SlideShare a Scribd company logo
1 of 24
*2358498204*
Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level
PHYSICS 9702/42
Paper 4 A Level Structured Questions Mock 2019
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.
READ THESE INSTRUCTIONS FIRST
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
This document consists of 26 printed pages and 2 blank pages.
DC (NH/CGW) 143388/6
© UCLES 2018 [Turn over
2
Data
speed of light in free space c = 3.00 × 108 m s−1
permeability of free space μ0 = 4π × 10−7 Hm−1
permittivity of free space ε0 = 8.85 × 10−12 Fm−1
(
1
4πε0
= 8.99 × 109 m F−1)
elementary charge e = 1.60 × 10−19 C
the Planck constant h = 6.63 × 10−34 Js
unified atomic mass unit 1u = 1.66 × 10−27 kg
rest mass of electron me = 9.11 × 10−31 kg
rest mass of proton mp = 1.67 × 10−27 kg
molar gas constant R = 8.31JK−1 mol−1
the Avogadro constant NA = 6.02 × 1023 mol−1
the Boltzmann constant k = 1.38 × 10−23 JK−1
gravitational constant G = 6.67 × 10−11 N m2 kg−2
acceleration of free fall g = 9.81m s−2
3
[Turn over© UCLES
2
2
t
Formulae
uniformly accelerated motion s = ut +
1
at 2
v2 = u2 +2as
work done on/by a gas W = pΔV
gravitational potential φ = −
Gm
r
hydrostatic pressure p = ρgh
pressure of an ideal gas p =
1 Nm
〈c2〉3 V
simple harmonic motion a = − ω 2x
velocity of particle in s.h.m. v = v0 cos ωt
2 2
v = ± ω (x0
fsv
Doppler effect fo =
v ± v
- x )
s
electric potential V =
Q
4πε0r
capacitors in series 1/C = 1/C1 + 1/C2 + . . .
capacitors in parallel C = C1 + C2 + . . .
energy of charged capacitor W = 1
QV
electric current I = Anvq
resistors in series R = R1 + R2 + . . .
resistors in parallel 1/R = 1/R1 + 1/R2 + . . .
Hall voltage V =
BI
H ntq
alternating current/voltage x = x0 sin ω  t
radioactive decay x = x0 exp(−λt )
decay constant λ =
0.693
1
2
4
Answer all the questions in the spaces provided.
1 (a) (i) State what is meant by a line of force in a gravitational field.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) By reference to the pattern of the lines of gravitational force near to the surface of the
Earth, explain why the acceleration of free fall near to the Earth’s surface is approximately
constant.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[3]
(b) The Moon may be considered to be a uniform sphere that is isolated in space. It has radius
1.74 × 103 km and mass 7.35 × 1022 kg.
(i) Calculate the gravitational field strength at the Moon’s surface.
gravitational field strength = ............................................... N kg–1 [2]
(ii) A satellite is in a circular orbit about the Moon at a height of 320 km above its surface.
Calculate the time for the satellite to complete one orbit of the Moon.
time = ........................................................ s [3]
5
[Turn over© UCLES
[Total: 9]
2 (a) (i) A gravitational field may be represented by lines of gravitational force.
State what is meant by a line of gravitational force.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) By reference to lines of gravitational force near to the surface of the Earth, explain why
the gravitational field strength g close to the Earth’s surface is approximately constant.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[3]
(b) The Moon may be considered to be a uniform sphere of diameter 3.4 × 103 km and mass
7.4 × 1022 kg. The Moon has no atmosphere.
During a collision of the Moon with a meteorite, a rock is thrown vertically up from the surface
of the Moon with a speed of 2.8 km s–1.
Assuming that the Moon is isolated in space, determine whether the rock will travel out into
distant space or return to the Moon’s surface.
[4]
[Total: 8]
10
0 t1
3 (a) State two conditions necessary for a mass to be undergoing simple harmonic motion.
1. ...............................................................................................................................................
...................................................................................................................................................
2. ...............................................................................................................................................
...................................................................................................................................................
[2]
(b) A trolley of mass 950g is held on a horizontal surface by means of two springs attached to
fixed points P and Q, as shown in Fig. 4.1.
trolley
mass 950g
spring
P Q
Fig. 4.1
The springs, each having a spring constant k of 230Nm–1, are always extended.
The trolley is displaced along the line of the springs and then released.
The variation with time t of the displacement x of the trolley is shown in Fig. 4.2.
x
0
t
Fig. 4.2
[Turn over© UCLES
11
(i) 1. State and explain whether the oscillations of the trolley are heavily damped, critically
damped or lightly damped.
....................................................................................................................................
....................................................................................................................................
2. Suggest the cause of the damping.
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
[3]
(ii) The acceleration a of the trolley of mass m maybe assumedto be given by the expression
2k
a = – d
m
nx .
1. Calculate the angular frequency ω of the oscillations of the trolley.
ω = ............................................... rads–1 [3]
2. Determine the time t1 shown on Fig. 4.2.
t1 = ....................................................... s [2]
[Total: 10]
4 (a) A mass is undergoing simple harmonic motion with amplitude x0. The maximum velocity of
the mass has magnitude v0.
On Fig. 3.1, show the variation with displacement x of the velocity v of the mass.
v
v0
0
−x0 x00 x
−v0
Fig. 3.1
[2]
(b) A straight stiff wire carries a constant current in a region of uniform magnetic flux density.
The angle θ between the direction of the current and the direction of the magnetic field is
varied. The maximum force on the wire is F0.
On Fig. 3.2, show the variation with angle θ of the force F on the wire for values of θ between
0° and 90°.
F0
F
0
0 90
θ /°
Fig. 3.2
[2]
[Turn over© UCLES
13
(c) A sinusoidal supply has frequency 250 Hz and r.m.s. potential difference 2.8V.
On the axes of Fig. 3.3, show quantitatively the variation with time t of the voltage V for one
cycle of the varying voltage.
8
V/V
6
4
2
0 1 2 3 4 5
t/ms
−4
−6
−8
Fig. 3.3
[2]
5 (a) Explain what is meant by the natural frequency of vibration of a system.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[1]
(b) A block of metal is fixed to one end of a vertical spring. The other end of the spring is attached
to an oscillator, as shown in Fig. 4.1.
oscillator
spring
metal
block
Fig. 4.1
The amplitude of oscillation of the oscillator is constant.
The variation of the amplitude x0 of the oscillations of the block with frequency f of the
oscillations is shown in Fig. 4.2.
x0
0
f
Fig. 4.2
[Turn over© UCLES
15
(i) Name the effect shown in Fig. 4.2.
.......................................................................................................................................[1]
(ii) State and explain whether the block is undergoing damped oscillations.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(c) State one example in which the effect shown in Fig. 4.2 is useful.
...................................................................................................................................................
...............................................................................................................................................[1]
[Total: 5]
6 (a) Explain what is meant by the capacitance of a parallel plate capacitor.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
(b) Three parallel plate capacitors each have a capacitance of 6.0 μF.
Draw circuit diagrams, one in each case, to show how the capacitors may be connected
together to give a combined capacitance of
(i) 9.0μF,
[1]
(ii) 4.0μF.
[1]
(c) Two capacitors of capacitances 3.0 μF and 2.0μF are connected in series with a battery of
electromotive force (e.m.f.) 8.0V, as shown in Fig. 6.1.
3.0μF 2.0μF
8.0V
Fig. 6.1
[Turn over© UCLES
17
(i) Calculate the combined capacitance of the capacitors.
capacitance = ..................................................... μF [1]
(ii) Use your answer in (i) to determine, for the capacitor of capacitance 3.0 μF,
1. the charge on one plate of the capacitor,
charge = .......................................................... μC
2. the energy stored in the capacitor.
energy = ......................................... J [4]
[Total: 10]
7 (a) Explain how a uniform magnetic field and a uniform electric field may be used as a velocity
selector for charged particles.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
[Turn over© UCLES
19
(b) Particles having mass m and charge +1.6 × 10–19 C pass through a velocity selector.
They then enter a region of uniform magnetic field of magnetic flux density 94mT with speed
3.4 × 104
m s–1
, as shown in Fig. 8.1.
path of charged particle
velocity
selector
15.0 cm
uniform
magnetic field
into page
Fig. 8.1
The direction of the uniform magnetic field is into the page and normal to the direction in
which the particles are moving.
The particles are moving in a vacuum in a circular arc of diameter 15.0 cm.
Show that the mass of one of the particles is 20u.
[4]
(c) On Fig. 8.1, sketch the path in the uniform magnetic field of a particle of mass 22u having the
same charge and speed as the particle in (b). [2]
[Total: 9]
8 (a) State what is meant by the magnetic flux linkage of a coil.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
(b) A coil of wire has 160 turns and diameter 2.4cm. The coil is situated in a uniform magnetic
field of flux density 7.5 mT, as shown in Fig. 9.1.
magnetic field
flux density
7.5mT 2.4cm
coil
160 turns
Fig. 9.1
The direction of the magnetic field is along the axis of the coil.
The magnetic flux density is reduced to zero in a time of 0.15 s.
Show that the average e.m.f. induced in the coil is 3.6mV.
[2]
[Turn over© UCLES
21
(c) The magnetic flux density B in the coil in (b) is now varied with time t as shown in Fig. 9.2.
10
B/mT
5
0 0.1 0.2 0.3 0.4 0.5
t/s
0.6
–5
–10
Fig. 9.2
Use data in (b) to show, on Fig. 9.3, the variation with time t of the e.m.f. E induced in the coil.
8
E/mV 6
4
2
0 0.1
–2
0.2 0.3 0.4 0.5
t/s
0.6
–4
–6
–8
Fig. 9. [4] [Total: 9]
9 (a) State what is meant by electric potential at a point.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) The centres of two charged metal spheres Aand B are separated by a distance of 44.0cm, as
shown in Fig. 7.1.
44.0 cm
sphere A sphere B
P
x
Fig. 7.1 (not to scale)
A moveable point P lies on the line joining the centres of the two spheres. Point P is a distance
x from the centre of sphere A. The variation with distance x of the electric potential V at point
P is shown in Fig. 7.2.
2.2
V/104 V
2.0
1.8
1.6
1.4
1.2
0 10 20 30 40 50
x /cm
Fig. 7.2
[Turn over© UCLES
17
(i) Use Fig. 7.2 to state and explain whether the two spheres have charges of the same, or
opposite, sign.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) A positively-charged particle is at rest on the surface of sphere A.
The particle moves freely from the surface of sphere A to the surface of sphere B.
1. Describe qualitatively the variation, if any, with distance x of the speed of the particle
as it
moves from x = 12cm to x = 25cm ............................................................................
....................................................................................................................................
passes through x = 26 cm ..........................................................................................
....................................................................................................................................
moves from x = 27 cm to x = 31cm ............................................................................
....................................................................................................................................
reaches x = 32cm ......................................................................................................
................................................................................................................................ [4]
2. The particle has charge 3.2 × 10–19 C and mass 6.6 × 10–27 kg.
Calculate the maximum speed of the particle.
speed = ................................................. m s–1 [2]
[Total: 9]
10 A thin slice of conducting material has its faces PQRS and VWXY normal to a uniform magnetic
field of flux density B, as shown in Fig. 9.1.
magnetic field
flux density B
Q R
W X
direction of
motion of electrons
P S
V Y
Fig. 9.1
Electrons enter the slice at right-angles to face SRXY.
A potential difference, the Hall voltage VH, is developed between two faces of the slice.
(a) (i) Use letters from Fig. 9.1 to name the two faces between which the Hall voltage is
developed.
............................................................... and ............................................................... [1]
(ii) State and explain which of the two faces named in (a)(i) is the more positive.
...........................................................................................................................................
.......................................................................................................................................[2]
[Turn over© UCLES
19
(b) The Hall voltage VH is given by the expression
V =
BI
.H ntq
(i) Use the letters in Fig. 9.1 to identify the distance t.
.......................................................................................................................................[1]
(ii) State the meaning of the symbol n.
...........................................................................................................................................
.......................................................................................................................................[1]
(iii) State and explain the effect, if any, on the polarity of the Hall voltage when negative
charge carriers (electrons) are replaced with positive charge carriers, moving in the
same direction towards the slice.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
[Total: 7]
–
11 (a) (i) Define magnetic flux.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) State Faraday’s law of electromagnetic induction.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(b) A solenoid has a coil C of wire wound tightly about its centre, as shown in Fig. 10.1.
coil C
solenoid
+
d.c. supply
Fig. 10.1
The coil C has 96 turns.
The uniform magnetic flux Φ (in weber) in the solenoid is given by the expression
Φ = 6.8 × 10–6 × I
where I is the current (in amperes) in the solenoid.
Calculate the average electromotive force (e.m.f.) induced in coil C when a current of 3.5A is
reversed in the solenoid in a time of 2.4ms.
e.m.f. = ....................................................... V [2]
(c) The d.c. supply in Fig. 10.1 is now replaced with a sinusoidal alternating supply.
Describe qualitatively the e.m.f. that is now induced in coil C.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
[Total: 8]

More Related Content

What's hot

0625 s13 qp_31
0625 s13 qp_310625 s13 qp_31
0625 s13 qp_31King Ali
 
0625 m15 qp_32
0625 m15 qp_320625 m15 qp_32
0625 m15 qp_32Omniya Jay
 
0625_w12_qp_32
0625_w12_qp_320625_w12_qp_32
0625_w12_qp_32King Ali
 
0625 s13 qp_33
0625 s13 qp_330625 s13 qp_33
0625 s13 qp_33King Ali
 
0625 s12 qp_31
0625 s12 qp_310625 s12 qp_31
0625 s12 qp_31King Ali
 
0625 w10 qp_32
0625 w10 qp_320625 w10 qp_32
0625 w10 qp_32King Ali
 
0625 s09 qp_3
0625 s09 qp_30625 s09 qp_3
0625 s09 qp_3King Ali
 
0625_s14_qp_33
0625_s14_qp_330625_s14_qp_33
0625_s14_qp_33King Ali
 
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014JakKy Kitmanacharounpong
 
0625 w12 qp_33
0625 w12 qp_330625 w12 qp_33
0625 w12 qp_33King Ali
 
0625 w09 qp_31
0625 w09 qp_310625 w09 qp_31
0625 w09 qp_31King Ali
 
0625 s13-qp-32
0625 s13-qp-320625 s13-qp-32
0625 s13-qp-32King Ali
 
0625 s15 qp_31
0625 s15 qp_310625 s15 qp_31
0625 s15 qp_31Omniya Jay
 
0625 w05 qp_3
0625 w05 qp_30625 w05 qp_3
0625 w05 qp_3King Ali
 
0625 s07 qp_3
0625 s07 qp_30625 s07 qp_3
0625 s07 qp_3King Ali
 
0625 w09 qp_32
0625 w09 qp_320625 w09 qp_32
0625 w09 qp_32King Ali
 
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014JakKy Kitmanacharounpong
 
0625_s14_qp_32
0625_s14_qp_320625_s14_qp_32
0625_s14_qp_32King Ali
 
0625 s15 qp_33
0625 s15 qp_330625 s15 qp_33
0625 s15 qp_33Omniya Jay
 

What's hot (19)

0625 s13 qp_31
0625 s13 qp_310625 s13 qp_31
0625 s13 qp_31
 
0625 m15 qp_32
0625 m15 qp_320625 m15 qp_32
0625 m15 qp_32
 
0625_w12_qp_32
0625_w12_qp_320625_w12_qp_32
0625_w12_qp_32
 
0625 s13 qp_33
0625 s13 qp_330625 s13 qp_33
0625 s13 qp_33
 
0625 s12 qp_31
0625 s12 qp_310625 s12 qp_31
0625 s12 qp_31
 
0625 w10 qp_32
0625 w10 qp_320625 w10 qp_32
0625 w10 qp_32
 
0625 s09 qp_3
0625 s09 qp_30625 s09 qp_3
0625 s09 qp_3
 
0625_s14_qp_33
0625_s14_qp_330625_s14_qp_33
0625_s14_qp_33
 
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2014
 
0625 w12 qp_33
0625 w12 qp_330625 w12 qp_33
0625 w12 qp_33
 
0625 w09 qp_31
0625 w09 qp_310625 w09 qp_31
0625 w09 qp_31
 
0625 s13-qp-32
0625 s13-qp-320625 s13-qp-32
0625 s13-qp-32
 
0625 s15 qp_31
0625 s15 qp_310625 s15 qp_31
0625 s15 qp_31
 
0625 w05 qp_3
0625 w05 qp_30625 w05 qp_3
0625 w05 qp_3
 
0625 s07 qp_3
0625 s07 qp_30625 s07 qp_3
0625 s07 qp_3
 
0625 w09 qp_32
0625 w09 qp_320625 w09 qp_32
0625 w09 qp_32
 
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 3 - Question Paper - May Jun 2014
 
0625_s14_qp_32
0625_s14_qp_320625_s14_qp_32
0625_s14_qp_32
 
0625 s15 qp_33
0625 s15 qp_330625 s15 qp_33
0625 s15 qp_33
 

Similar to A2paper4

Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013JakKy Kitmanacharounpong
 
0625 w11 qp_33
0625 w11 qp_330625 w11 qp_33
0625 w11 qp_33King Ali
 
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014JakKy Kitmanacharounpong
 
0625 w11 qp_31
0625 w11 qp_310625 w11 qp_31
0625 w11 qp_31King Ali
 
0625 s09 qp_6
0625 s09 qp_60625 s09 qp_6
0625 s09 qp_6King Ali
 
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013JakKy Kitmanacharounpong
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paperEvan Foley
 
0625 w08 qp_03
0625 w08 qp_030625 w08 qp_03
0625 w08 qp_03King Ali
 
0625 w08 qp_03
0625 w08 qp_030625 w08 qp_03
0625 w08 qp_03King Ali
 
0625_s14_qp_23
0625_s14_qp_230625_s14_qp_23
0625_s14_qp_23King Ali
 
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014JakKy Kitmanacharounpong
 
0625_w13_qp_61
0625_w13_qp_610625_w13_qp_61
0625_w13_qp_61King Ali
 
2016 chemistry paper 2 (specimen paper) (AS level structured questions)
2016 chemistry paper 2 (specimen paper) (AS level structured questions)2016 chemistry paper 2 (specimen paper) (AS level structured questions)
2016 chemistry paper 2 (specimen paper) (AS level structured questions)Mashiyat Jahin
 
0625_s14_qp_61
0625_s14_qp_610625_s14_qp_61
0625_s14_qp_61King Ali
 
0625 s14 qp_21
0625 s14 qp_210625 s14 qp_21
0625 s14 qp_21King Ali
 
5054_s14_qp_41
5054_s14_qp_415054_s14_qp_41
5054_s14_qp_41King Ali
 
0620 w14 qp_33
0620 w14 qp_330620 w14 qp_33
0620 w14 qp_33Omniya Jay
 
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014JakKy Kitmanacharounpong
 

Similar to A2paper4 (20)

9702_s21_qp_21.pdf
9702_s21_qp_21.pdf9702_s21_qp_21.pdf
9702_s21_qp_21.pdf
 
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2013
 
0625 w11 qp_33
0625 w11 qp_330625 w11 qp_33
0625 w11 qp_33
 
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014
Physics 0625 - Paper 2 version 3 - Question Paper - May Jun 2014
 
0625 w11 qp_31
0625 w11 qp_310625 w11 qp_31
0625 w11 qp_31
 
0625 s09 qp_6
0625 s09 qp_60625 s09 qp_6
0625 s09 qp_6
 
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013
Physics 0625 - Paper 3 version 3 - Question Paper - May Jun 2013
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paper
 
0625 w08 qp_03
0625 w08 qp_030625 w08 qp_03
0625 w08 qp_03
 
0625 w08 qp_03
0625 w08 qp_030625 w08 qp_03
0625 w08 qp_03
 
0625_s14_qp_23
0625_s14_qp_230625_s14_qp_23
0625_s14_qp_23
 
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 3 version 2 - Question Paper - May Jun 2014
 
0625_w13_qp_61
0625_w13_qp_610625_w13_qp_61
0625_w13_qp_61
 
9701 y16 sp_2 (1)
9701 y16 sp_2 (1)9701 y16 sp_2 (1)
9701 y16 sp_2 (1)
 
2016 chemistry paper 2 (specimen paper) (AS level structured questions)
2016 chemistry paper 2 (specimen paper) (AS level structured questions)2016 chemistry paper 2 (specimen paper) (AS level structured questions)
2016 chemistry paper 2 (specimen paper) (AS level structured questions)
 
0625_s14_qp_61
0625_s14_qp_610625_s14_qp_61
0625_s14_qp_61
 
0625 s14 qp_21
0625 s14 qp_210625 s14 qp_21
0625 s14 qp_21
 
5054_s14_qp_41
5054_s14_qp_415054_s14_qp_41
5054_s14_qp_41
 
0620 w14 qp_33
0620 w14 qp_330620 w14 qp_33
0620 w14 qp_33
 
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014
Physics 0625 - Paper 5 version 2 - Question Paper - May Jun 2014
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

A2paper4

  • 1. *2358498204* Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level PHYSICS 9702/42 Paper 4 A Level Structured Questions Mock 2019 2 hours Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. This document consists of 26 printed pages and 2 blank pages. DC (NH/CGW) 143388/6 © UCLES 2018 [Turn over
  • 2. 2 Data speed of light in free space c = 3.00 × 108 m s−1 permeability of free space μ0 = 4π × 10−7 Hm−1 permittivity of free space ε0 = 8.85 × 10−12 Fm−1 ( 1 4πε0 = 8.99 × 109 m F−1) elementary charge e = 1.60 × 10−19 C the Planck constant h = 6.63 × 10−34 Js unified atomic mass unit 1u = 1.66 × 10−27 kg rest mass of electron me = 9.11 × 10−31 kg rest mass of proton mp = 1.67 × 10−27 kg molar gas constant R = 8.31JK−1 mol−1 the Avogadro constant NA = 6.02 × 1023 mol−1 the Boltzmann constant k = 1.38 × 10−23 JK−1 gravitational constant G = 6.67 × 10−11 N m2 kg−2 acceleration of free fall g = 9.81m s−2
  • 3. 3 [Turn over© UCLES 2 2 t Formulae uniformly accelerated motion s = ut + 1 at 2 v2 = u2 +2as work done on/by a gas W = pΔV gravitational potential φ = − Gm r hydrostatic pressure p = ρgh pressure of an ideal gas p = 1 Nm 〈c2〉3 V simple harmonic motion a = − ω 2x velocity of particle in s.h.m. v = v0 cos ωt 2 2 v = ± ω (x0 fsv Doppler effect fo = v ± v - x ) s electric potential V = Q 4πε0r capacitors in series 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel C = C1 + C2 + . . . energy of charged capacitor W = 1 QV electric current I = Anvq resistors in series R = R1 + R2 + . . . resistors in parallel 1/R = 1/R1 + 1/R2 + . . . Hall voltage V = BI H ntq alternating current/voltage x = x0 sin ω  t radioactive decay x = x0 exp(−λt ) decay constant λ = 0.693 1 2
  • 4. 4 Answer all the questions in the spaces provided. 1 (a) (i) State what is meant by a line of force in a gravitational field. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[1] (ii) By reference to the pattern of the lines of gravitational force near to the surface of the Earth, explain why the acceleration of free fall near to the Earth’s surface is approximately constant. ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[3] (b) The Moon may be considered to be a uniform sphere that is isolated in space. It has radius 1.74 × 103 km and mass 7.35 × 1022 kg. (i) Calculate the gravitational field strength at the Moon’s surface. gravitational field strength = ............................................... N kg–1 [2] (ii) A satellite is in a circular orbit about the Moon at a height of 320 km above its surface. Calculate the time for the satellite to complete one orbit of the Moon. time = ........................................................ s [3]
  • 5. 5 [Turn over© UCLES [Total: 9] 2 (a) (i) A gravitational field may be represented by lines of gravitational force. State what is meant by a line of gravitational force. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[1] (ii) By reference to lines of gravitational force near to the surface of the Earth, explain why the gravitational field strength g close to the Earth’s surface is approximately constant. ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[3] (b) The Moon may be considered to be a uniform sphere of diameter 3.4 × 103 km and mass 7.4 × 1022 kg. The Moon has no atmosphere. During a collision of the Moon with a meteorite, a rock is thrown vertically up from the surface of the Moon with a speed of 2.8 km s–1. Assuming that the Moon is isolated in space, determine whether the rock will travel out into distant space or return to the Moon’s surface. [4] [Total: 8]
  • 6. 10 0 t1 3 (a) State two conditions necessary for a mass to be undergoing simple harmonic motion. 1. ............................................................................................................................................... ................................................................................................................................................... 2. ............................................................................................................................................... ................................................................................................................................................... [2] (b) A trolley of mass 950g is held on a horizontal surface by means of two springs attached to fixed points P and Q, as shown in Fig. 4.1. trolley mass 950g spring P Q Fig. 4.1 The springs, each having a spring constant k of 230Nm–1, are always extended. The trolley is displaced along the line of the springs and then released. The variation with time t of the displacement x of the trolley is shown in Fig. 4.2. x 0 t Fig. 4.2
  • 7. [Turn over© UCLES 11 (i) 1. State and explain whether the oscillations of the trolley are heavily damped, critically damped or lightly damped. .................................................................................................................................... .................................................................................................................................... 2. Suggest the cause of the damping. .................................................................................................................................... .................................................................................................................................... .................................................................................................................................... [3] (ii) The acceleration a of the trolley of mass m maybe assumedto be given by the expression 2k a = – d m nx . 1. Calculate the angular frequency ω of the oscillations of the trolley. ω = ............................................... rads–1 [3] 2. Determine the time t1 shown on Fig. 4.2. t1 = ....................................................... s [2] [Total: 10]
  • 8. 4 (a) A mass is undergoing simple harmonic motion with amplitude x0. The maximum velocity of the mass has magnitude v0. On Fig. 3.1, show the variation with displacement x of the velocity v of the mass. v v0 0 −x0 x00 x −v0 Fig. 3.1 [2] (b) A straight stiff wire carries a constant current in a region of uniform magnetic flux density. The angle θ between the direction of the current and the direction of the magnetic field is varied. The maximum force on the wire is F0. On Fig. 3.2, show the variation with angle θ of the force F on the wire for values of θ between 0° and 90°. F0 F 0 0 90 θ /° Fig. 3.2 [2]
  • 9. [Turn over© UCLES 13 (c) A sinusoidal supply has frequency 250 Hz and r.m.s. potential difference 2.8V. On the axes of Fig. 3.3, show quantitatively the variation with time t of the voltage V for one cycle of the varying voltage. 8 V/V 6 4 2 0 1 2 3 4 5 t/ms −4 −6 −8 Fig. 3.3 [2]
  • 10. 5 (a) Explain what is meant by the natural frequency of vibration of a system. ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[1] (b) A block of metal is fixed to one end of a vertical spring. The other end of the spring is attached to an oscillator, as shown in Fig. 4.1. oscillator spring metal block Fig. 4.1 The amplitude of oscillation of the oscillator is constant. The variation of the amplitude x0 of the oscillations of the block with frequency f of the oscillations is shown in Fig. 4.2. x0 0 f Fig. 4.2
  • 11. [Turn over© UCLES 15 (i) Name the effect shown in Fig. 4.2. .......................................................................................................................................[1] (ii) State and explain whether the block is undergoing damped oscillations. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[2] (c) State one example in which the effect shown in Fig. 4.2 is useful. ................................................................................................................................................... ...............................................................................................................................................[1] [Total: 5]
  • 12. 6 (a) Explain what is meant by the capacitance of a parallel plate capacitor. ................................................................................................................................................... ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[3] (b) Three parallel plate capacitors each have a capacitance of 6.0 μF. Draw circuit diagrams, one in each case, to show how the capacitors may be connected together to give a combined capacitance of (i) 9.0μF, [1] (ii) 4.0μF. [1] (c) Two capacitors of capacitances 3.0 μF and 2.0μF are connected in series with a battery of electromotive force (e.m.f.) 8.0V, as shown in Fig. 6.1. 3.0μF 2.0μF 8.0V Fig. 6.1
  • 13. [Turn over© UCLES 17 (i) Calculate the combined capacitance of the capacitors. capacitance = ..................................................... μF [1] (ii) Use your answer in (i) to determine, for the capacitor of capacitance 3.0 μF, 1. the charge on one plate of the capacitor, charge = .......................................................... μC 2. the energy stored in the capacitor. energy = ......................................... J [4] [Total: 10]
  • 14. 7 (a) Explain how a uniform magnetic field and a uniform electric field may be used as a velocity selector for charged particles. ................................................................................................................................................... ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[3]
  • 15. [Turn over© UCLES 19 (b) Particles having mass m and charge +1.6 × 10–19 C pass through a velocity selector. They then enter a region of uniform magnetic field of magnetic flux density 94mT with speed 3.4 × 104 m s–1 , as shown in Fig. 8.1. path of charged particle velocity selector 15.0 cm uniform magnetic field into page Fig. 8.1 The direction of the uniform magnetic field is into the page and normal to the direction in which the particles are moving. The particles are moving in a vacuum in a circular arc of diameter 15.0 cm. Show that the mass of one of the particles is 20u. [4] (c) On Fig. 8.1, sketch the path in the uniform magnetic field of a particle of mass 22u having the same charge and speed as the particle in (b). [2] [Total: 9]
  • 16. 8 (a) State what is meant by the magnetic flux linkage of a coil. ................................................................................................................................................... ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[3] (b) A coil of wire has 160 turns and diameter 2.4cm. The coil is situated in a uniform magnetic field of flux density 7.5 mT, as shown in Fig. 9.1. magnetic field flux density 7.5mT 2.4cm coil 160 turns Fig. 9.1 The direction of the magnetic field is along the axis of the coil. The magnetic flux density is reduced to zero in a time of 0.15 s. Show that the average e.m.f. induced in the coil is 3.6mV. [2]
  • 17. [Turn over© UCLES 21 (c) The magnetic flux density B in the coil in (b) is now varied with time t as shown in Fig. 9.2. 10 B/mT 5 0 0.1 0.2 0.3 0.4 0.5 t/s 0.6 –5 –10 Fig. 9.2 Use data in (b) to show, on Fig. 9.3, the variation with time t of the e.m.f. E induced in the coil. 8 E/mV 6 4 2 0 0.1 –2 0.2 0.3 0.4 0.5 t/s 0.6 –4 –6 –8 Fig. 9. [4] [Total: 9]
  • 18. 9 (a) State what is meant by electric potential at a point. ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[2] (b) The centres of two charged metal spheres Aand B are separated by a distance of 44.0cm, as shown in Fig. 7.1. 44.0 cm sphere A sphere B P x Fig. 7.1 (not to scale) A moveable point P lies on the line joining the centres of the two spheres. Point P is a distance x from the centre of sphere A. The variation with distance x of the electric potential V at point P is shown in Fig. 7.2. 2.2 V/104 V 2.0 1.8 1.6 1.4 1.2 0 10 20 30 40 50 x /cm Fig. 7.2
  • 19. [Turn over© UCLES 17 (i) Use Fig. 7.2 to state and explain whether the two spheres have charges of the same, or opposite, sign. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[1] (ii) A positively-charged particle is at rest on the surface of sphere A. The particle moves freely from the surface of sphere A to the surface of sphere B. 1. Describe qualitatively the variation, if any, with distance x of the speed of the particle as it moves from x = 12cm to x = 25cm ............................................................................ .................................................................................................................................... passes through x = 26 cm .......................................................................................... .................................................................................................................................... moves from x = 27 cm to x = 31cm ............................................................................ .................................................................................................................................... reaches x = 32cm ...................................................................................................... ................................................................................................................................ [4] 2. The particle has charge 3.2 × 10–19 C and mass 6.6 × 10–27 kg. Calculate the maximum speed of the particle. speed = ................................................. m s–1 [2] [Total: 9]
  • 20. 10 A thin slice of conducting material has its faces PQRS and VWXY normal to a uniform magnetic field of flux density B, as shown in Fig. 9.1. magnetic field flux density B Q R W X direction of motion of electrons P S V Y Fig. 9.1 Electrons enter the slice at right-angles to face SRXY. A potential difference, the Hall voltage VH, is developed between two faces of the slice. (a) (i) Use letters from Fig. 9.1 to name the two faces between which the Hall voltage is developed. ............................................................... and ............................................................... [1] (ii) State and explain which of the two faces named in (a)(i) is the more positive. ........................................................................................................................................... .......................................................................................................................................[2]
  • 21. [Turn over© UCLES 19 (b) The Hall voltage VH is given by the expression V = BI .H ntq (i) Use the letters in Fig. 9.1 to identify the distance t. .......................................................................................................................................[1] (ii) State the meaning of the symbol n. ........................................................................................................................................... .......................................................................................................................................[1] (iii) State and explain the effect, if any, on the polarity of the Hall voltage when negative charge carriers (electrons) are replaced with positive charge carriers, moving in the same direction towards the slice. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[2] [Total: 7]
  • 22. – 11 (a) (i) Define magnetic flux. ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[2] (ii) State Faraday’s law of electromagnetic induction. ........................................................................................................................................... ........................................................................................................................................... ........................................................................................................................................... .......................................................................................................................................[2] (b) A solenoid has a coil C of wire wound tightly about its centre, as shown in Fig. 10.1. coil C solenoid + d.c. supply Fig. 10.1 The coil C has 96 turns. The uniform magnetic flux Φ (in weber) in the solenoid is given by the expression Φ = 6.8 × 10–6 × I where I is the current (in amperes) in the solenoid.
  • 23.
  • 24. Calculate the average electromotive force (e.m.f.) induced in coil C when a current of 3.5A is reversed in the solenoid in a time of 2.4ms. e.m.f. = ....................................................... V [2] (c) The d.c. supply in Fig. 10.1 is now replaced with a sinusoidal alternating supply. Describe qualitatively the e.m.f. that is now induced in coil C. ................................................................................................................................................... ................................................................................................................................................... ...............................................................................................................................................[2] [Total: 8]