge, risk management, and skill work together for safe
operation in the NAS.
Aeronautical Data
In 2016, the FAA launched the Got Data? External Data Access Initiative
(https://www.faa.gov/got_data/) to give the private sector better access the FAA’s
aeronautical data and spur innovation. The goal is to help industry be in a position
to create innovative products and technologies that improve safety and efficiency.
The initiative includes data such as airports, navigation aids, fixes, obstacles,
holding, approaches, and Temporary Flight Restriction information. Based on
stakeholder feedback, the FAA is delivering new features such as the Data
Innovation Center, geofenced aeronautical chart product data in consumable
formats, and automated digital product downloads. The FAA has also expanded the
digital Terminal Procedures Publication, Coded Instrument Flight Procedures, the
8620-2 for all fixes, and added new symbology to charts.
Aircraft Design
On August 30, 2017, a final rule (https://www.faa.gov/news/updates/?newsId=88746)
overhauling airworthiness standards for general aviation airplanes officially went
into effect. The FAA expects this rule will enable faster installation of innovative,
safety-enhancing technologies into small airplanes, while reducing costs for the
aviation industry.
These performance-based standards implement forward-looking, flexible rules that
encourage innovation. Specifically, the rule revolutionizes standards for airplanes
weighing 19,000 pounds or less and with 19 or fewer passenger seats by replacing
prescriptive requirements with performance-based standards coupled with
consensus-based compliance methods for specific designs and technologies. The
rule also adds new certification standards to address GA loss of control accidents
and in-flight icing conditions.
The rule addresses recommendations presented in 2013 by a 55-member
rulemaking committee that included representatives from the FAA, European
Aviation Safety Agency, National Civil Aviation Agency of Brazil, Civil Aviation
Administration of China, Transport Canada, Civil Aviation Authority of New Zealand,
several airplane and avionics manufacturers, and industry groups.
Streamlining Certification
NORSEE
On March 31, 2016, the FAA published a new policy
(http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgPolicy.nsf/0/1790b02f18333
57486257f9200592110/$FILE/PS-AIR-21.8-1602.pdf) (PDF) to help aircraft owners
voluntary install safety equipment on airplanes and helicopters that is not required
by the agency’s regulations. It will reduce costs and streamline the installation of
Non-Required Safety Enhancing Equipment (NORSEE) into the general aviation
fleet.The policy is the result of collaboration under the GAJSC andexpands the
2014 FAA policy, which simplified the design approval requirements for a cockpit
instrument called an angle of attack (AOA) indicator
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 5/9
(http://www.faa.gov/news/press_releases/news_story.cfm?newsId=15714) . AOA devices can
be added to small planes to supplement airspeed indicators and stall warning
systems, alerting pilots of a low airspeed condition before an aerodynamic stall
occurs. Such stalls are particularly dangerous during takeoff and landing.
NORSEE includes avionics, electronic instruments, displays and mechanical
equipment. Equipment approved as NORSEE increases overall situational
awareness; provides additional information other than the aircraft primary system;
provides independent warning, cautionary, or advisory indications; and provides
additional occupant safety protection. Examples of NORSEE equipment include:
traffic advisory systems, terrain awareness and warning systems; attitude
indicators; fire extinguishing systems; and autopilot or stability augmentation
systems.
The policy has the flexibility to accommodate the installation of new technology
safety enhancements into Part 23, 27, and 29 aircraft that are determined to be a
minor change to type design. The benefits must outweigh the risk. The policy will
reduce equipment costs by allowing the applicants the flexibility to select various
industry standards that suit their product, as long as it meets the FAA’s minimum
design requirements. NORSEE approval under the policy is not an approval for
installation on the aircraft – it just makes the equipment eligible for installation on
the aircraft.
Angle of Attack Indicators
On February 5, 2014, the FAA took an important step to help improve safety in
small aircraft by simplifying design and production approval requirements for an
AOA indicator. AOA indicators provide the pilot with a visual aid to prevent loss of
control of the aircraft in the critical phases of flight. Previously, cost and complexity
of indicators limited their use to the military and commercial aircraft. Under new
FAA guidelines, AOA devices can be added to small airplanes to supplement
airspeed indicators and stall warning systems, giving pilots an additional tool to
avoid a dangerous aerodynamic stall and subsequent loss of control.
The FAA continues to work to improve RVSM Letter of Authorization (LOA)
process
Since January 2005, Reduced Vertical Separation Minimum (RVSM) has allowed
pilots to fly domestically with 1,000 feet of vertical separation rather than the
previous 2,000 feet at cruising altitudes. On January 27, 2014, the FAA issued a
policy that streamlined the process for granting approval to use RVSM. The FAA
now considers previous operator and aircraft experience to determine the extent of
the evaluation, reducing the amount of time it takes for operators to receive an
authorization.
The FAA aims to make the authorization process more efficient with an August
2017 Notice of Proposed Rulemaking that would eliminate the need for U.S.-
registered operators to apply for RVSM authorization when their aircraft meet
altitude-keeping requirements and are equipped with qualified Automatic
Dependent Surveillance-Broadcast (ADS-B) Out systems.
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 6/9
Engagement & Outreach
Fly Safe
On June 6, 2015, the FAA and GA groups launched the Fly Safe national safety
campaign to educate the GA community on how to prevent Loss of Control (LOC)
accidents. An LOC accident involves an unintended departure of an aircraft from
controlled flight. LOC can happen because the aircraft enters a flight regime that is
outside its normal flight envelope and may quickly develop into a stall or spin. It can
introduce an element of surprise for the pilot. LOC happens in all phases of flight. It
can happen anywhere and at any time. There is one fatal accident involving LOC
every four days. Join the campaign at #FlySafe and follow it on Facebook, Twitter,
and Instagram.
Weather
Most weather-related GA accidents are fatal, and a failure to recognize deteriorating
weather continues to be a frequent cause or contributing factor of accidents. The
GAJSC has produced several safety enhancements related to weather as part of
their work on loss of control in flight. The 2014 FAA and industry’s Got Weather?
national safety outreach campaign reached approximately 4.5 million people.
Helicopter Safety
The FAA partners with the International Helicopter Safety Team (IHST
((www.IHST.org)) ) and the U.S. Helicopter Safety Team (USHST) to promote safety
and reduce civil helicopter accidents and fatalities worldwide. The IHST was formed
in 2005 to lead a government and industry cooperative effort to address factors that
were contributing to an unacceptable helicopter accident rate. Prior to 2006, the
number of worldwide civil helicopter accidents was rising at a rate of 2.5 percent per
year. Since 2006, the worldwide civil helicopter fleet has grown by 30 percent but
the number of accidents has decreased in key global regions by 30 to 50 percent.
IHST members establish partnerships with countries with significant helicopter
operations and encourage overseas industries to perform accident analysis and
develop safety interventions. Partners include government and industry participants
from the United States, Canada, Brazil, Mexico, New Zealand, India, Russia, and
multiple countries in Europe, Central Asia, and the Middle East.
Since its creation as a regional sub-team of the IHST in 2013, the USHST has
focused on the U.S. civil helicopter community and especially on fatal accidents.
Comparing 2016 to 2013, the U.S. civil helicopter industry experienced a 30 percent
accident rate reduction, from 4.95 accidents per 100,000 helicopter flight hours to
3.45 accidents per 100,000 helicopter flight hours. In addition, the number of fatal
accidents has been cut nearly in half and the fatal accident rate is down 47 percent
compared to 2013.
In 2017, the USHST completed an extensive analysis of fatal accidents using the
same approach as the CAST and the GAJSC. The analysis focused on the three
occurrence categories that contributed to the most fatal helicopter accidents from
2009-2013: loss of control – inflight (LOC-I), unintended flight into IMC (UIMC), and
low altitude operations (LALT). The team developed 22 Safety Enhancements to be
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 7/9
implemented by the industry and the FAA. The Safety Enhancements address
technology, simulation, risk management, and outreach solutions in the effort to
reduce fatal accidents.
Total U.S. Accidents
2001-05 Baseline: 184 accidents, 29 fatal accidents, 55 fatalities
2013: 146 accidents, 30 fatal accidents, 62 fatalities
2014: 138 accidents, 21 fatal accidents, 37 fatalities
2015: 121 accidents, 17 fatal accidents, 28 fatalities
2016: 108 accidents, 17 fatal accidents, 29 fatalities
(41% decrease in accidents)
U.S. Accident Rate (per 100,000 flight hours)
2001-05 Baseline: 7.97 accident rate, 1.27 fatal accident rate, 2.36 fatality rate
2013: 4.95 accident rate, 1.02 fatal accident rate, 2.10 fatality rate
2014: 4.26 accident rate, 0.65 fatal accident rate, 1.14 fatality rate
2015: 3.67 accident rate, 0.52 fatal accident rate, 0.85 fatality rate
2016: 3.45 accident rate, 0.54 fatal accident rate, 0.93 fatality rate
(57% decrease in accident rate)
Online Resources
The FAASTeam’s website (http://www.faasafety.gov/) is a good resource for pilots to
help improve their skills and knowledge. The site hosts the FAA WINGS pilot
proficiency program. It also contains online pilot training materials and includes
courses to help a pilot avoid the pitfalls of VFR flight into Instrument Meteorological
Conditions. Pilots, flight instructors, and mechanics are encouraged to register
online.
Amateur-Built Aircraft
Amateur-built and other experimental aircraft were involved in almost 25 percent of
U.S. fatal general aviation accidents over the past five years and account for an
estimated five percent of total general aviation fleet hours. With the help of targeted
safety enhancements developed by the FAA and GAJSC industry participants, and
new policies, this segment of the GA industry is showing significant improvement.
Loss of control remains the leading cause of fatal accidents involving amateur-built
aircraft. The FAA’s Airmen Transition to Unfamiliar Airplanes Advisory Circular (AC
90-109A) helps plan the transition to any unfamiliar fixed-wing airplanes, including
type-certificated (TC) and/or experimental airplanes. It provides information and
guidance to owners and pilots of experimental, simple, complex, high-performance,
and/or unfamiliar airplanes. It also provides information to flight instructors who
teach in these airplanes.
The FAA also continues to promote AC 90-116, Additional Pilot Program (APP) for
Phase I Flight Test. The AC provides information and guidance for flight testing
experimental aircraft. The APP was developed to improve safety by enhancing
Builder/Owner Pilot (BP) skills and mitigate risks associated with Phase I flight
testing of aircraft built from commercially produced kits through the use of a
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 8/9
qualified additional pilot and powerplant testing. The APP is an optional program
which provides another pathway to conducting Phase I flight testing. The traditional
option for a pilot to test their aircraft solo during Phase I is not covered or affected
by this AC, and remains an option for those who choose to do so in accordance
with their aircraft’s operating limitations.
Aviation Universities and Experts
Working through the Aviation Accreditation Board International (AABI) and the
University Aviation Association (UAA), the FAA is partnering with the aviation
academic community to leverage their expertise and develop best practices for
improving flight training.
Background
The General Aviation Accident Rate
Over the last two years, we have begun to see a slight increase in GA flight hours.
This is partially due to strong numbers in the turbine/jet segment of GA and
reverses a trend seen over the last few years.
From 2004 to 2009, fatal accidents from Controlled Flight Into Terrain (CFIT) have
been reduced by approximately 50 percent.
However, until 2014, the general aviation fatal accident rate appeared to have
remained relatively static based on the FAA’s flight hours estimates. Since then, the
fatal accident rate is decreasing, the preliminary estimate for FY 2017 is a fatal
accident of 0.84 with 209 GA fatal accidents with 347 fatalities. In FY 2016, the
fatal accident rate was 0.89 with 219 GA fatal accidents with 413 fatalities. In FY
2015, the fatal accident rate was 0.99 with 238 GA fatal accidents with 384
fatalities. In 2014, the fatal accident rate was 1.09 fatal accidents per 100,000
hours, with 252 fatal accidents. In 2013, the fatal accident rate was 1.11 fatal
accidents per 100,000 hours, with 259 GA fatal accidents. In 2012, the fatal
accident rate was 1.09 fatal accidents per 100,000 hours flown, with 267 GA fatal
accidents. In 2011, the fatal accident rate was 1.12 fatal accidents per 100,000
hours flown, with 278 GA fatal accidents. In 2010, the fatal accident rate was 1.10
fatal accidents per 100,000 hours flown, with 272 GA fatal accidents.
Previous seven-year GA fatal accident rates and numbers:
GA Fatal Accidents per 100,000
Hours
GA Fatal
Accidents
GA
Fatalities
FY10 1.10 272 471
FY11 1.12 278 469
FY12 1.09 267 442
FY13 1.11 259 449
FY14 1.09 252 435
FY15 0.99 238 384
FY16 0.89 219 413
4/16/2018 Fact Sheet – General Aviation Safety
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 9/9
This page was originally published at: https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274
FY17
(est)
0.84 209 347
The Top 10 Leading Causes of Fatal General Aviation Accidents 2001-2016:
1. Loss of Control Inflight
2. Controlled Flight Into Terrain
3. System Component Failure – Powerplant
4. Fuel Related
5. Unknown or Undetermined
6. System Component Failure – Non-Powerplant
7. Unintended Flight In IMC
8. Midair Collisions
9. Low-Altitude Operations
10. Other
###

More Related Content

Similar to Fact sheet general aviation safety

Aircraft Safety Systems: In The Spotlight - An Aranca Report
Aircraft Safety Systems: In The Spotlight - An Aranca ReportAircraft Safety Systems: In The Spotlight - An Aranca Report
Aircraft Safety Systems: In The Spotlight - An Aranca ReportAranca
 
Aircraft safety-systems-in-the-spotlight-thematic-report
Aircraft safety-systems-in-the-spotlight-thematic-reportAircraft safety-systems-in-the-spotlight-thematic-report
Aircraft safety-systems-in-the-spotlight-thematic-reportAranca
 
R Michaels - Analysis of the Effects of Automation for GMC
R Michaels - Analysis of the Effects of Automation for GMCR Michaels - Analysis of the Effects of Automation for GMC
R Michaels - Analysis of the Effects of Automation for GMCRobert Michaels
 
Business Aviation OEMs Adapt to COVID-19 Landscape
Business Aviation OEMs Adapt to COVID-19 LandscapeBusiness Aviation OEMs Adapt to COVID-19 Landscape
Business Aviation OEMs Adapt to COVID-19 LandscapeAbacus Technologies
 
Executive Summary (5 page paper)· Research any of following Webs.docx
Executive Summary (5 page paper)· Research any of following Webs.docxExecutive Summary (5 page paper)· Research any of following Webs.docx
Executive Summary (5 page paper)· Research any of following Webs.docxrhetttrevannion
 
AVSS & The Institute for Drone Technology™ joint report government regulation...
AVSS & The Institute for Drone Technology™ joint report government regulation...AVSS & The Institute for Drone Technology™ joint report government regulation...
AVSS & The Institute for Drone Technology™ joint report government regulation...Paul New
 
Federal Aviation Administration (FAA) NextGeneration Air Tra.docx
Federal Aviation Administration (FAA) NextGeneration Air Tra.docxFederal Aviation Administration (FAA) NextGeneration Air Tra.docx
Federal Aviation Administration (FAA) NextGeneration Air Tra.docxlmelaine
 
cyber security-in_civil_aviation_2012 august_CPNI
cyber security-in_civil_aviation_2012 august_CPNIcyber security-in_civil_aviation_2012 august_CPNI
cyber security-in_civil_aviation_2012 august_CPNIfEngel
 
The Joint Authorities Technical Review: Helping to Get It Right
The Joint Authorities Technical Review: Helping to Get It RightThe Joint Authorities Technical Review: Helping to Get It Right
The Joint Authorities Technical Review: Helping to Get It RightAsif Shoeb
 
Application of Big Data Systems to Airline Management
Application of Big Data Systems to Airline ManagementApplication of Big Data Systems to Airline Management
Application of Big Data Systems to Airline ManagementIJLT EMAS
 
ERAU sUAS Consumer Guide June 2016 Release
ERAU sUAS Consumer Guide June 2016 ReleaseERAU sUAS Consumer Guide June 2016 Release
ERAU sUAS Consumer Guide June 2016 ReleaseJonathan Westberry, MSA
 
Aircraft Flight Management Market Aircraft Maintenance.pdf
Aircraft Flight Management Market  Aircraft Maintenance.pdfAircraft Flight Management Market  Aircraft Maintenance.pdf
Aircraft Flight Management Market Aircraft Maintenance.pdfAviationandDefensema
 
Airport information systems_airside_mana
Airport information systems_airside_manaAirport information systems_airside_mana
Airport information systems_airside_manamvks rao
 
Adv_Low_Vis_Tech_B_English
Adv_Low_Vis_Tech_B_EnglishAdv_Low_Vis_Tech_B_English
Adv_Low_Vis_Tech_B_EnglishBrian O'Donnell
 

Similar to Fact sheet general aviation safety (20)

Aircraft Safety Systems: In The Spotlight - An Aranca Report
Aircraft Safety Systems: In The Spotlight - An Aranca ReportAircraft Safety Systems: In The Spotlight - An Aranca Report
Aircraft Safety Systems: In The Spotlight - An Aranca Report
 
Aircraft safety-systems-in-the-spotlight-thematic-report
Aircraft safety-systems-in-the-spotlight-thematic-reportAircraft safety-systems-in-the-spotlight-thematic-report
Aircraft safety-systems-in-the-spotlight-thematic-report
 
R Michaels - Analysis of the Effects of Automation for GMC
R Michaels - Analysis of the Effects of Automation for GMCR Michaels - Analysis of the Effects of Automation for GMC
R Michaels - Analysis of the Effects of Automation for GMC
 
April 2018 - Safety Enhancement Topic - Smart Cockpit
April 2018 - Safety Enhancement Topic - Smart CockpitApril 2018 - Safety Enhancement Topic - Smart Cockpit
April 2018 - Safety Enhancement Topic - Smart Cockpit
 
Business Aviation OEMs Adapt to COVID-19 Landscape
Business Aviation OEMs Adapt to COVID-19 LandscapeBusiness Aviation OEMs Adapt to COVID-19 Landscape
Business Aviation OEMs Adapt to COVID-19 Landscape
 
Executive Summary (5 page paper)· Research any of following Webs.docx
Executive Summary (5 page paper)· Research any of following Webs.docxExecutive Summary (5 page paper)· Research any of following Webs.docx
Executive Summary (5 page paper)· Research any of following Webs.docx
 
Nextgen
NextgenNextgen
Nextgen
 
AVSS & The Institute for Drone Technology™ joint report government regulation...
AVSS & The Institute for Drone Technology™ joint report government regulation...AVSS & The Institute for Drone Technology™ joint report government regulation...
AVSS & The Institute for Drone Technology™ joint report government regulation...
 
Federal Aviation Administration (FAA) NextGeneration Air Tra.docx
Federal Aviation Administration (FAA) NextGeneration Air Tra.docxFederal Aviation Administration (FAA) NextGeneration Air Tra.docx
Federal Aviation Administration (FAA) NextGeneration Air Tra.docx
 
Steinberg
SteinbergSteinberg
Steinberg
 
cyber security-in_civil_aviation_2012 august_CPNI
cyber security-in_civil_aviation_2012 august_CPNIcyber security-in_civil_aviation_2012 august_CPNI
cyber security-in_civil_aviation_2012 august_CPNI
 
The Joint Authorities Technical Review: Helping to Get It Right
The Joint Authorities Technical Review: Helping to Get It RightThe Joint Authorities Technical Review: Helping to Get It Right
The Joint Authorities Technical Review: Helping to Get It Right
 
Drones
DronesDrones
Drones
 
Flight Risk Analysis Tool (FRAT)
Flight Risk Analysis Tool (FRAT)Flight Risk Analysis Tool (FRAT)
Flight Risk Analysis Tool (FRAT)
 
Application of Big Data Systems to Airline Management
Application of Big Data Systems to Airline ManagementApplication of Big Data Systems to Airline Management
Application of Big Data Systems to Airline Management
 
!Carroll_Capstone_Final
!Carroll_Capstone_Final!Carroll_Capstone_Final
!Carroll_Capstone_Final
 
ERAU sUAS Consumer Guide June 2016 Release
ERAU sUAS Consumer Guide June 2016 ReleaseERAU sUAS Consumer Guide June 2016 Release
ERAU sUAS Consumer Guide June 2016 Release
 
Aircraft Flight Management Market Aircraft Maintenance.pdf
Aircraft Flight Management Market  Aircraft Maintenance.pdfAircraft Flight Management Market  Aircraft Maintenance.pdf
Aircraft Flight Management Market Aircraft Maintenance.pdf
 
Airport information systems_airside_mana
Airport information systems_airside_manaAirport information systems_airside_mana
Airport information systems_airside_mana
 
Adv_Low_Vis_Tech_B_English
Adv_Low_Vis_Tech_B_EnglishAdv_Low_Vis_Tech_B_English
Adv_Low_Vis_Tech_B_English
 

More from Scott Beale Aviation

What is the future of americas aerospace and defense
What is the future of americas aerospace and defenseWhat is the future of americas aerospace and defense
What is the future of americas aerospace and defenseScott Beale Aviation
 
Did you know this about air force one
Did you know this about air force oneDid you know this about air force one
Did you know this about air force oneScott Beale Aviation
 
The advancements in the aviation industry
The advancements in the aviation industryThe advancements in the aviation industry
The advancements in the aviation industryScott Beale Aviation
 
Aviation visionaries and trailblazers to remember
Aviation visionaries and trailblazers to rememberAviation visionaries and trailblazers to remember
Aviation visionaries and trailblazers to rememberScott Beale Aviation
 
Safety precautions in airplane hangars
Safety precautions in airplane hangarsSafety precautions in airplane hangars
Safety precautions in airplane hangarsScott Beale Aviation
 
Aviation Business: What It Means To Lease An Aircraft
Aviation Business: What It Means To Lease An AircraftAviation Business: What It Means To Lease An Aircraft
Aviation Business: What It Means To Lease An AircraftScott Beale Aviation
 
Top Advanced Fighter Jets In The World
Top Advanced Fighter Jets In The WorldTop Advanced Fighter Jets In The World
Top Advanced Fighter Jets In The WorldScott Beale Aviation
 

More from Scott Beale Aviation (20)

Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Pilot plane
Pilot planePilot plane
Pilot plane
 
Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale AviationScott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale AviationScott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale AviationScott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale Aviation Scott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale AviationScott Beale Aviation
Scott Beale Aviation
 
Scott Beale Aviation
Scott Beale AviationScott Beale Aviation
Scott Beale Aviation
 
What is the future of americas aerospace and defense
What is the future of americas aerospace and defenseWhat is the future of americas aerospace and defense
What is the future of americas aerospace and defense
 
Did you know this about air force one
Did you know this about air force oneDid you know this about air force one
Did you know this about air force one
 
The advancements in the aviation industry
The advancements in the aviation industryThe advancements in the aviation industry
The advancements in the aviation industry
 
Aviation visionaries and trailblazers to remember
Aviation visionaries and trailblazers to rememberAviation visionaries and trailblazers to remember
Aviation visionaries and trailblazers to remember
 
Safety precautions in airplane hangars
Safety precautions in airplane hangarsSafety precautions in airplane hangars
Safety precautions in airplane hangars
 
Aviation Business: What It Means To Lease An Aircraft
Aviation Business: What It Means To Lease An AircraftAviation Business: What It Means To Lease An Aircraft
Aviation Business: What It Means To Lease An Aircraft
 
Top Advanced Fighter Jets In The World
Top Advanced Fighter Jets In The WorldTop Advanced Fighter Jets In The World
Top Advanced Fighter Jets In The World
 
Scott beale aviation
Scott beale aviationScott beale aviation
Scott beale aviation
 

Recently uploaded

SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 

Recently uploaded (20)

SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 

Fact sheet general aviation safety

  • 1. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 1/9 Federal Aviation Administration Fact Sheet – General Aviation Safety For Immediate Release April 4, 2018 Contact: Les Dorr Phone: 202-267-3883 The Federal Aviation Administration (FAA) and industry are working on a number of key initiatives to improve general aviation (GA) safety: the GA Joint Steering Committee (GAJSC), Equip 2020 for ADS-B Out, new Airman Certification Standards (ACS), streamlining aircraft certification, the Got Data? External Data Initiative, and the Fly Safe outreach campaign on Loss of Control. The United States has the largest and most diverse GA community in the world, with more than 220,000 aircraft, including amateur-built aircraft, rotorcraft, balloons, and highly sophisticated turbojets. By working together, and focusing on data driven solutions, government and industry are making a difference to put the right technologies, regulations, and education initiatives in place to improve safety. The FAA’s goal is to reduce the GA fatal accident rate by 10 percent over a 10-year period (2009-2018). Inflight loss of control – mainly stalls – accounts for the largest number of GA fatal accidents. Although the fatal accident rate is beginning to decline, last year (FY17) 347 people still died in 209 general aviation accidents The FAA and industry are focused on reducing general aviation accidents by primarily using a non-regulatory, proactive, data-driven strategy to get results — similar to the strategy the FAA uses in commercial aviation. Reducing Risk Using data, the FAA and industry are working together to identify risk, pinpoint trends through root cause analysis, and develop safety strategies. The FAA and the GA community carry out this work through the GAJSC. Formed in the mid-1990s, the GAJSC recently has renewed its efforts to combat GA fatal accidents. The government and industry group uses the same approach as the Commercial Aviation Safety Team (CAST). It uses a data- driven, consensus-based approach to analyze safety data to develop specific interventions that will mitigate the root causes of accidents. Recent accomplishments include more than 39 safety enhancements, (such as training, procedures, and technology) to address loss of control. Examples include a streamlined policy for angle of attack (AOA) system approvals
  • 2. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 2/9 (http://www.faa.gov/news/press_releases/news_story.cfm?newsId=15714) and outreach to the GA community on loss of control topics.With powerplant system and component failures being the third leading fatal GA accident category, the GAJSC analyzed fatal GA accidents involving total or partial engine power loss. The GAJSC approved and initiated implementation of ten SEs directed at engine issues and focus on improving engine technology, aiding the pilot in decision making post-engine failure, and improving resources available to mechanics, as well as their education and training. The GA JSC began its study into Controlled Flight Into Terrain (CFIT) accidents in October 2017 and will finish its work sometime in 2018. CFIT is the second largest risk in GA. The GAJSC combines the expertise of many key decision makers across different parts of the FAA, several government agencies, and stakeholder groups. The other federal agencies are the National Aeronautics and Space Administration and the National Transportation Safety Board (NTSB), which participates as an observer. Industry participants include the Aircraft Owners and Pilots Association, Experimental Aircraft Association, General Aviation Manufacturers Association, Light Aircraft Manufacturers Association, National Business Aviation Association, National Air Transportation Association, National Association of Flight Instructors, Society of Aviation and Flight Educators, and the aviation insurance industry. The European Aviation Safety Agency (EASA) also participates as an observer. Other achievements include several web-based resource guides, information on flying and medications, and overall GA community coordination on Loss of Control and engine issue topics. Resources include targeted themes and articles in the FAA Safety Briefing magazine. The GA community and the FAA are moving toward using de-identified GA operations data in the Aviation Safety Information Analysis and Sharing (ASIAS) (http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=18195) program to help identify risks before they become accidents. In March of 2014 the FAA started a one-year project to illustrate the value, capabilities, and benefits of the ASIAS program for the GA community. The project explored potential new information sources such as General Aviation Flight Data Monitoring, voluntary safety reports, manufacturer reports, and information collected from avionics and using new common technologies such as iOS and Android personal electronic devices. This project led to a broader expansion of GA in ASIAS. Tools are now available to the GA community to help explore and understand their own flight data and look for potential risks. Through this program, the FAA does not have access to any individual pilot’s data as the system is hosted by a third party. The de-identified aggregate data is used by the GA community through ASIAS to identify trends and look for system risks that may need to be mitigated. Data from these programs will be used for GA JSC initiatives and research conducted by the GA community. The GAJSC is working with the community to incorporate their data into ASIAS so that it may be used to identify risk.
  • 3. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 3/9 New Technology The NextGen program includes innovative technologies and procedures to make flying safer, greener, and more efficient. In March 2015, the FAA achieved a major milestone by completing one of the largest automation changeovers in the history of the agency: a new high-altitude air traffic control system, known as En Route Automation Modernization (ERAM) (http://www.faa.gov/news/press_releases/news_story.cfm?newsId=18695) . This system will accommodate the technologies of NextGen, giving the U.S. a more powerful air traffic system. The FAA is working with manufacturers to define equipage requirements and support NextGen by streamlining the certification and installation of NextGen technologies, such as Automatic Dependent Surveillance-Broadcast (ADS-B). It is a foundation of NextGen and transforms aircraft surveillance using satellite-based positioning. ADS-B enhances GA pilots’ awareness of other traffic and improves safety in areas that radar cannot reach, such as Alaska and the Gulf of Mexico. Pilots flying properly equipped aircraft can see graphical weather information on cockpit displays, where they are in relation to nearby aircraft, and flight information such as temporary flight restrictions. The full benefits of ADS-B can only be realized if all of the planes that fly in controlled airspace are equipped. The FAA has set January 1, 2020, as the deadline to equip for ADS-B Out in controlled airspace. (http://www.faa.gov/nextgen/equipadsb/) DOT and the FAA offered a $500 rebate (http://www.faa.gov/go/equipadsb) incentive for GA aircraft owners who equip their aircraft with required avionics technology. Accelerating compliance is critical to ensuring that pilots, manufacturers, and retail facilities have adequate time and capacity to equip aircraft in a timely and efficient manner, ahead of a 2020 regulatory deadline. Although the agency is no longer accepting new rebate reservations, owners who have an existing reservation should complete the final steps (https://www.faa.gov/nextgen/equipadsb/rebate/) . Airman Testing Standards and Training In collaboration with aviation training community experts, the FAA has updated key elements of the airman certification system to include an enhanced focus on risk management. In June, the FAA replaced the Practical Test Standards (PTS) for the Private Pilot certificate in the airplane category and the Instrument Rating (also in the airplane category) with the corresponding Airman Certification Standards (ACS). (http://www.faa.gov/training_testing/testing/) The ACS improves the PTS by adding task-specific knowledge and risk management elements to each PTS Area of Operation and Task. By integrating knowledge and risk management requirements with skill tasks, the ACS offers a comprehensive presentation of the standards for what an applicant needs to know, consider, and do in order to pass both the knowledge and practical tests for a certificate or rating. This format helps applicants, instructors, evaluators, and other stakeholders understand what the FAA expects in each phase of the certification
  • 4. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 4/9 process, from the FAA knowledge exam to the practical test. It also helps everyone understand how knowledge, risk management, and skill work together for safe operation in the NAS. Aeronautical Data In 2016, the FAA launched the Got Data? External Data Access Initiative (https://www.faa.gov/got_data/) to give the private sector better access the FAA’s aeronautical data and spur innovation. The goal is to help industry be in a position to create innovative products and technologies that improve safety and efficiency. The initiative includes data such as airports, navigation aids, fixes, obstacles, holding, approaches, and Temporary Flight Restriction information. Based on stakeholder feedback, the FAA is delivering new features such as the Data Innovation Center, geofenced aeronautical chart product data in consumable formats, and automated digital product downloads. The FAA has also expanded the digital Terminal Procedures Publication, Coded Instrument Flight Procedures, the 8620-2 for all fixes, and added new symbology to charts. Aircraft Design On August 30, 2017, a final rule (https://www.faa.gov/news/updates/?newsId=88746) overhauling airworthiness standards for general aviation airplanes officially went into effect. The FAA expects this rule will enable faster installation of innovative, safety-enhancing technologies into small airplanes, while reducing costs for the aviation industry. These performance-based standards implement forward-looking, flexible rules that encourage innovation. Specifically, the rule revolutionizes standards for airplanes weighing 19,000 pounds or less and with 19 or fewer passenger seats by replacing prescriptive requirements with performance-based standards coupled with consensus-based compliance methods for specific designs and technologies. The rule also adds new certification standards to address GA loss of control accidents and in-flight icing conditions. The rule addresses recommendations presented in 2013 by a 55-member rulemaking committee that included representatives from the FAA, European Aviation Safety Agency, National Civil Aviation Agency of Brazil, Civil Aviation Administration of China, Transport Canada, Civil Aviation Authority of New Zealand, several airplane and avionics manufacturers, and industry groups. Streamlining Certification NORSEE On March 31, 2016, the FAA published a new policy (http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgPolicy.nsf/0/1790b02f18333 57486257f9200592110/$FILE/PS-AIR-21.8-1602.pdf) (PDF) to help aircraft owners voluntary install safety equipment on airplanes and helicopters that is not required by the agency’s regulations. It will reduce costs and streamline the installation of Non-Required Safety Enhancing Equipment (NORSEE) into the general aviation fleet.The policy is the result of collaboration under the GAJSC andexpands the 2014 FAA policy, which simplified the design approval requirements for a cockpit instrument called an angle of attack (AOA) indicator
  • 5. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 5/9 (http://www.faa.gov/news/press_releases/news_story.cfm?newsId=15714) . AOA devices can be added to small planes to supplement airspeed indicators and stall warning systems, alerting pilots of a low airspeed condition before an aerodynamic stall occurs. Such stalls are particularly dangerous during takeoff and landing. NORSEE includes avionics, electronic instruments, displays and mechanical equipment. Equipment approved as NORSEE increases overall situational awareness; provides additional information other than the aircraft primary system; provides independent warning, cautionary, or advisory indications; and provides additional occupant safety protection. Examples of NORSEE equipment include: traffic advisory systems, terrain awareness and warning systems; attitude indicators; fire extinguishing systems; and autopilot or stability augmentation systems. The policy has the flexibility to accommodate the installation of new technology safety enhancements into Part 23, 27, and 29 aircraft that are determined to be a minor change to type design. The benefits must outweigh the risk. The policy will reduce equipment costs by allowing the applicants the flexibility to select various industry standards that suit their product, as long as it meets the FAA’s minimum design requirements. NORSEE approval under the policy is not an approval for installation on the aircraft – it just makes the equipment eligible for installation on the aircraft. Angle of Attack Indicators On February 5, 2014, the FAA took an important step to help improve safety in small aircraft by simplifying design and production approval requirements for an AOA indicator. AOA indicators provide the pilot with a visual aid to prevent loss of control of the aircraft in the critical phases of flight. Previously, cost and complexity of indicators limited their use to the military and commercial aircraft. Under new FAA guidelines, AOA devices can be added to small airplanes to supplement airspeed indicators and stall warning systems, giving pilots an additional tool to avoid a dangerous aerodynamic stall and subsequent loss of control. The FAA continues to work to improve RVSM Letter of Authorization (LOA) process Since January 2005, Reduced Vertical Separation Minimum (RVSM) has allowed pilots to fly domestically with 1,000 feet of vertical separation rather than the previous 2,000 feet at cruising altitudes. On January 27, 2014, the FAA issued a policy that streamlined the process for granting approval to use RVSM. The FAA now considers previous operator and aircraft experience to determine the extent of the evaluation, reducing the amount of time it takes for operators to receive an authorization. The FAA aims to make the authorization process more efficient with an August 2017 Notice of Proposed Rulemaking that would eliminate the need for U.S.- registered operators to apply for RVSM authorization when their aircraft meet altitude-keeping requirements and are equipped with qualified Automatic Dependent Surveillance-Broadcast (ADS-B) Out systems.
  • 6. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 6/9 Engagement & Outreach Fly Safe On June 6, 2015, the FAA and GA groups launched the Fly Safe national safety campaign to educate the GA community on how to prevent Loss of Control (LOC) accidents. An LOC accident involves an unintended departure of an aircraft from controlled flight. LOC can happen because the aircraft enters a flight regime that is outside its normal flight envelope and may quickly develop into a stall or spin. It can introduce an element of surprise for the pilot. LOC happens in all phases of flight. It can happen anywhere and at any time. There is one fatal accident involving LOC every four days. Join the campaign at #FlySafe and follow it on Facebook, Twitter, and Instagram. Weather Most weather-related GA accidents are fatal, and a failure to recognize deteriorating weather continues to be a frequent cause or contributing factor of accidents. The GAJSC has produced several safety enhancements related to weather as part of their work on loss of control in flight. The 2014 FAA and industry’s Got Weather? national safety outreach campaign reached approximately 4.5 million people. Helicopter Safety The FAA partners with the International Helicopter Safety Team (IHST ((www.IHST.org)) ) and the U.S. Helicopter Safety Team (USHST) to promote safety and reduce civil helicopter accidents and fatalities worldwide. The IHST was formed in 2005 to lead a government and industry cooperative effort to address factors that were contributing to an unacceptable helicopter accident rate. Prior to 2006, the number of worldwide civil helicopter accidents was rising at a rate of 2.5 percent per year. Since 2006, the worldwide civil helicopter fleet has grown by 30 percent but the number of accidents has decreased in key global regions by 30 to 50 percent. IHST members establish partnerships with countries with significant helicopter operations and encourage overseas industries to perform accident analysis and develop safety interventions. Partners include government and industry participants from the United States, Canada, Brazil, Mexico, New Zealand, India, Russia, and multiple countries in Europe, Central Asia, and the Middle East. Since its creation as a regional sub-team of the IHST in 2013, the USHST has focused on the U.S. civil helicopter community and especially on fatal accidents. Comparing 2016 to 2013, the U.S. civil helicopter industry experienced a 30 percent accident rate reduction, from 4.95 accidents per 100,000 helicopter flight hours to 3.45 accidents per 100,000 helicopter flight hours. In addition, the number of fatal accidents has been cut nearly in half and the fatal accident rate is down 47 percent compared to 2013. In 2017, the USHST completed an extensive analysis of fatal accidents using the same approach as the CAST and the GAJSC. The analysis focused on the three occurrence categories that contributed to the most fatal helicopter accidents from 2009-2013: loss of control – inflight (LOC-I), unintended flight into IMC (UIMC), and low altitude operations (LALT). The team developed 22 Safety Enhancements to be
  • 7. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 7/9 implemented by the industry and the FAA. The Safety Enhancements address technology, simulation, risk management, and outreach solutions in the effort to reduce fatal accidents. Total U.S. Accidents 2001-05 Baseline: 184 accidents, 29 fatal accidents, 55 fatalities 2013: 146 accidents, 30 fatal accidents, 62 fatalities 2014: 138 accidents, 21 fatal accidents, 37 fatalities 2015: 121 accidents, 17 fatal accidents, 28 fatalities 2016: 108 accidents, 17 fatal accidents, 29 fatalities (41% decrease in accidents) U.S. Accident Rate (per 100,000 flight hours) 2001-05 Baseline: 7.97 accident rate, 1.27 fatal accident rate, 2.36 fatality rate 2013: 4.95 accident rate, 1.02 fatal accident rate, 2.10 fatality rate 2014: 4.26 accident rate, 0.65 fatal accident rate, 1.14 fatality rate 2015: 3.67 accident rate, 0.52 fatal accident rate, 0.85 fatality rate 2016: 3.45 accident rate, 0.54 fatal accident rate, 0.93 fatality rate (57% decrease in accident rate) Online Resources The FAASTeam’s website (http://www.faasafety.gov/) is a good resource for pilots to help improve their skills and knowledge. The site hosts the FAA WINGS pilot proficiency program. It also contains online pilot training materials and includes courses to help a pilot avoid the pitfalls of VFR flight into Instrument Meteorological Conditions. Pilots, flight instructors, and mechanics are encouraged to register online. Amateur-Built Aircraft Amateur-built and other experimental aircraft were involved in almost 25 percent of U.S. fatal general aviation accidents over the past five years and account for an estimated five percent of total general aviation fleet hours. With the help of targeted safety enhancements developed by the FAA and GAJSC industry participants, and new policies, this segment of the GA industry is showing significant improvement. Loss of control remains the leading cause of fatal accidents involving amateur-built aircraft. The FAA’s Airmen Transition to Unfamiliar Airplanes Advisory Circular (AC 90-109A) helps plan the transition to any unfamiliar fixed-wing airplanes, including type-certificated (TC) and/or experimental airplanes. It provides information and guidance to owners and pilots of experimental, simple, complex, high-performance, and/or unfamiliar airplanes. It also provides information to flight instructors who teach in these airplanes. The FAA also continues to promote AC 90-116, Additional Pilot Program (APP) for Phase I Flight Test. The AC provides information and guidance for flight testing experimental aircraft. The APP was developed to improve safety by enhancing Builder/Owner Pilot (BP) skills and mitigate risks associated with Phase I flight testing of aircraft built from commercially produced kits through the use of a
  • 8. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 8/9 qualified additional pilot and powerplant testing. The APP is an optional program which provides another pathway to conducting Phase I flight testing. The traditional option for a pilot to test their aircraft solo during Phase I is not covered or affected by this AC, and remains an option for those who choose to do so in accordance with their aircraft’s operating limitations. Aviation Universities and Experts Working through the Aviation Accreditation Board International (AABI) and the University Aviation Association (UAA), the FAA is partnering with the aviation academic community to leverage their expertise and develop best practices for improving flight training. Background The General Aviation Accident Rate Over the last two years, we have begun to see a slight increase in GA flight hours. This is partially due to strong numbers in the turbine/jet segment of GA and reverses a trend seen over the last few years. From 2004 to 2009, fatal accidents from Controlled Flight Into Terrain (CFIT) have been reduced by approximately 50 percent. However, until 2014, the general aviation fatal accident rate appeared to have remained relatively static based on the FAA’s flight hours estimates. Since then, the fatal accident rate is decreasing, the preliminary estimate for FY 2017 is a fatal accident of 0.84 with 209 GA fatal accidents with 347 fatalities. In FY 2016, the fatal accident rate was 0.89 with 219 GA fatal accidents with 413 fatalities. In FY 2015, the fatal accident rate was 0.99 with 238 GA fatal accidents with 384 fatalities. In 2014, the fatal accident rate was 1.09 fatal accidents per 100,000 hours, with 252 fatal accidents. In 2013, the fatal accident rate was 1.11 fatal accidents per 100,000 hours, with 259 GA fatal accidents. In 2012, the fatal accident rate was 1.09 fatal accidents per 100,000 hours flown, with 267 GA fatal accidents. In 2011, the fatal accident rate was 1.12 fatal accidents per 100,000 hours flown, with 278 GA fatal accidents. In 2010, the fatal accident rate was 1.10 fatal accidents per 100,000 hours flown, with 272 GA fatal accidents. Previous seven-year GA fatal accident rates and numbers: GA Fatal Accidents per 100,000 Hours GA Fatal Accidents GA Fatalities FY10 1.10 272 471 FY11 1.12 278 469 FY12 1.09 267 442 FY13 1.11 259 449 FY14 1.09 252 435 FY15 0.99 238 384 FY16 0.89 219 413
  • 9. 4/16/2018 Fact Sheet – General Aviation Safety https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 9/9 This page was originally published at: https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 FY17 (est) 0.84 209 347 The Top 10 Leading Causes of Fatal General Aviation Accidents 2001-2016: 1. Loss of Control Inflight 2. Controlled Flight Into Terrain 3. System Component Failure – Powerplant 4. Fuel Related 5. Unknown or Undetermined 6. System Component Failure – Non-Powerplant 7. Unintended Flight In IMC 8. Midair Collisions 9. Low-Altitude Operations 10. Other ###