SlideShare a Scribd company logo
1 of 44
Download to read offline
Submitted	
  in	
  Partial	
  Fulfillment	
  of	
  the	
  International	
  Baccalaureate	
  Diploma	
  for	
  the	
  
Examination	
  Session	
  of	
  May	
  2014	
  
	
  
Extended	
  Essay	
  
	
  
	
  
	
  
	
  
-­‐Information	
  Technology	
  in	
  a	
  Global	
  Society	
  (ITGS)-­‐	
  
	
  
	
  
	
  
	
  
To	
  What	
  Extent	
  is	
  Robotic	
  Surgery	
  an	
  Information	
  Technology	
  
Solution	
  to	
  Traditional	
  Laparoscopic	
  Surgery?	
  
	
  
Word	
  Count:	
  3960	
  
	
  
Reza	
  Talieh	
  
ITGS	
  
2014	
  Graduate	
  
	
  
000782-­‐0151	
  
	
   2	
  
Abstract	
  
The	
  purpose	
  of	
  this	
  investigation	
  was	
  to	
  evaluate	
  the	
  multiple	
  facets	
  of	
  
comparison	
  between	
  traditional	
  laparoscopic	
  minimally	
  invasive	
  surgery	
  with	
  its	
  
contemporary	
  robotic	
  counterpart	
  and	
  conclude	
  with	
  an	
  overall	
  statement	
  on	
  how	
  
well	
  robotic	
  surgery	
  can	
  be	
  merited	
  as	
  a	
  practical	
  solution	
  to	
  many	
  of	
  the	
  limitations	
  
that	
  plague	
  human	
  surgery	
  methods.	
  Robotic	
  surgery	
  naturally	
  relegated	
  to	
  a	
  more	
  
specific	
  realm	
  of	
  minimally	
  invasive	
  surgery,	
  the	
  scope	
  of	
  the	
  investigation	
  would	
  be	
  
narrow	
  and	
  ubiquitous	
  enough	
  that	
  the	
  question	
  could	
  be	
  reasonably	
  answered	
  
with	
  existing	
  research	
  and	
  a	
  primary	
  investigation.	
  This	
  investigation,	
  specifically,	
  
would	
  manifest	
  itself	
  as	
  a	
  survey	
  delivered	
  to	
  local	
  surgeons	
  who	
  identify	
  
themselves	
  as	
  representative	
  of	
  robotic	
  surgery	
  and	
  who	
  all	
  use	
  the	
  same	
  
telesurgical	
  system.	
  Their	
  expert	
  opinions	
  would	
  serve	
  to	
  mostly	
  support	
  secondary	
  
studies	
  of	
  the	
  abilities	
  of	
  robotic	
  surgery,	
  and	
  would	
  provide	
  qualitative	
  appraisals	
  
of	
  the	
  merits	
  of	
  telerobotics	
  unobtainable	
  anywhere	
  else.	
  After	
  a	
  brief	
  experience	
  
with	
  the	
  da	
  Vinci	
  machine	
  in	
  question	
  itself,	
  I	
  released	
  the	
  anonymous	
  survey	
  
through	
  a	
  relative	
  in	
  the	
  medical	
  field	
  who	
  had	
  contact	
  with	
  the	
  14	
  surgeons	
  
considered.	
  After	
  holistic,	
  logistic,	
  potential,	
  and	
  even	
  ethical	
  evaluations	
  of	
  robotics	
  
in	
  the	
  realm	
  of	
  minimally	
  invasive	
  surgery,	
  it	
  was	
  concluded	
  that	
  robotics	
  have	
  all	
  
the	
  potential	
  and	
  tangible	
  results	
  to	
  market	
  it	
  as	
  an	
  IT	
  solution	
  to	
  multiple	
  
shortcoming	
  of	
  laparoscopy,	
  yet	
  telerobotics	
  faces	
  its	
  largest	
  obstacles	
  in	
  logistics	
  of	
  
implementation	
  and	
  moral	
  acceptance	
  as	
  a	
  valid	
  medical	
  advancement.	
  
Word	
  Count:	
  240	
  
000782-­‐0151	
  
	
   3	
  
Table	
  of	
  Contents	
  
Abstract………………………………………………………………………………………………………………	
  2	
  
1.	
  Introduction……………………………………………………………………………………………………..	
  5	
  
1.1	
  Why	
  I	
  chose	
  robotic	
  surgery	
  for	
  analysis…………………………………………………………	
  5	
  
1.2	
  The	
  history	
  of	
  robotic	
  surgery……………………………………………………………………...5-­‐	
  6	
  
1.3	
  An	
  exploration	
  into	
  robotic	
  surgery………………………………………………………………...	
  6	
  
2.	
  The	
  mechanics	
  of	
  robotic	
  surgery……………………………………………………………………..	
  6	
  
2.1	
  Myths	
  and	
  misconceptions…………………………………………………………………………..6-­‐	
  7	
  
2.2	
  Features	
  of	
  a	
  robotic	
  surgery	
  system……………………………………………………………8-­‐	
  9	
  
2.3	
  Information	
  technology	
  at	
  work…………………………………………………………………….10	
  
3.	
  A	
  means	
  of	
  comparison…………………………………………………………………………………...10	
  
3.1	
  Operating	
  room	
  time………………………………………………………………………………..10-­‐11	
  
3.2	
  Length	
  of	
  stay………………………………………………………………………………………….11-­‐12	
  
3.3	
  General	
  Benefits………………………………………………………………………………………12-­‐13	
  
3.4	
  Ergonomics………………………….………………………………………………………....………13-­‐1	
  4	
  
3.5	
  Learning	
  Curve………………………………………………………………………………………..15-­‐1	
  6	
  
4.	
  Logistics	
  of	
  implementation……………………………………………………………………………1	
  7	
  
4.1	
  Costs………………………………………………………………………………………………….……17-­‐18	
  
4.2	
  Returns………………………………………………………………………………………………………..1	
  8	
  
4.3	
  Accessibility…………………………………………………………………...…………………………….19	
  
5.	
  Abilities	
  and	
  limitations	
  of	
  robotic	
  surgery………………………………………………………1	
  9	
  
5.1	
  Extension	
  of	
  the	
  doctor……………………………………………………………………………19-­‐21	
  
000782-­‐0151	
  
	
   4	
  
5.2	
  Tactile	
  sensation…………………………...…………………………………………………………21-­‐22	
  
6.	
  Telemedicine………………………………………………………………………………………………….22	
  
6.1	
  Telemedical	
  aspects	
  of	
  telerobotic	
  surgery…………………………………………………….2	
  2	
  
6.2	
  Potential	
  of	
  a	
  worldwide	
  solution…………………………………………………………….22-­‐2	
  3	
  
6.3	
  Ethics	
  of	
  remote	
  teleoperations…………….……………………………………………………….23	
  
7.	
  Conclusion………………………………………………………………………………………………...24-­‐2	
  6	
  
8.	
  Glossary………………………………………………………………………………….....……………...27-­‐2	
  8	
  
9.	
  Works	
  Cited…………………………….…………………………………………………..…………….29-­‐31	
  
10.	
  Bibliography…………………………………...………………………………...…………………….32-­‐3	
  4	
  
11.	
  Appendices……………………….………………………………………………………………..……35-­‐44	
  
	
  
000782-­‐0151	
  
	
   5	
  
1.	
  Introduction	
  
1.1	
  Why	
  I	
  chose	
  robotic	
  surgery	
  for	
  analysis	
  
Robotic	
  surgery	
  is	
  a	
  burgeoning	
  technology	
  in	
  the	
  medical	
  field	
  that	
  in	
  its	
  early	
  
stages	
  has	
  demonstrated	
  tangible	
  medical	
  capabilities	
  while	
  still	
  retaining	
  the	
  
potential	
  for	
  growth.	
  As	
  this	
  new	
  technique	
  is	
  an	
  avant-­‐garde	
  field	
  of	
  study	
  and	
  
practice,	
  and	
  as	
  robotic	
  surgery	
  plays	
  a	
  pivotal	
  role	
  in	
  telemedicine,	
  the	
  concept	
  in	
  
its	
  entirety	
  is	
  an	
  excellent	
  topic	
  for	
  an	
  Extended	
  Essay	
  regarding	
  Information	
  
Technology	
  in	
  a	
  Global	
  Society	
  in	
  line	
  with	
  Strand	
  2.4	
  Health	
  of	
  the	
  ITGS	
  curriculum	
  
in	
  analysis	
  of	
  IT	
  on	
  stakeholders.	
  Its	
  intrinsic	
  combination	
  with	
  technology	
  affords	
  
this	
  new	
  category	
  of	
  procedure	
  a	
  whole	
  new	
  facet	
  to	
  medicine,	
  and	
  that	
  is	
  remotely	
  
operated	
  surgery	
  for	
  a	
  global	
  approach	
  to	
  medicine.	
  This,	
  coupled	
  with	
  the	
  recent	
  
adoption	
  of	
  surgical	
  robotics	
  in	
  our	
  local	
  hospital,	
  has	
  afforded	
  me	
  the	
  proximity	
  to	
  
study	
  this	
  technology	
  first	
  hand,	
  and	
  affords	
  me	
  the	
  opportunity	
  beyond	
  simply	
  the	
  
desire	
  to	
  investigate	
  the	
  objective	
  potential	
  of	
  robotic	
  surgery,	
  and	
  begs	
  the	
  
question	
  of	
  to	
  what	
  extent	
  is	
  robotic	
  surgery	
  an	
  information	
  technology	
  solution	
  to	
  
traditional	
  laparoscopic	
  surgery?	
  
1.2	
  The	
  history	
  of	
  robotic	
  surgery	
  
Since	
  1994,	
  the	
  modern	
  information	
  age	
  has	
  begun	
  to	
  adapt	
  itself	
  to	
  modern	
  
medicine	
  in	
  the	
  endeavor	
  to	
  create	
  the	
  future	
  of	
  both	
  medicine	
  and	
  technology.	
  With	
  
the	
  producer,	
  Computer	
  Motion,	
  at	
  the	
  forefront,	
  advanced	
  operating	
  room	
  tools	
  
such	
  as	
  Aesop	
  have	
  assisted	
  in	
  over	
  70,000	
  pioneering	
  procedures.	
  Although	
  this	
  
began	
  simply	
  as	
  a	
  method	
  to	
  control	
  a	
  video	
  interface	
  typical	
  in	
  normal	
  laparoscopic	
  
surgery,	
  Aesop’s	
  successor,	
  Zeus,	
  performed	
  the	
  first	
  surgeon-­‐mimicking	
  
000782-­‐0151	
  
	
   6	
  
movements,	
  such	
  as	
  incisions	
  or	
  grabbing	
  motions.1	
  Contemporarily,	
  the	
  da	
  Vinci	
  
Surgical	
  System	
  integrates	
  and	
  advances	
  its	
  predecessor’s	
  developments,	
  and	
  is	
  
currently	
  the	
  leading	
  FDA	
  approved	
  telesurgical	
  device.2	
  Modern	
  robotic	
  surgery	
  
can	
  be	
  defined	
  as	
  a	
  subset	
  of	
  minimally	
  invasive	
  surgery	
  where	
  the	
  surgeon	
  him	
  or	
  
herself	
  is	
  operating	
  from	
  a	
  different	
  location	
  a	
  set	
  distance	
  away,	
  linked	
  to	
  a	
  
machine	
  that	
  captures	
  3-­‐dimensional	
  images	
  of	
  the	
  patient	
  for	
  the	
  surgeons	
  
viewing,	
  and	
  translates	
  the	
  doctors	
  actions	
  into	
  the	
  surgical	
  procedure	
  done	
  via	
  the	
  
robot’s	
  “arms”.	
  
1.3	
  An	
  exploration	
  into	
  robotic	
  surgery	
  
In	
  the	
  realm	
  of	
  robotic	
  laparoscopic	
  surgery,	
  taking	
  a	
  novel	
  approach	
  to	
  traditional	
  
surgical	
  methods,	
  always	
  poses	
  the	
  question	
  of	
  whether	
  robotic	
  surgery	
  is	
  the	
  
evolution	
  of	
  traditional	
  surgery,	
  or	
  simply	
  a	
  gimmick	
  with	
  no	
  future.	
  The	
  solution	
  to	
  
this	
  question	
  in	
  a	
  contemporary	
  setting	
  has	
  its	
  ambiguities,	
  and	
  with	
  a	
  legal	
  
adoption	
  beginning	
  only	
  in	
  the	
  year	
  2000,	
  telesurgery	
  is	
  still	
  in	
  its	
  youth.	
  Still,	
  with	
  
Information	
  Technology	
  at	
  its	
  core	
  designed	
  to	
  overcome	
  shortcomings	
  in	
  
traditional	
  laparoscopy	
  designed	
  in	
  mind	
  to	
  aid	
  human	
  progress	
  by	
  bringing	
  
perhaps	
  both	
  economic	
  and	
  quality-­‐of-­‐life	
  benefits,	
  robotic	
  telesurgery	
  has	
  the	
  
potential	
  to	
  both	
  enhance	
  and	
  detract	
  from	
  traditional	
  laparoscopic	
  surgery.	
  
2.	
  The	
  mechanics	
  of	
  robotic	
  surgery	
  
2.1	
  Myths	
  and	
  misconceptions	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  "Robotics:	
  The	
  Future	
  of	
  Minimally	
  Invasive	
  Heart	
  Surgery."	
  Robotics:	
  The	
  Future	
  of	
  Minimally	
  
Invasive	
  Heart	
  Surgery.	
  Brown	
  University,	
  5	
  Mar.	
  2000.	
  Web.	
  21	
  July	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/Robotics.html>.	
  
2	
  Rosen,	
  Jacob,	
  Blake	
  Hannaford,	
  and	
  Richard	
  M.	
  Satava.	
  Surgical	
  Robotics:	
  Systems,	
  Applications,	
  and	
  
Visions.	
  New	
  York:	
  Springer,	
  2011.203.Print.	
  
000782-­‐0151	
  
	
   7	
  
The	
  first	
  and	
  perhaps	
  greatest	
  misconception	
  is	
  that	
  people	
  believe	
  that	
  commonly	
  
practiced	
  robotic	
  surgery	
  relies	
  on	
  AI,	
  or	
  artificial	
  intelligence	
  of	
  a	
  robot	
  completing	
  
the	
  surgery	
  with	
  little	
  or	
  no	
  human	
  interaction.	
  The	
  truth	
  is,	
  while	
  pre-­‐programmed	
  
procedures	
  have	
  been	
  developed	
  for	
  robotic	
  purposes	
  in	
  the	
  past,	
  traditionally	
  
adopted	
  telesurgery	
  as	
  with	
  the	
  FDA	
  approved	
  da	
  Vinci	
  Surgical	
  System	
  is	
  
completely	
  surgeon	
  operated.	
  A	
  surgeon	
  stationed	
  in	
  the	
  same	
  room	
  operates	
  at	
  a	
  
console	
  input	
  directly	
  wired	
  to	
  the	
  surgical	
  system	
  output,	
  which	
  performs	
  only	
  
movements	
  directed	
  by	
  the	
  surgeon.	
  The	
  second	
  misconception	
  is	
  that	
  there	
  is	
  lag,	
  
or	
  a	
  latency	
  period	
  between	
  the	
  surgeon’s	
  actions	
  and	
  those	
  of	
  the	
  robot	
  arm.	
  
Latency	
  is	
  a	
  major	
  issue	
  with	
  any	
  remote	
  IT,	
  however,	
  in	
  this	
  case	
  again	
  the	
  surgeon	
  
is	
  directly	
  wired	
  to	
  the	
  robot	
  in	
  the	
  same	
  room,	
  and	
  the	
  feedback	
  and	
  output	
  of	
  the	
  
robot	
  are	
  all	
  but	
  synchronized	
  with	
  the	
  surgeon.3	
  The	
  third	
  major	
  myth	
  suggests	
  
that	
  robotic	
  surgery	
  reduces	
  the	
  viewing	
  capabilities	
  of	
  the	
  surgeon,	
  who	
  looks	
  now	
  
at	
  a	
  screen	
  instead	
  of	
  the	
  actual	
  patient.	
  While	
  this	
  is	
  true	
  to	
  a	
  small	
  degree,	
  that	
  
traditional	
  endoscopic	
  instruments	
  allow	
  a	
  larger	
  range	
  of	
  view,	
  the	
  robotic	
  surgical	
  
system	
  permits	
  the	
  doctor	
  a	
  3D	
  1080i	
  HD	
  view	
  of	
  the	
  patient,	
  which	
  when	
  coupled	
  
with	
  greater	
  zoom	
  capabilities,	
  more	
  than	
  compensates	
  for	
  the	
  negligible	
  difference	
  
in	
  range	
  of	
  view.4	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  "All	
  About	
  Robotic	
  Surgery."	
  Q&A	
  about	
  Robotic	
  Surgery.	
  World	
  Wide	
  Information	
  Center	
  for	
  
Minimally	
  Invasive	
  Robotic	
  Surgery,	
  2011.	
  Web.	
  31	
  July	
  2013.	
  
<http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.	
  
4	
  "Da	
  Vinci®	
  Surgical	
  System."	
  Robot-­‐Assisted	
  Surgery:	
  Da	
  Vinci.	
  Brown	
  University,	
  2005.	
  Web.	
  31	
  July	
  
2013.	
  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.	
  
000782-­‐0151	
  
	
   8	
  
2.2	
  Features	
  of	
  a	
  robotic	
  surgery	
  system	
  
While	
  many	
  devices	
  fall	
  under	
  the	
  umbrella	
  of	
  robotically	
  assisted	
  surgery,	
  this	
  
paper	
  will	
  focus	
  specifically	
  on	
  telesurgical	
  machines	
  such	
  as	
  the	
  da	
  Vinci	
  System.	
  
The	
  basic	
  layout	
  (figure	
  1)	
  involves	
  a	
  console	
  at	
  which	
  the	
  doctor	
  sits	
  and	
  views	
  a	
  
3D	
  zoomed	
  and	
  enhanced	
  reproduction	
  of	
  whatever	
  is	
  in	
  front	
  of	
  the	
  patient	
  cart’s	
  
endoscope.	
  The	
  patient	
  cart,	
  connected	
  via	
  direct	
  cables	
  or	
  wireless,	
  is	
  where	
  the	
  
surgery-­‐performing	
  robot	
  is	
  stationed.	
  Both	
  the	
  console	
  and	
  the	
  patient	
  cart	
  are	
  
adjustable	
  via	
  turn	
  knobs	
  to	
  suit	
  the	
  doctor	
  and	
  the	
  patient	
  respectively.	
  In	
  an	
  
unveiling	
  of	
  the	
  robot	
  at	
  the	
  local	
  hospital,	
  I	
  had	
  the	
  fortune	
  of	
  using	
  the	
  machine	
  
myself.	
  Two	
  pincer	
  like	
  controls	
  lie	
  beneath	
  the	
  robot,	
  operated	
  by	
  mainly	
  the	
  
thumb	
  and	
  forefinger	
  to	
  control	
  the	
  7-­‐degree	
  robots	
  grip,	
  and	
  hand	
  movements	
  of	
  
the	
  surgeon	
  can	
  be	
  scaled	
  down	
  up	
  to	
  one-­‐fifth	
  the	
  motion	
  by	
  the	
  robot.5	
  	
  A	
  pedal	
  
known	
  as	
  the	
  “clutch”	
  is	
  used	
  readjust	
  the	
  operator’s	
  hand	
  movements	
  while	
  the	
  
robot	
  lies	
  perfectly	
  still,	
  and	
  also	
  functions	
  as	
  a	
  zoom	
  if	
  coupled	
  with	
  push	
  and	
  pull	
  
movements.	
  A	
  special	
  holding	
  rack	
  displays	
  the	
  multiple	
  EndoWrist®	
  surgical	
  
instruments	
  for	
  a	
  nurse	
  to	
  swap	
  out	
  instruments	
  for	
  the	
  use	
  of	
  three	
  of	
  the	
  arms	
  
(the	
  fourth	
  is	
  dedicated	
  to	
  the	
  endoscope).	
  The	
  da	
  Vinci	
  System	
  console	
  is	
  
compatible	
  with	
  surgeon	
  training	
  software,	
  models,	
  and	
  simulations.6	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  "Parkridge	
  East	
  Hospital."	
  The	
  Center	
  for	
  Robotic	
  Surgery.	
  Brigham	
  and	
  Women's	
  Hospital,	
  16	
  Oct.	
  
2012.	
  Web.	
  12	
  Aug.	
  2013.	
  <http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐
surgery>.	
  	
  
6	
  "Da	
  Vinci®	
  Skills	
  Simulator™."	
  Intuitive	
  Surgical.	
  Intuitive	
  Surgical,	
  Oct.	
  2010.	
  Web.	
  07	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/skills_simulator/>.	
  
000782-­‐0151	
  
	
   9	
  
	
  
Figure	
  1-­‐Diagram	
  of	
  da	
  Vinci	
  Surgical	
  System7	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  Bonsor,	
  Kevin,	
  and	
  Jonathan	
  Strickland.	
  "How	
  Robotic	
  Surgery	
  Will	
  Work."HowStuffWorks.	
  
HowStuffWorks,	
  30	
  Oct.	
  2000.	
  Web.	
  08	
  Aug.	
  2013.	
  <http://science.howstuffworks.com/life/human-­‐
biology/robotic-­‐surgery1.htm>.	
  
000782-­‐0151	
  
	
   10	
  
2.3	
  Information	
  technology	
  at	
  work	
  
In	
  the	
  aspiration	
  of	
  aiding	
  all	
  stakeholders,	
  i.e.	
  the	
  hospital,	
  the	
  surgical	
  staff,	
  and	
  the	
  
patients,	
  multiple	
  facets	
  of	
  Information	
  Technology	
  hardware	
  are	
  put	
  to	
  task.	
  
Beginning	
  with	
  computer	
  simulations	
  synced	
  to	
  the	
  movements	
  of	
  the	
  surgical	
  
console	
  to	
  train	
  surgeons,	
  the	
  telesurgical	
  system	
  progresses	
  to	
  a	
  thinner	
  3D	
  
endoscope	
  with	
  10-­‐35x	
  zoom	
  of	
  traditional	
  endoscopes	
  plus	
  digital	
  zoom	
  
capabilities.8	
  The	
  camera	
  of	
  the	
  endoscope	
  provides	
  direct	
  stereoscopic	
  1080i	
  High	
  
Definition	
  video	
  uplink	
  to	
  the	
  surgical	
  console.9	
  Limited	
  haptic	
  sensors	
  provide	
  
feedback	
  when	
  two	
  robotic	
  arms	
  come	
  into	
  contact	
  with	
  each	
  other,	
  and	
  sensors	
  on	
  
the	
  console’s	
  controls	
  even	
  filter	
  tiny	
  hand	
  tremors	
  for	
  more	
  precise	
  surgery10.	
  Via	
  
fiber	
  optics	
  at	
  an	
  average	
  speed	
  of	
  50	
  megabits	
  per	
  second,	
  there	
  is	
  the	
  capability	
  of	
  
wireless	
  telesurgery	
  overseas	
  via	
  a	
  Protected	
  Network	
  connection,	
  although	
  this	
  has	
  
yet	
  to	
  be	
  put	
  into	
  normal	
  practice.11	
  
3.	
  A	
  means	
  of	
  comparison	
  
3.1	
  Operating	
  room	
  time	
  
Currently,	
  surgery	
  with	
  the	
  da	
  Vinci	
  Surgical	
  System	
  is	
  estimated	
  to	
  take	
  40-­‐50	
  
minutes	
  longer	
  than	
  traditional	
  laparoscopy.12	
  This	
  figure	
  is	
  corroborated	
  by	
  the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  Nightdale,	
  C.	
  J.	
  "What	
  Can	
  Be	
  Expected	
  from	
  Magnification	
  Endoscopy?"	
  What	
  Can	
  Be	
  Expected	
  from	
  
Magnification	
  Endoscopy?	
  Oeso	
  Knowledge,	
  May	
  1998.	
  Web.	
  08	
  Aug.	
  2013.	
  
<http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.	
  
9"Da	
  Vinci	
  Surgical	
  System	
  Overview	
  Video."	
  Intuitive	
  Surgical.	
  Intuitive	
  Surgical,	
  Oct.	
  2010.	
  Web.	
  08	
  
Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_video.html>.	
  
10	
  Park,	
  J.	
  "A	
  Haptic	
  Teleoperation	
  Approach	
  Based	
  on	
  Contact	
  Force	
  Control."	
  The	
  International	
  
Journal	
  of	
  Robotics	
  Research	
  25.5-­‐6	
  (2006):	
  575-­‐91.	
  Print.	
  
11	
  Bell,	
  Kay.	
  "Comparison	
  of	
  DSL,	
  Cable	
  &	
  Fiber	
  Optic."	
  Science.	
  OpposingViews.com,	
  n.d.	
  Web.	
  09	
  Aug.	
  
2013.	
  <http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.	
  
12	
  "Da	
  Vinci®	
  Surgical	
  System."	
  Robot-­‐Assisted	
  Surgery:	
  Da	
  Vinci.	
  Brown	
  University,	
  2005.	
  Web.	
  9	
  Aug.	
  
2013.	
  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.	
  
000782-­‐0151	
  
	
   11	
  
expert	
  survey	
  in	
  figure	
  2,	
  which	
  demonstrates	
  that	
  more	
  than	
  half	
  of	
  the	
  doctors	
  
surveyed	
  believe	
  that	
  robotic	
  surgery	
  increases	
  procedure	
  time	
  on	
  average.	
  This	
  
factor,	
  however,	
  is	
  heavily	
  linked	
  to	
  the	
  learning	
  curve	
  of	
  the	
  IT.	
  Once	
  robotic	
  arm	
  
movements	
  become	
  familiar	
  and	
  truly	
  an	
  extension	
  of	
  the	
  surgeon,	
  then	
  this	
  statistic	
  
could	
  very	
  well	
  change.	
  
	
  
Figure	
  2	
  –	
  Robotic	
  surgery	
  decreases	
  OR	
  time	
  statistic	
  
3.2	
  Length	
  of	
  stay	
  
When	
  one	
  considers	
  that	
  the	
  duration	
  spent	
  recovering	
  in	
  any	
  hospital	
  is	
  not	
  only	
  
detrimental	
  to	
  the	
  hospital’s	
  resources	
  but	
  the	
  patient’s	
  physical	
  and	
  financial	
  well	
  
being	
  in	
  addition	
  to	
  time	
  spent	
  away	
  from	
  work,	
  this	
  becomes	
  a	
  significant	
  point	
  of	
  
discussion;	
  both	
  parties	
  are	
  now	
  stakeholders.	
  According	
  to	
  a	
  study	
  conducted	
  by	
  
the	
  Department	
  of	
  Urology	
  at	
  the	
  University	
  of	
  Washington,	
  “When	
  the	
  total	
  (fixed,	
  
variable,	
  OR,	
  and	
  hospital	
  stay)	
  costs	
  for	
  robotic	
  surgery	
  and	
  open	
  surgery	
  are	
  
comparable,	
  it	
  is	
  largely	
  due	
  to	
  a	
  considerable	
  shortening	
  of	
  the	
  length	
  of	
  hospital	
  
stay	
  after	
  the	
  robotic	
  surgery,	
  resulting	
  in	
  total	
  cost	
  savings”13.	
  Logic	
  would	
  dictate	
  
that,	
  a	
  more	
  minimally	
  invasive	
  surgery	
  would	
  result	
  in	
  a	
  faster	
  natural	
  healing	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
  Leddy,	
  Laura	
  S.,	
  Thomas	
  S.	
  Lendvay,	
  and	
  Richard	
  M.	
  Satava.	
  "Robotic	
  Surgery:	
  Applications	
  and	
  
Cost	
  Effectiveness."	
  Robotic	
  Surgery:	
  Applications	
  and	
  Cost	
  Effectiveness.	
  Dove	
  Press,	
  2	
  Sept.	
  2012.	
  
Web.	
  11	
  Aug.	
  2013.	
  <http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐
effectiveness-­‐peer-­‐reviewed-­‐article-­‐OAS>	
  
000782-­‐0151	
  
	
   12	
  
process.	
  Fifty-­‐eight	
  percent	
  of	
  surgeons	
  surveyed	
  agreed	
  in	
  their	
  experience	
  that	
  
telerobotic	
  methods	
  decrease	
  length	
  of	
  stay	
  for	
  their	
  patients	
  (figure	
  3).	
  
	
  
Figure	
  3-­‐	
  Robotic	
  surgery	
  decreases	
  length	
  of	
  stay	
  statistic	
  
3.3	
  General	
  benefits	
  
One	
  must	
  also	
  consider	
  the	
  benefits	
  posed	
  for	
  the	
  patients	
  themselves.	
  	
  
Thirteen	
  doctors	
  agreed	
  that	
  telesurgery	
  provides	
  a	
  technical	
  advantage	
  for	
  the	
  
surgeon	
  (figure	
  4)	
  and	
  six	
  doctors	
  (figure	
  5)	
  agreed	
  that	
  telerobotics	
  provided	
  a	
  
better	
  overall	
  patient	
  outcome.	
  	
  
	
  
Figure	
  4	
  –	
  Technical	
  advantage	
  statistic	
  
	
  
	
  
Figure	
  5	
  –	
  Better	
  comparative	
  patient	
  outcome	
  statistic	
  
000782-­‐0151	
  
	
   13	
  
	
  
The	
  facets	
  of	
  this	
  general	
  conclusion	
  are	
  multiple	
  and	
  debatable.	
  One	
  sure	
  
fact	
  is	
  the	
  size	
  of	
  incision,	
  usually	
  only	
  1-­‐2	
  centimeters,	
  made	
  possible	
  by	
  the	
  
degrees	
  of	
  rotation	
  and	
  compact	
  3D	
  camera,	
  is	
  far	
  superior	
  to	
  the	
  wider	
  incisions	
  
demanded	
  by	
  open	
  surgery,	
  reducing	
  blood	
  loss	
  and	
  potentially	
  length	
  of	
  stay	
  and	
  
pain.14	
  Opinions	
  were	
  mixed	
  amongst	
  the	
  surgeons	
  surveyed	
  concerning	
  port	
  site	
  
pain,	
  demonstrating	
  that	
  perhaps	
  this	
  qualitative	
  factor	
  might	
  be	
  specific	
  to	
  the	
  type	
  
of	
  laparoscopic	
  surgery	
  or	
  the	
  patient	
  him	
  or	
  herself	
  as	
  opposed	
  to	
  the	
  robotic	
  
appendages	
  versus	
  normal	
  endoscopic	
  instrumentation.	
  
	
  
Figure	
  6-­‐	
  Robotic	
  surgery	
  decreases	
  port	
  site	
  pain	
  statistic	
  
3.4	
  Ergonomics	
  
It	
  is	
  essential	
  to	
  remember	
  that	
  the	
  patient	
  isn’t	
  the	
  only	
  one	
  whose	
  comfort	
  and	
  
condition	
  matters	
  in	
  the	
  operating	
  room.	
  An	
  essential	
  element	
  of	
  ITGS	
  studies	
  is	
  
Information	
  Technology’s	
  effect	
  on	
  the	
  ergonomics	
  of	
  the	
  user	
  of	
  the	
  technology	
  in	
  
question.	
  Repetitive	
  strain	
  injury	
  exists	
  here	
  too,	
  as	
  the	
  doctor	
  is	
  performing	
  the	
  
same	
  precise	
  movements	
  of	
  the	
  hand	
  with	
  high	
  levels	
  of	
  finesse	
  whilst	
  standing	
  
upright	
  for	
  up	
  to	
  hours	
  on	
  end.	
  Over	
  years	
  of	
  this	
  physical	
  stress,	
  surgeons	
  will	
  often	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14	
  "EndoWrist®	
  Instruments."	
  Intuitive	
  Surgical.	
  Intuitive,	
  2012.	
  Web.	
  05	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/instruments/>.	
  
000782-­‐0151	
  
	
   14	
  
face	
  symptoms	
  of	
  bodily	
  degradation,	
  such	
  as	
  carpal	
  tunnel	
  syndrome	
  or	
  cervical	
  
disc	
  disease15.	
  A	
  synthesis	
  of	
  studies	
  between	
  master-­‐slave	
  robotic	
  systems	
  and	
  
traditional	
  laparoscopy	
  yielded	
  less	
  musculoskeletal	
  stress	
  to	
  the	
  back,	
  arms,	
  and	
  
legs	
  with	
  only	
  minor	
  increases	
  in	
  stress	
  to	
  the	
  neck	
  from	
  monitor	
  viewing	
  in	
  terms	
  
of	
  ergonomics16.	
  My	
  own	
  survey	
  also	
  concluded	
  with	
  11	
  out	
  of	
  14	
  surgeons	
  agreeing	
  
that	
  robotic	
  surgery	
  reduced	
  overall	
  ergonomic	
  stress	
  on	
  their	
  bodies	
  (figure	
  7).	
  
	
  
Figure	
  7-­‐	
  Ergonomic	
  stress	
  statistic	
  
3.5	
  Learning	
  Curve	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15	
  Lawson,	
  Elise	
  H.,	
  Myriam	
  J.	
  Curet,	
  Barry	
  R.	
  Sanchez,	
  Rob	
  Schuster,	
  and	
  Ramon	
  Berguer.	
  "Postural	
  
Ergonomics	
  during	
  Robotic	
  and	
  Laparoscopic	
  Gastric	
  Bypass	
  Surgery:	
  A	
  Pilot	
  Project."	
  Journal	
  of	
  
Robotic	
  Surgery	
  1.1	
  (2007):	
  61-­‐67.	
  Print.	
  
16	
  Lawson,	
  Elise	
  H.,	
  Myriam	
  J.	
  Curet,	
  Barry	
  R.	
  Sanchez,	
  Rob	
  Schuster,	
  and	
  Ramon	
  Berguer.	
  "Postural	
  
Ergonomics	
  during	
  Robotic	
  and	
  Laparoscopic	
  Gastric	
  Bypass	
  Surgery:	
  A	
  Pilot	
  Project."	
  Journal	
  of	
  
Robotic	
  Surgery	
  1.1	
  (2007):	
  61-­‐67.	
  Print.	
  
000782-­‐0151	
  
	
   15	
  
Investigating	
  the	
  learning	
  curve	
  for	
  such	
  a	
  relatively	
  new	
  surgical	
  procedure	
  type	
  
involves	
  a	
  look	
  at	
  not	
  only	
  personal	
  surgeon	
  opinions	
  but	
  also	
  the	
  IT	
  behind	
  the	
  
surgical	
  training.	
  Standard	
  with	
  da	
  Vinci	
  Surgical	
  SI	
  systems	
  is	
  software	
  for	
  the	
  
surgeons	
  to	
  hone	
  the	
  movements	
  specific	
  to	
  instrument	
  handling	
  inside	
  the	
  robot.	
  
These	
  system	
  specific	
  simulations	
  utilize	
  seemingly	
  simple	
  “games”	
  that	
  react	
  to	
  the	
  
console’s	
  movements	
  like	
  virtual	
  reality	
  to	
  train	
  the	
  dexterity	
  of	
  the	
  surgeon.	
  A	
  
grade	
  is	
  issued	
  upon	
  completion	
  of	
  the	
  exercise,	
  deeming	
  whether	
  the	
  surgeon	
  can	
  
move	
  onto	
  the	
  next	
  exercise	
  if	
  a	
  90%	
  quota	
  is	
  met.	
  While	
  this	
  can	
  help	
  the	
  novice	
  
surgeon	
  become	
  familiar	
  with	
  the	
  reflexes	
  and	
  coordination	
  of	
  the	
  robot,	
  IT	
  
simulation	
  serves	
  still	
  as	
  no	
  substitute	
  for	
  actual	
  surgical	
  practice.	
  On	
  average,	
  the	
  
surgeons	
  interviewed	
  found	
  37	
  hours	
  of	
  actual	
  patient	
  surgery	
  practice	
  was	
  needed	
  
to	
  reach	
  what	
  they	
  felt	
  was	
  proficiency.	
  Now	
  the	
  standard	
  deviation	
  of	
  this	
  data	
  was	
  
high,	
  about	
  23	
  hours,	
  signaling	
  the	
  doctors	
  weren’t	
  in	
  consensus,	
  and	
  time	
  to	
  reach	
  
proficiency	
  was	
  personal	
  to	
  the	
  doctor	
  (table	
  1).	
  
000782-­‐0151	
  
	
   16	
  
	
  
Table	
  1-­‐	
  Hours	
  to	
  Proficiency	
  Data	
  
Number	
  of	
  Surgeon	
  Surveyed	
   Hours	
  to	
  Proficiency	
  
1	
   40	
  
2	
   25	
  
3	
   30	
  
4	
   100	
  
5	
   50	
  
6	
   10	
  
7	
   50	
  
8	
   50	
  
9	
   50	
  
10	
   12	
  
11	
   20	
  
12	
   30	
  
13	
   20	
  
14	
   25	
  
Arithmetic	
  Mean	
   36.57142857	
  
Standard	
  Deviation	
   23.15404695	
  
	
  
000782-­‐0151	
  
	
   17	
  
	
  
4.	
  Logistics	
  of	
  implementation	
  
4.1	
  Costs	
  
A	
  first	
  glimpse	
  at	
  the	
  cost	
  of	
  the	
  da	
  Vinci	
  Surgical	
  System	
  is	
  grim,	
  with	
  an	
  average	
  
price	
  of	
  1.5	
  million	
  U.S.	
  dollars	
  per	
  unit	
  with	
  prices	
  ranging	
  between	
  1	
  million	
  and	
  2	
  
million	
  depending	
  on	
  the	
  number	
  of	
  robotic	
  arms	
  and	
  dual	
  console	
  capabilities.17	
  
This	
  high	
  acquisition	
  cost	
  is	
  coupled	
  with	
  the	
  costs	
  of	
  the	
  Endowrist®	
  attachment	
  
surgical	
  instruments	
  for	
  the	
  robotic	
  arm	
  extensions,	
  which	
  can	
  cost	
  anywhere	
  from	
  
$600	
  to	
  $1000	
  a	
  piece18.	
  Furthermore,	
  like	
  any	
  other	
  laparoscopic	
  instrument,	
  these	
  
instruments	
  will	
  need	
  to	
  be	
  replaced	
  periodically,	
  making	
  the	
  cost	
  of	
  the	
  Endowrist	
  
technology	
  a	
  linear	
  function,	
  and	
  not	
  simply	
  factored	
  into	
  the	
  acquisition	
  cost.	
  
Another	
  important	
  facet	
  of	
  the	
  da	
  Vinci	
  Surgical	
  System	
  to	
  factor	
  in	
  is	
  its	
  user	
  
interface,	
  simulation,	
  and	
  weak-­‐AI	
  software.	
  Being	
  the	
  only	
  brand	
  of	
  FDA	
  approved	
  
telerobotic	
  systems	
  on	
  the	
  market,	
  and	
  containing	
  only	
  proprietary,	
  not	
  open	
  
source,	
  software,	
  and	
  the	
  software	
  that	
  operates	
  the	
  master-­‐slave	
  surgical	
  tool	
  is	
  un-­‐
editable	
  and	
  incompatible	
  with	
  other	
  software19.	
  This	
  presents	
  a	
  scenario	
  where	
  the	
  
cost	
  of	
  such	
  technology	
  is	
  artificially	
  higher	
  than	
  market	
  value,	
  since	
  competition	
  
doesn’t	
  present	
  a	
  need	
  to	
  lower	
  prices.	
  Since	
  advancements	
  in	
  the	
  da	
  Vinci	
  product	
  
line	
  have	
  not	
  yet	
  yielded	
  a	
  situation	
  where	
  a	
  software	
  upgrade	
  has	
  been	
  available	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17	
  Rosen,	
  Jacob,	
  Blake	
  Hannaford,	
  and	
  Richard	
  M.	
  Satava.	
  Surgical	
  Robotics:	
  Systems,	
  Applications,	
  
and	
  Visions.	
  New	
  York:	
  Springer,	
  2011.216.Print.	
  
18	
  "EndoWrist®	
  Instruments."	
  Intuitive	
  Surgical.	
  Intuitive,	
  2012.	
  Web.	
  03	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/instruments/>.	
  
19	
   "All	
  About	
  Robotic	
  Surgery."	
  Q&A	
  about	
  Robotic	
  Surgery.	
  World	
  Wide	
  Information	
  Center	
  for	
  
Minimally	
  Invasive	
  Robotic	
  Surgery,	
  2011.	
  Web.	
  31	
  July	
  2013.	
  
<http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.	
  
000782-­‐0151	
  
	
   18	
  
separate	
  from	
  an	
  entirely	
  new	
  surgical	
  system	
  set,	
  this	
  concept	
  of	
  restrictive	
  and	
  
potentially	
  costly	
  software	
  costs	
  is	
  still	
  speculative.	
  
4.2	
  Returns	
  
If	
  one	
  were	
  to	
  look	
  at	
  the	
  acquisition	
  of	
  telerobotics	
  from	
  the	
  perspective	
  of	
  a	
  capital	
  
venture,	
  the	
  potential	
  for	
  “breaking	
  even”	
  or	
  turning	
  a	
  profit	
  is	
  ambiguous.	
  It	
  would	
  
appear	
  that	
  most	
  hospitals	
  thus	
  far	
  have	
  not	
  been	
  fiscally	
  successful	
  if	
  one	
  considers	
  
the	
  costs	
  of	
  performing	
  any	
  minimally	
  invasive	
  surgery	
  via	
  telerobotics	
  or	
  
traditional	
  laparoscopy20.	
  However,	
  there	
  are	
  other	
  costs	
  to	
  consider	
  with	
  which	
  the	
  
robotic	
  surgical	
  system	
  can	
  ameliorate.	
  From	
  a	
  patient’s	
  perspective,	
  the	
  prospect	
  of	
  
a	
  more	
  advanced	
  minimally	
  invasive	
  surgery	
  that	
  can	
  reduce	
  return-­‐visits	
  is	
  in	
  itself	
  
its	
  own	
  reward	
  for	
  the	
  higher	
  costs.	
  Often	
  for	
  the	
  patient,	
  he	
  or	
  she	
  only	
  pays	
  for	
  the	
  
insurance	
  and	
  not	
  for	
  the	
  procedure	
  itself.	
  For	
  both	
  the	
  patient	
  and	
  the	
  hospital,	
  
decreased	
  hospital	
  stays	
  will	
  reduce	
  the	
  expensive	
  costs	
  of	
  resources	
  post-­‐operation	
  
by	
  33%,	
  and	
  will	
  consequently	
  lower	
  the	
  cost	
  on	
  the	
  patient’s	
  stay	
  as	
  well.21	
  In	
  short,	
  
the	
  robot	
  is	
  a	
  cost-­‐effective	
  solution	
  only	
  in	
  a	
  liberal	
  sense	
  of	
  the	
  benefits	
  it	
  provides	
  
and	
  potential	
  resources	
  it	
  saves	
  the	
  hospital	
  in	
  the	
  form	
  of	
  staff	
  and	
  hospital	
  beds,	
  
but	
  can	
  easily	
  repay	
  a	
  patient,	
  who	
  opts	
  for	
  the	
  more	
  expensive	
  robotic	
  procedure,	
  
in	
  his	
  or	
  her	
  health	
  and	
  time	
  spent	
  in	
  the	
  hospital	
  (paying	
  bills	
  and	
  away	
  from	
  
work).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20Aston,	
  Geri.	
  "Hospitals	
  and	
  Health	
  Network	
  Magazine."	
  Hospitals	
  and	
  Health	
  Network	
  Magazine.	
  
Hospitals	
  &	
  Health	
  Networks,	
  Apr.	
  2012.	
  Web.	
  13	
  Aug.	
  2013.	
  
<http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Article/data/04APR2
012/0412HHN_FEA_clinicalmanagement>.	
  
21	
  "Da	
  Vinci®	
  Surgical	
  System."	
  Robot-­‐Assisted	
  Surgery:	
  Da	
  Vinci.	
  Brown	
  University,	
  2005.	
  Web.	
  4	
  Aug.	
  
2013.	
  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.	
  
000782-­‐0151	
  
	
   19	
  
4.3	
  Accessibility	
  
In	
  a	
  truly	
  Global	
  Society,	
  it	
  is	
  unfortunate	
  that	
  in	
  terms	
  of	
  the	
  3D	
  visuals,	
  reduced	
  
patient	
  and	
  doctor	
  stress,	
  and	
  potential	
  for	
  remote	
  use	
  that	
  an	
  IT	
  solution	
  such	
  as	
  
this	
  can	
  be	
  confined	
  to	
  only	
  wealthier	
  parts	
  of	
  the	
  world	
  based	
  solely	
  on	
  costs.	
  This	
  
is	
  evident	
  in	
  how	
  the	
  Digital	
  Divide	
  concept	
  applies	
  to	
  Internet	
  access	
  in	
  a	
  world	
  that	
  
relies	
  on	
  wireless	
  communications	
  and	
  databases,	
  the	
  immense	
  cost	
  of	
  just	
  one	
  of	
  
these	
  units	
  puts	
  it	
  out	
  of	
  the	
  reach	
  of	
  even	
  modest	
  universities	
  in	
  the	
  United	
  States.	
  
Even	
  if	
  surgeons	
  were	
  to	
  work	
  “pro	
  bono”,	
  and	
  could	
  operate	
  from	
  richer	
  nations	
  
overseas,	
  the	
  third	
  world	
  would	
  lack	
  the	
  technology	
  on	
  the	
  receiving	
  end	
  to	
  accept	
  
the	
  satellite	
  uplink.	
  The	
  World	
  Health	
  Organization	
  “considers	
  equitable	
  access	
  to	
  
safe	
  and	
  affordable	
  medicines	
  as	
  vital	
  to	
  the	
  attainment	
  of	
  the	
  highest	
  possible	
  
standard	
  of	
  health	
  by	
  all”22,	
  which	
  would	
  define	
  telerobotic	
  surgery	
  as	
  failing	
  to	
  
meet	
  the	
  quality	
  of	
  standards	
  of	
  world	
  health.	
  
5.	
  Abilities	
  and	
  limitations	
  of	
  robotic	
  surgery	
  
The	
  questions	
  of	
  whether	
  telerobotics	
  can	
  serve	
  as	
  and	
  the	
  degree	
  to	
  which	
  it	
  can	
  
ameliorate	
  problems	
  are	
  two	
  different	
  questions,	
  and	
  with	
  the	
  former	
  answered,	
  the	
  
latter	
  shall	
  be	
  explored.	
  
5.1	
  An	
  extension	
  of	
  the	
  doctor	
  
While	
  termed	
  “robotic”,	
  again,	
  this	
  system	
  is	
  really	
  only	
  a	
  telehealth-­‐advanced	
  tool	
  
for	
  the	
  doctor,	
  an	
  extension	
  for	
  the	
  surgeon	
  not	
  unlike	
  the	
  endoscope	
  for	
  
laparoscopy.	
  With	
  336o	
  of	
  rotation,	
  the	
  Endowrist	
  technology	
  allows	
  the	
  surgeon	
  to	
  
enter,	
  and	
  adjust	
  even	
  within	
  the	
  body,	
  at	
  angles	
  impossible	
  physically	
  for	
  a	
  human	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22	
  "Access	
  to	
  Medicines."	
  WHO.	
  N.p.,	
  n.d.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐20090313/en/>.	
  
000782-­‐0151	
  
	
   20	
  
to	
  perform.	
  Regarding	
  any	
  delay	
  between	
  the	
  robot’s	
  actions	
  and	
  the	
  surgeons’,	
  the	
  
doctors	
  surveyed	
  came	
  to	
  a	
  100%	
  degree	
  consensus	
  that	
  there	
  is	
  no	
  noticeable	
  time	
  
lapse	
  or	
  latency	
  present	
  in	
  the	
  robot	
  (figure	
  8)	
  
	
  
Figure	
  8-­‐	
  Time	
  lapse	
  statistic	
  
	
  
In	
  addition,	
  a	
  comparative	
  chart	
  of	
  human	
  versus	
  robotic	
  surgery	
  talents	
  is	
  listed	
  
below	
  (table	
  2):	
  
	
  
000782-­‐0151	
  
	
   21	
  
Table	
  2-­‐	
  Comparison	
  of	
  Human	
  versus	
  Robotic	
  Surgery	
  
Human	
  Surgical	
  Strengths	
   Robot	
  Surgical	
  Strengths	
  
1) More	
  direct	
  hand	
  eye	
  coordination	
  
2) Tactile	
  sensation	
  in	
  the	
  patient	
  
3) Faster	
  Procedure	
  Time	
  
4) Can	
  quickly	
  adjust	
  to	
  unexpected	
  events	
  
5) Easier	
  for	
  universities	
  to	
  teach	
  
6) Initial	
  costs	
  cheaper	
  
7) Has	
  been	
  improved	
  and	
  developed	
  for	
  
decades	
  
1) Clean	
  and	
  geometric	
  precision	
  
2) Operational	
  in	
  smaller	
  incisions	
  
3) Filters	
  surgeon	
  hand	
  tremors	
  
4) 3D	
  HD	
  1080i	
  view	
  of	
  insides	
  
5) Potential	
  for	
  remote	
  surgery	
  
6) Four	
  appendages	
  usable	
  
7) Superior	
  zoom	
  capabilities	
  
8) More	
  degrees	
  of	
  rotation	
  
Human	
  Surgical	
  Weaknesses	
   Robot	
  Surgical	
  Weaknesses	
  
1) Larger	
  Incisions	
  
2) Many	
  angles	
  of	
  entry	
  physiologically	
  
impossible	
  for	
  surgeon	
  
3) Humans	
  degrade	
  with	
  age	
  
4) No	
  depth	
  perception	
  with	
  Endoscope	
  
5) Fatigues	
  surgeon	
  faster	
  (with	
  hours	
  of	
  
standing	
  still)	
  
1) Limited	
  tactile	
  sensation	
  
2) Danger	
  to	
  ever	
  roam	
  out	
  of	
  view	
  
3) Only	
  as	
  talented	
  as	
  the	
  surgeon	
  
4) Viable	
  mainly	
  in	
  simpler	
  surgeries	
  
5) Costlier	
  procedures	
  to	
  cover	
  expenses	
  
6) Reliant	
  on	
  a	
  power	
  source	
  
7) Lengthier	
  procedures	
  on	
  average	
  
	
  
5.2	
  Tactile	
  sensation	
  
While	
  the	
  da	
  Vinci	
  system	
  does	
  support	
  tool	
  on	
  tool	
  haptic	
  responses,	
  the	
  machine	
  is	
  
“numb”	
  to	
  the	
  insides	
  of	
  the	
  patient,	
  as	
  there	
  is	
  no	
  tactile	
  sensation,	
  a	
  doctor	
  could	
  
tear	
  or	
  damage	
  the	
  patients	
  organs.	
  Developments	
  in	
  kinesthesia	
  have	
  allowed	
  for	
  
the	
  machine	
  to	
  detect	
  some	
  of	
  the	
  force	
  of	
  harder	
  tissues	
  or	
  sutures	
  and	
  stop	
  the	
  
appendages	
  and	
  alert	
  the	
  doctor,	
  yet	
  this	
  too	
  is	
  limited.	
  Biologic	
  sensors	
  have	
  been	
  
developed	
  to	
  use	
  feedback	
  if	
  the	
  balloon	
  simulator	
  collapses	
  too	
  far,	
  yet	
  these	
  and	
  
000782-­‐0151	
  
	
   22	
  
other	
  tactile	
  feedback	
  IT	
  solutions	
  have	
  been	
  difficult	
  to	
  integrate	
  into	
  existing	
  
technology.23	
  
6.	
  Telemedicine	
  
In	
  accordance	
  to	
  multiple	
  resource	
  definitions	
  of	
  what	
  telemedicine	
  entails,	
  
telemedicine	
  can	
  be	
  defined	
  as	
  the	
  phenomenon	
  of	
  providing	
  healthcare	
  from	
  a	
  
source	
  remote	
  to	
  the	
  patient	
  utilizing	
  information	
  technology	
  in	
  some	
  type	
  of	
  
telecommunications	
  method.	
  When	
  considering	
  robotic	
  surgery	
  as	
  the	
  quintessence	
  
of	
  telemedicine,	
  both	
  the	
  potential	
  solutions	
  it	
  provides	
  and	
  the	
  ethical	
  questions	
  it	
  
raises	
  shall	
  be	
  considered.	
  
6.1	
  Telemedical	
  aspects	
  of	
  telerobotic	
  surgery	
  
Robotic	
  surgery	
  as	
  a	
  whole	
  encompasses	
  far	
  more	
  ITGS	
  centric	
  telehealth	
  concepts	
  
than	
  simply	
  the	
  “remote”	
  aspect	
  of	
  telesurgery.	
  One	
  must	
  also	
  consider	
  the	
  other	
  IT	
  
aspects	
  of	
  telesurgery	
  that	
  comprise	
  it	
  as	
  a	
  whole.	
  The	
  same	
  monitor	
  that	
  projects	
  
the	
  3D	
  visuals	
  also	
  carries	
  digital	
  information	
  from	
  the	
  patient	
  vital	
  to	
  the	
  surgeon’s	
  
understanding.	
  The	
  robot	
  is	
  its	
  own	
  video	
  output	
  of	
  progress,	
  a	
  useful	
  tool	
  in	
  
teaching	
  and	
  in	
  evaluation	
  of	
  medical	
  errors	
  as	
  well.	
  Finally,	
  the	
  same	
  charts	
  and	
  x-­‐
rays	
  created	
  in	
  the	
  radiology	
  department	
  are	
  electronically	
  available	
  to	
  surgeon	
  at	
  
his	
  very	
  own	
  console,	
  integrated	
  with	
  the	
  rest	
  of	
  the	
  features	
  of	
  the	
  telesurgical	
  
system.	
  
6.2	
  Potential	
  of	
  a	
  worldwide	
  solution	
  
In	
  2001,	
  the	
  da	
  Vinci	
  system’s	
  predecessor	
  Zeus	
  made	
  history	
  by	
  performing	
  the	
  
first	
  complete	
  remote	
  robotic	
  surgery	
  via	
  fiber	
  optic	
  link	
  on	
  a	
  patient	
  in	
  France	
  from	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23	
  Rosen,	
  Jacob,	
  Blake	
  Hannaford,	
  and	
  Richard	
  M.	
  Satava.	
  Surgical	
  Robotics:	
  Systems,	
  Applications,	
  
and	
  Visions.	
  New	
  York:	
  Springer,	
  2011.463.Print.	
  
000782-­‐0151	
  
	
   23	
  
New	
  York,	
  3,800	
  miles	
  away24.	
  The	
  danger	
  of	
  latency,	
  or	
  delay,	
  was	
  overcome	
  by	
  
fiber	
  optics,	
  and	
  the	
  entire	
  scenario	
  became	
  known	
  as	
  the	
  Lindbergh	
  Operation	
  XXII.	
  
The	
  patient	
  was	
  discharged	
  after	
  a	
  typical	
  2	
  days,	
  and	
  while	
  currently	
  the	
  only	
  FDA	
  
approved	
  telesurgical	
  devices	
  are	
  not	
  wireless	
  capable,	
  the	
  technology,	
  typically	
  
fiber	
  optics	
  or	
  cell	
  relay	
  technology,	
  in	
  theory	
  exists	
  for	
  true	
  remote	
  surgery.	
  
6.3	
  Ethics	
  of	
  remote	
  teleoperations	
  
One	
  has	
  to	
  question	
  the	
  ethics	
  of	
  remote	
  telesurgery	
  to	
  go	
  into	
  true	
  ITGS	
  level	
  
analysis.	
  Does	
  this,	
  perhaps,	
  remove	
  a	
  level	
  of	
  intimacy	
  between	
  the	
  patient	
  and	
  the	
  
surgeon;	
  does	
  it	
  remove	
  the	
  “human”	
  element?	
  Is	
  trusting	
  a	
  secure	
  and	
  protected	
  
wireless	
  network,	
  which	
  is	
  not	
  nearly	
  as	
  scrutinized	
  as	
  a	
  board	
  certified	
  surgeon,	
  
ethical	
  and	
  in	
  the	
  patient’s	
  best	
  interest?	
  These	
  are	
  but	
  a	
  few	
  questions	
  that	
  plague	
  
the	
  steady	
  adoption	
  of	
  telerobotics	
  worldwide.	
  In	
  regards	
  to	
  the	
  data	
  collected,	
  
those	
  surveyed	
  seemed	
  reluctant	
  to	
  consider	
  performing	
  remote	
  surgery	
  between	
  
different	
  hospitals	
  (figure	
  9).	
  
	
  
Figure	
  9-­‐	
  Would	
  you	
  consider	
  remote	
  telesurgery	
  statistic	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
24	
  "Remote	
  Gallbladder	
  Operation	
  Spans	
  3,800	
  Miles."	
  The	
  New	
  York	
  Times.	
  The	
  New	
  York	
  Times,	
  20	
  
Sept.	
  2001.	
  Web.	
  10	
  Aug.	
  2013.	
  <http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐
operation-­‐spans-­‐3800-­‐miles.html>.	
  
000782-­‐0151	
  
	
   24	
  
7.	
  Conclusion	
  
Independent	
  of	
  the	
  research	
  this	
  paper	
  has	
  concluded,	
  the	
  majority	
  of	
  surgeons	
  
surveyed	
  do	
  not	
  believe	
  that	
  traditional	
  laparoscopy	
  will	
  be	
  completely	
  phased	
  out	
  
by	
  telerobotic	
  techniques	
  (figure	
  10).	
  
Figure	
  10	
  –	
  Will	
  Robotic	
  surgery	
  phase	
  out	
  laparoscopic	
  surgery	
  statistic	
  
This	
  said,	
  it	
  is	
  appropriate	
  to	
  criticize	
  the	
  survey	
  carried	
  out	
  as	
  perhaps	
  limited	
  in	
  its	
  
scope	
  for	
  only	
  interviewing	
  local	
  surgeons,	
  of	
  difference	
  specialties	
  and	
  in	
  relatively	
  
low	
  numbers.	
  It’s	
  also	
  important	
  to	
  note	
  that	
  those	
  surveyed,	
  coming	
  from	
  different	
  
age	
  and	
  experience	
  backgrounds,	
  individually	
  shoulder	
  different	
  biases	
  and	
  even	
  
interest	
  in	
  the	
  realm	
  of	
  robotic	
  surgery.	
  Fortunately,	
  the	
  survey	
  results	
  find	
  their	
  
highest	
  merit	
  in	
  corroborating	
  or	
  simply	
  refuting	
  the	
  secondary	
  research	
  of	
  this	
  
paper.	
  In	
  the	
  holistic	
  judgment	
  of	
  the	
  areas	
  to	
  compare	
  laparoscopic	
  and	
  robotic	
  
surgery,	
  the	
  surveys	
  were	
  invaluable	
  as	
  a	
  method	
  to	
  measure	
  otherwise	
  difficult	
  
qualitative	
  aspects	
  of	
  robotic	
  surgery.	
  Disputes	
  within	
  the	
  data	
  can	
  be	
  best	
  
attributed	
  to	
  different	
  specializations	
  in	
  surgery	
  and	
  simply	
  different	
  levels	
  of	
  
experience.	
  	
  
The	
  secondary	
  research	
  was	
  conducted	
  in	
  a	
  manner	
  to	
  avoid	
  potential	
  bias	
  
and	
  to	
  extract	
  relevant	
  information	
  to	
  supplement	
  the	
  investigation	
  of	
  the	
  research	
  
000782-­‐0151	
  
	
   25	
  
question.	
  Internet	
  sources	
  advertising	
  the	
  surgical	
  system	
  as	
  a	
  product	
  were	
  used	
  
sparingly	
  and	
  only	
  to	
  describe	
  the	
  features	
  of	
  the	
  robotic	
  tool.	
  Multiple	
  medical	
  
studies	
  were	
  chosen	
  as	
  representative	
  of	
  general	
  robotic	
  or	
  laparoscopic	
  surgery,	
  as	
  
to	
  avoid	
  results	
  relevant	
  only	
  to	
  one	
  type	
  of	
  procedure.	
  The	
  efforts	
  of	
  surgeons	
  
themselves	
  or	
  universities	
  in	
  their	
  evaluations	
  of	
  robotic	
  surgery	
  comprised	
  the	
  
majority	
  of	
  sources.	
  While	
  this	
  essay	
  isn’t	
  simply	
  a	
  synthesis	
  of	
  past	
  research	
  
endeavors,	
  it	
  would	
  be	
  futile	
  to	
  answer	
  such	
  a	
  pressing	
  research	
  question	
  with	
  
limited	
  resources.	
  
Where	
  does	
  this	
  leave	
  the	
  research	
  question	
  on	
  the	
  degree	
  that	
  telerobotics	
  
is	
  an	
  IT	
  solution	
  to	
  many	
  shortcomings	
  of	
  traditional	
  human	
  laparoscopy?	
  With	
  the	
  
undeniable	
  aspects	
  of	
  Information	
  Technology	
  permeating	
  the	
  existence	
  of	
  
telesurgery,	
  any	
  advantage	
  should	
  be	
  seen	
  as	
  a	
  potential	
  solution.	
  	
  In	
  the	
  realms	
  of	
  
general	
  benefits,	
  length	
  of	
  stay,	
  ergonomics,	
  and	
  potential	
  for	
  remote	
  procedures,	
  
the	
  da	
  Vinci	
  System,	
  and	
  those	
  akin	
  to	
  it,	
  are	
  undeniably	
  victorious	
  in	
  the	
  aspects	
  of	
  
patient	
  and	
  surgeon	
  health.	
  That	
  being	
  established,	
  the	
  logistics	
  of	
  implementation,	
  
often	
  the	
  only	
  factor	
  pragmatically	
  worth	
  considering,	
  and	
  ethics	
  of	
  robotic	
  surgery	
  
cast	
  doubt	
  on	
  its	
  utility	
  and	
  functionality,	
  opening	
  the	
  door	
  to	
  labels	
  such	
  as	
  
“gimmick	
  surgery”.	
  A	
  full	
  embrace	
  of	
  the	
  technology	
  would	
  sacrifice	
  limited	
  funds,	
  
precious	
  time	
  in	
  the	
  operative	
  theatre,	
  and	
  breed	
  new	
  challenges	
  applicable	
  only	
  to	
  
robotics.	
  
A	
  hasty	
  appraisal	
  would	
  market	
  telerobotics	
  as	
  an	
  unobtainable	
  direction	
  in	
  
the	
  future	
  of	
  medicine,	
  not	
  much	
  unlike	
  cold-­‐fusion	
  for	
  the	
  realm	
  of	
  energy.	
  But	
  is	
  
this	
  taking	
  too	
  strict	
  a	
  definition	
  of	
  an	
  IT	
  solution?	
  The	
  earliest	
  computers	
  could	
  do	
  
000782-­‐0151	
  
	
   26	
  
nothing	
  pen	
  and	
  paper	
  could	
  not,	
  were	
  prohibitively	
  expensive	
  and	
  occupied	
  the	
  
space	
  of	
  a	
  room.	
  In	
  a	
  practical,	
  fiscal,	
  and	
  environmental	
  viewpoint,	
  the	
  technology	
  
failed	
  miserably.	
  Seemingly,	
  what	
  constitutes	
  an	
  IT	
  solution	
  is	
  sheer	
  potential,	
  
something	
  telerobotics	
  has	
  on	
  top	
  of	
  contemporary,	
  tangible	
  success.	
  As	
  much	
  as	
  
surgical	
  technique	
  advances,	
  it	
  is	
  logarithmic	
  at	
  best,	
  only	
  slightly	
  deviating	
  from	
  its	
  
predecessor	
  with	
  each	
  advance.	
  Technology	
  in	
  health	
  grows	
  exponentially;	
  doing	
  
what	
  humans	
  can’t,	
  which	
  is	
  fundamentally	
  changed	
  in	
  only	
  a	
  few	
  short	
  years.	
  The	
  
future	
  might	
  be	
  speculative,	
  but	
  the	
  field	
  of	
  medicine	
  will	
  never	
  vanish.	
  There	
  will	
  
always	
  be	
  a	
  demand	
  to	
  fill,	
  and	
  upon	
  careful	
  and	
  thorough	
  research,	
  early	
  
inclinations	
  support	
  that	
  robotic	
  surgery	
  could	
  more	
  than	
  hope	
  to	
  be	
  an	
  IT	
  solution,	
  
or	
  evolution,	
  to	
  traditional	
  laparoscopy,	
  especially	
  when	
  considering	
  how	
  robotic	
  
methods	
  provide	
  the	
  option	
  at	
  least	
  to	
  improve	
  the	
  well	
  being	
  of	
  all	
  types	
  of	
  
stakeholders,	
  and	
  the	
  only	
  route	
  of	
  possibility	
  for	
  an	
  improvement	
  in	
  global,	
  
international	
  health.
000782-­‐0151	
  
	
   27	
  
8.	
  Glossary	
  of	
  Terms	
  
Accessibility:	
  Equitable	
  access	
  to	
  safe	
  and	
  affordable	
  medicines.	
  
Biologic	
  Sensors:	
  Devices	
  intended	
  to	
  convert	
  biological	
  stimuli	
  into	
  readable	
  
electronic	
  signals.	
  
Endoscope:	
  An	
  optical	
  tool	
  designed	
  for	
  use	
  in	
  magnification	
  of	
  inside	
  the	
  human	
  
body.	
  
Fiber	
  Optics:	
  A	
  telecommunications	
  method	
  involving	
  thin,	
  transparent	
  wires	
  to	
  
transmit	
  light	
  over	
  great	
  distances	
  at	
  great	
  speed.	
  
Haptics:	
  Feed	
  back	
  of	
  tactile,	
  if	
  not	
  other	
  perceptive,	
  information.	
  
Kinesthesia:	
  Perception	
  of	
  body	
  position,	
  movement,	
  and	
  muscular	
  tensions25	
  
Laparoscopy:	
  A	
  fundamental	
  facet	
  of	
  endoscopy,	
  more	
  commonly	
  known	
  as	
  
minimally	
  invasive	
  surgery,	
  which	
  does	
  as	
  it	
  suggests.	
  
Latency:	
  The	
  concept	
  of	
  a	
  time	
  lapse	
  between	
  the	
  input	
  of	
  surgical	
  command	
  and	
  the	
  
output	
  of	
  robotic	
  biomimicry.	
  
Master-­‐slave	
  system:	
  A	
  type	
  of	
  robotic	
  surgical	
  system	
  involving	
  little	
  to	
  no	
  artificial	
  
intelligence,	
  where	
  the	
  robot	
  only	
  performs	
  exactly	
  what	
  the	
  surgeon	
  manipulates	
  it	
  
to	
  through	
  a	
  console.	
  
Minimally	
  invasive:	
  Any	
  surgery	
  with	
  minimal	
  incisions,	
  typically	
  involving	
  
technology	
  to	
  compensate	
  for	
  a	
  surgeons	
  lack	
  of	
  sight	
  or	
  room	
  to	
  maneuver.	
  
Port	
  Site	
  Pain:	
  Pain	
  felt	
  in	
  the	
  area	
  of	
  incision	
  post	
  operation.	
  
Protected	
  Network:	
  A	
  secure,	
  private	
  wireless	
  network	
  for	
  telecommunication	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25	
  "Robot-­‐Assisted	
  Surgery:	
  Glossary."	
  Robot-­‐Assisted	
  Surgery:	
  Glossary.	
  Brown	
  University,	
  n.d.	
  Web.	
  
12	
  Aug.	
  2013.	
  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html>	
  
000782-­‐0151	
  
	
   28	
  
Satellite	
  Uplink:	
  Use	
  of	
  a	
  communications	
  satellite	
  to	
  relay	
  information	
  between	
  a	
  
transmitting	
  and	
  receiving	
  station	
  on	
  earth.	
  
Stereoscopic:	
  use	
  of	
  binoculars	
  for	
  observing	
  the	
  surgical	
  field	
  and	
  providing	
  depth	
  
Telesurgery:	
  Remote,	
  wireless	
  surgery,	
  no	
  matter	
  the	
  distance.	
  
000782-­‐0151	
  
	
   29	
  
9.	
  Works	
  Cited	
  
"Access	
  to	
  Medicines."	
  WHO.	
  N.p.,	
  n.d.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐
20090313/en/>.	
  
"All	
  About	
  Robotic	
  Surgery."	
  Q&A	
  about	
  Robotic	
  Surgery.	
  World	
  Wide	
  Information	
  
Center	
  for	
  Minimally	
  Invasive	
  Robotic	
  Surgery,	
  2011.	
  Web.	
  31	
  July	
  2013.	
  	
  
<http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.	
  
Aston,	
  Geri.	
  "Hospitals	
  and	
  Health	
  Network	
  Magazine."	
  Hospitals	
  and	
  Health	
  
Network	
  Magazine.	
  Hospitals	
  &	
  Health	
  Networks,	
  Apr.	
  2012.	
  Web.	
  13	
  Aug.	
  2013.	
  
<http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Arti
cle/data/04APR2012/0412HHN_FEA_clinicalmanagement>.	
  
Bell,	
  Kay.	
  "Comparison	
  of	
  DSL,	
  Cable	
  &	
  Fiber	
  Optic."	
  Science.	
  
OpposingViews.com,	
  n.d.	
  Web.	
  09	
  Aug.	
  2013.	
  
<http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.	
  
Bonsor,	
  Kevin,	
  and	
  Jonathan	
  Strickland.	
  "How	
  Robotic	
  Surgery	
  Will	
  
Work."HowStuffWorks.	
  HowStuffWorks,	
  30	
  Oct.	
  2000.	
  Web.	
  08	
  Aug.	
  2013.	
  
<http://science.howstuffworks.com/life/human-­‐biology/robotic-­‐surgery1.htm>.	
  
"Da	
  Vinci®	
  Skills	
  Simulator™."	
  Intuitive	
  Surgical.	
  Intuitive	
  Surgical,	
  Oct.	
  2010.	
  
Web.	
  07	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/skills_simulator/>.	
  
"Da	
  Vinci®	
  Surgical	
  System."	
  Robot-­‐Assisted	
  Surgery:	
  Da	
  Vinci.	
  Brown	
  
University,	
  2005.	
  Web.	
  9	
  Aug.	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.	
  
000782-­‐0151	
  
	
   30	
  
Da	
  Vinci	
  Surgical	
  System	
  Overview	
  Video."	
  Intuitive	
  Surgical.	
  Intuitive	
  
Surgical,	
  Oct.	
  2010.	
  Web.	
  08	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_vi
deo.html>.	
   	
  	
  
"EndoWrist®	
  Instruments."	
  Intuitive	
  Surgical.	
  Intuitive,	
  2012.	
  Web.	
  05	
  Aug.	
  
2013.	
  <http://www.intuitivesurgical.com/products/instruments.html>	
  
Herron,	
  Daniel	
  M.	
  "A	
  Consensus	
  Document	
  on	
  Robotic	
  Surgery."	
  Society	
  of	
  
American	
  Gastrointestinal	
  and	
  Endoscopic	
  Surgeons.	
  SAGES,	
  Nov.	
  2007.	
  Web.	
  03	
  Aug.	
  
2013.	
  <http://www.sages.org/publications/guidelines/consensus-­‐document-­‐
robotic-­‐surgery/>.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Lawson,	
  Elise	
  H.,	
  Myriam	
  J.	
  Curet,	
  Barry	
  R.	
  Sanchez,	
  Rob	
  Schuster,	
  and	
  Ramon	
  
Berguer.	
  "Postural	
  Ergonomics	
  during	
  Robotic	
  and	
  Laparoscopic	
  Gastric	
  Bypass	
  
Surgery:	
  A	
  Pilot	
  Project."	
  Journal	
  of	
  Robotic	
  Surgery	
  1.1	
  (2007):	
  61-­‐67.	
  Print.	
  
Leddy,	
  Laura	
  S.,	
  Thomas	
  S.	
  Lendvay,	
  and	
  Richard	
  M.	
  Satava.	
  "Robotic	
  Surgery:	
  
Applications	
  and	
  Cost	
  Effectiveness."	
  Robotic	
  Surgery:	
  Applications	
  and	
  Cost	
  
Effectiveness.	
  Dove	
  Press,	
  2	
  Sept.	
  2012.	
  Web.	
  11	
  Aug.	
  2013.	
  	
  
http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐effectiveness-­‐
peer-­‐reviewed-­‐article-­‐OAS	
  
Nightdale,	
  C.	
  J.	
  "What	
  Can	
  Be	
  Expected	
  from	
  Magnification	
  Endoscopy?"	
  What	
  
Can	
  Be	
  Expected	
  from	
  Magnification	
  Endoscopy?	
  Oeso	
  Knowledge,	
  May	
  1998.	
  Web.	
  
08	
  Aug.	
  2013.	
  
<http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.	
  
000782-­‐0151	
  
	
   31	
  
Park,	
  J.	
  "A	
  Haptic	
  Teleoperation	
  Approach	
  Based	
  on	
  Contact	
  Force	
  
Control."	
  The	
  International	
  Journal	
  of	
  Robotics	
  Research	
  25.5-­‐6	
  (2006):	
  575-­‐91.	
  
Print.	
   	
  
"Parkridge	
  East	
  Hospital."	
  The	
  Center	
  for	
  Robotic	
  Surgery.	
  Brigham	
  and	
  
Women's	
  Hospital,	
  16	
  Oct.	
  2012.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐surgery>.	
  	
  
"Remote	
  Gallbladder	
  Operation	
  Spans	
  3,800	
  Miles."	
  The	
  New	
  York	
  Times.	
  The	
  
New	
  York	
  Times,	
  20	
  Sept.	
  2001.	
  Web.	
  10	
  Aug.	
  2013.	
  
<http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐operation-­‐
spans-­‐3800-­‐miles.html>.	
  
"Robot-­‐Assisted	
  Surgery:	
  Glossary."	
  Robot-­‐Assisted	
  Surgery:	
  Glossary.	
  Brown	
  
University,	
  n.d.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html
>	
  
"Robotics:	
  The	
  Future	
  of	
  Minimally	
  Invasive	
  Heart	
  Surgery."	
  Robotics:	
  The	
  
Future	
  of	
  Minimally	
  Invasive	
  Heart	
  Surgery.	
  Brown	
  University,	
  5	
  Mar.	
  2000.	
  Web.	
  21	
  
July	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/R
obotics.html>.	
  
Rosen,	
  Jacob,	
  Blake	
  Hannaford,	
  and	
  Richard	
  M.	
  Satava.	
  Surgical	
  Robotics:	
  
Systems,	
  Applications,	
  and	
  Visions.	
  New	
  York:	
  Springer,	
  2011.Print.	
  
000782-­‐0151	
  
	
   32	
  
10.	
  Appendices	
  
	
  
8/24/13 Robotic Surgery Survey
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 1/3
Edit  this  form
Robotic  Surgery  Survey
This  survey  is  intended  for  use  in  an  academic  research  paper  objectively  involving  the  use  of  
robotic  telesurgery.  You  will  only  be  reported  as  surgeons,  and  your  responses  shall  be  kept  
anonymous.
*  Required
What  age  group  do  you  belong?
Select  one.
  <30
  30-­40
  41-­50
  51-­60
  >60
I  have  performed  both  traditional  laparoscopic  surgery  and  robotic  surgery.  *
Select  one.
  Yes
  No
Approximately  how  many  hours  of  training  were  required  to  become  proficient  in  robotic
surgery  methods?  *
Fill  in.
Please  estimate  the  answers  to  the  following  questions.
Prior  to  your  training  in  robotic  surgery,  approximately  how  many  laparoscopic  procedures
were  you  performing  a  year?
Approximately  what  percentage  of  these  cases  are  you  now  performing  robotically?
Please  answer  the  following  statements  with  a  rating  of  to
what  degree  you  agree  with  the  following  statements.
Robotic  Surgery  offers  a  technical  advantage  over  laparoscopic  surgery.
Select  one.
000782-­‐0151	
  
	
   33	
  
	
  
	
  
	
  
	
  
	
  
8/24/13 Robotic Surgery Survey
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 2/3
Robotic  Surgery  is  cost  effective  for  the  hospital.
Select  one.
Robotic  surgery  provides  overall  better  patient  outcome  compared  to  laparoscopic  surgery.
Select  one.
Robotic  Surgery  offers  a  marketing  advantage  with  patients  over  laparoscopic  surgery.
Select  one.
I  believe  there  will  no  longer  be  a  role  for  traditional  laparoscopic  surgery  once  robotic
surgery  becomes  more  prevalent.
Select  one.
Would  you  consider  having  an  expert  assist  you  robotically  from  a  remote  location?
Select  one.
Robotic  surgery  decreases  port  site  pain  in  patients.
Select  one  to  complete  the  blank.
Robotic  surgery  decreases  length  of  stay  for  patients.
Select  one  to  complete  the  blank.
Robotic  surgery  decreases  operating  room  procedure  time.
Select  one  to  complete  the  blank.
Would  you  consider  operating  on  patients  remotely  in  different  hospitals?
Select  one.
  Yes
  No
I  have  found  robotic  laparoscopic  surgery  ...
Check  all  that  apply.
  Has  generally  reduced  ergonomic  stress  on  my  body  while  performing  surgery.
  Has  improved  handling  of  instruments  with  360  degree  rotational  capabilities.
  Has  improved  the  view  of  the  patient  with  3D,  as  compared  to  2D,  patient  imaging.  
  Offers  a  significantly  more  useful  zoom  capability  compared  to  traditional  endoscopes.
000782-­‐0151	
  
	
   34	
  
	
  
	
  
Human	
  Surgical	
  Strengths	
   Robot	
  Surgical	
  Strengths	
  
1) More	
  direct	
  hand	
  eye	
  coordination	
  
2) Tactile	
  sensation	
  in	
  the	
  patient	
  
3) Faster	
  Procedure	
  Time	
  
4) Can	
  quickly	
  adjust	
  to	
  unexpected	
  events	
  
5) Easier	
  for	
  universities	
  to	
  teach	
  
6) Initial	
  costs	
  cheaper	
  
7) Has	
  been	
  improved	
  and	
  developed	
  for	
  
decades	
  
1) Clean	
  and	
  geometric	
  precision	
  
2) Operational	
  in	
  smaller	
  incisions	
  
3) Filters	
  surgeon	
  hand	
  tremors	
  
4) 3D	
  HD	
  1080i	
  view	
  of	
  insides	
  
5) Potential	
  for	
  remote	
  surgery	
  
6) 4	
  appendages	
  usable	
  
7) Superior	
  zoom	
  capabilities	
  
8) More	
  degrees	
  of	
  rotation	
  
Human	
  Surgical	
  Weaknesses	
   Robot	
  Surgical	
  Weaknesses	
  
1) Larger	
  Incisions	
  
2) Many	
  angles	
  of	
  entry	
  physiologically	
  
impossible	
  for	
  surgeon	
  
3) Humans	
  degrade	
  with	
  age	
  
4) No	
  depth	
  perception	
  with	
  Endoscope	
  
5) Fatigues	
  surgeon	
  faster	
  (with	
  hours	
  of	
  
standing	
  still)	
  
1) Limited	
  tactile	
  sensation	
  
2) Danger	
  to	
  ever	
  roam	
  out	
  of	
  view	
  
3) Only	
  as	
  talented	
  as	
  the	
  surgeon	
  
4) Viable	
  mainly	
  in	
  simpler	
  surgeries	
  
5) Costlier	
  procedures	
  to	
  cover	
  expenses	
  
6) Reliant	
  on	
  a	
  power	
  source	
  
7) Lengthier	
  procedures	
  on	
  average	
  
8/24/13 Robotic Surgery Survey
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 3/3
  Impairs  my  tactile  sensation  inside  the  patient.
  Has  decreased  my  overall  dexterity  as  a  surgeon.
  Has  a  noticeable  time  lapse  between  when  I  use  the  controls  and  when  the  robot  acts.
Thank  you  very  much  for  taking  the  time  to  take  this  survey.
Your  anonymous  responses  are  appreciated.
Powered  by
  
This  content  is  neither  created  nor  endorsed  by  Google.  
Report  Abuse  -­  Terms  of  Service  -­  Additional  Terms
Submit
Never  submit  passwords  through  Google  Forms.
000782-­‐0151	
  
	
   35	
  
	
  
000782-­‐0151	
  
	
   36	
  
	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 2/7
0-­50 3 21%
51-­100 4 29%
101-­150 2 14%
151-­200 4 29%
>200 1 7%
0-­20% 5 36%
21-­40% 4 29%
41-­60% 2 14%
61-­80% 2 14%
81-­100% 1 7%
Strongly  Agree 8 57%
Agree 5 36%
Unsure 1 7%
Disagree 0 0%
Strongly  Disagree 0 0%
Approximately  what  percentage  of  these  cases  are  you  now  performing
robotically?
Please  answer  the  following  statements  with  a  rating  of
to  what  degree  you  agree  with  the  following  statements.
Robotic  Surgery  offers  a  technical  advantage  over  laparoscopic  surgery.
Robotic  Surgery  is  cost  effective  for  the  hospital.
000782-­‐0151	
  
	
   37	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 3/7
Strongly  Agree 0 0%
Agree 3 21%
Unsure 9 64%
Disagree 1 7%
Strongly  Disagree 1 7%
Strongly  Agree 2 14%
Agree 4 29%
Unsure 8 57%
Disagree 0 0%
Strongly  Disagree 0 0%
Robotic  surgery  provides  overall  better  patient  outcome  compared  to
laparoscopic  surgery.
Robotic  Surgery  offers  a  marketing  advantage  with  patients  over  laparoscopic
surgery.
000782-­‐0151	
  
	
   38	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 4/7
Strongly  Agree 3 21%
Agree 8 57%
Unsure 2 14%
Disagree 1 7%
Strongly  Disagree 0 0%
Strongly  Agree 0 0%
Agree 2 14%
Unsure 1 7%
Disagree 6 43%
Strongly  Disagree 5 36%
I  believe  there  will  no  longer  be  a  role  for  traditional  laparoscopic  surgery  once
robotic  surgery  becomes  more  prevalent.
Would  you  consider  having  an  expert  assist  you  robotically  from  a  remote
location?
000782-­‐0151	
  
	
   39	
  
	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 5/7
Strongly  Agree 1 7%
Agree 4 29%
Unsure 5 36%
Disagree 4 29%
Strongly  Disagree 0 0%
Strongly  Agree 0 0%
Agree 5 36%
Unsure 4 29%
Disagree 4 29%
Strongly  Disagree 1 7%
Robotic  surgery  decreases  port  site  pain  in  patients.
Robotic  surgery  decreases  length  of  stay  for  patients.
000782-­‐0151	
  
	
   40	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 6/7
Strongly  Agree 4 29%
Agree 4 29%
Unsure 2 14%
Disagree 3 21%
Strongly  Disagree 1 7%
Strongly  Agree 0 0%
Agree 4 29%
Unsure 2 14%
Disagree 7 50%
Strongly  Disagree 1 7%
Yes 6 43%
No 8 57%
Robotic  surgery  decreases  operating  room  procedure  time.
Would  you  consider  operating  on  patients  remotely  in  different  hospitals?
I  have  found  robotic  laparoscopic  surgery  ...
000782-­‐0151	
  
	
   41	
  
	
  
Number	
  of	
  Surgeon	
  Surveyed	
   Hours	
  to	
  Proficiency	
  
1	
   40	
  
2	
   25	
  
3	
   30	
  
4	
   100	
  
5	
   50	
  
6	
   10	
  
7	
   50	
  
8	
   50	
  
9	
   50	
  
10	
   12	
  
11	
   20	
  
12	
   30	
  
13	
   20	
  
14	
   25	
  
Arithmetic	
  Mean	
   36.57142857	
  
Standard	
  Deviation	
   23.15404695	
  
	
  
	
  	
  	
  	
  	
  
8/24/13 EE Survey - Google Drive
https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 7/7
Has  generally  reduced  ergonomic  stress  on  my  body  while  performing  surgery. 11 19%
Has  improved  handling  of  instruments  with  360  degree  rotational  capabilities. 13 22%
Has  improved  the  view  of  the  patient  with  3D,  as  compared  to  2D,  patient  imaging.   12 20%
Offers  a  significantly  more  useful  zoom  capability  compared  to  traditional  endoscopes. 13 22%
Impairs  my  tactile  sensation  inside  the  patient. 9 15%
Has  decreased  my  overall  dexterity  as  a  surgeon. 1 2%
Has  a  noticeable  time  lapse  between  when  I  use  the  controls  and  when  the  robot  acts. 0 0%
Thank  you  very  much  for  taking  the  time  to  take  this
survey.  Your  anonymous  responses  are  appreciated.
Number  of  daily  responses
000782-­‐0151	
  
	
   42	
  
11.	
  Bibliography	
  
"Access	
  to	
  Medicines."	
  WHO.	
  N.p.,	
  n.d.	
  Web.	
  12	
  Aug.	
  2013.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
<http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐
20090313/en/>.	
  
"All	
  About	
  Robotic	
  Surgery."	
  Q&A	
  about	
  Robotic	
  Surgery.	
  World	
  Wide	
  	
  	
  	
  
Information	
  Center	
  for	
  Minimally	
  Invasive	
  Robotic	
  Surgery,	
  2011.	
  Web.	
  31	
  July	
  
2013.	
  <http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.	
  
Aston,	
  Geri.	
  "Hospitals	
  and	
  Health	
  Network	
  Magazine."	
  Hospitals	
  and	
  Health	
  
Network	
  Magazine.	
  Hospitals	
  &	
  Health	
  Networks,	
  Apr.	
  2012.	
  Web.	
  13	
  Aug.	
  2013.	
  
<http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Arti
cle/data/04APR2012/0412HHN_FEA_clinicalmanagement>.	
  
Bell,	
  Kay.	
  "Comparison	
  of	
  DSL,	
  Cable	
  &	
  Fiber	
  Optic."	
  Science.	
  
OpposingViews.com,	
  n.d.	
  Web.	
  09	
  Aug.	
  2013.	
  
<http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.	
  
Bonsor,	
  Kevin,	
  and	
  Jonathan	
  Strickland.	
  "How	
  Robotic	
  Surgery	
  Will	
  
Work."HowStuffWorks.	
  HowStuffWorks,	
  30	
  Oct.	
  2000.	
  Web.	
  08	
  Aug.	
  2013.	
  
<http://science.howstuffworks.com/life/human-­‐biology/robotic-­‐surgery1.htm>.	
  
"Da	
  Vinci®	
  Skills	
  Simulator™."	
  Intuitive	
  Surgical.	
  Intuitive	
  Surgical,	
  Oct.	
  2010.	
  
Web.	
  07	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/skills_simulator/>.	
  
"Da	
  Vinci®	
  Surgical	
  System."	
  Robot-­‐Assisted	
  Surgery:	
  Da	
  Vinci.	
  Brown	
  
University,	
  2005.	
  Web.	
  9	
  Aug.	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.	
  
000782-­‐0151	
  
	
   43	
  
Da	
  Vinci	
  Surgical	
  System	
  Overview	
  Video."	
  Intuitive	
  Surgical.	
  Intuitive	
  
Surgical,	
  Oct.	
  2010.	
  Web.	
  08	
  Aug.	
  2013.	
  
<http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_vi
deo.html>.	
   	
  	
  
"EndoWrist®	
  Instruments."	
  Intuitive	
  Surgical.	
  Intuitive,	
  2012.	
  Web.	
  05	
  Aug.	
  
2013.	
  <http://www.intuitivesurgical.com/products/instruments.html>	
  
Herron,	
  Daniel	
  M.	
  "A	
  Consensus	
  Document	
  on	
  Robotic	
  Surgery."	
  Society	
  of	
  
American	
  Gastrointestinal	
  and	
  Endoscopic	
  Surgeons.	
  SAGES,	
  Nov.	
  2007.	
  Web.	
  03	
  Aug.	
  
2013.	
  <http://www.sages.org/publications/guidelines/consensus-­‐document-­‐
robotic-­‐surgery/>.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Lawson,	
  Elise	
  H.,	
  Myriam	
  J.	
  Curet,	
  Barry	
  R.	
  Sanchez,	
  Rob	
  Schuster,	
  and	
  Ramon	
  
Berguer.	
  "Postural	
  Ergonomics	
  during	
  Robotic	
  and	
  Laparoscopic	
  Gastric	
  Bypass	
  
Surgery:	
  A	
  Pilot	
  Project."	
  Journal	
  of	
  Robotic	
  Surgery	
  1.1	
  (2007):	
  Print.	
  
Leddy,	
  Laura	
  S.,	
  Thomas	
  S.	
  Lendvay,	
  and	
  Richard	
  M.	
  Satava.	
  "Robotic	
  Surgery:	
  
Applications	
  and	
  Cost	
  Effectiveness."	
  Robotic	
  Surgery:	
  Applications	
  and	
  Cost	
  
Effectiveness.	
  Dove	
  Press,	
  2	
  Sept.	
  2012.	
  Web.	
  11	
  Aug.	
  2013.	
  	
  
http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐effectiveness-­‐
peer-­‐reviewed-­‐article-­‐OAS	
  
Nightdale,	
  C.	
  J.	
  "What	
  Can	
  Be	
  Expected	
  from	
  Magnification	
  Endoscopy?"	
  What	
  
Can	
  Be	
  Expected	
  from	
  Magnification	
  Endoscopy?	
  Oeso	
  Knowledge,	
  May	
  1998.	
  Web.	
  
08	
  Aug.	
  2013.	
  
<http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.	
  
000782-­‐0151	
  
	
   44	
  
Park,	
  J.	
  "A	
  Haptic	
  Teleoperation	
  Approach	
  Based	
  on	
  Contact	
  Force	
  
Control."	
  The	
  International	
  Journal	
  of	
  Robotics	
  Research	
  25.5-­‐6	
  (2006):	
  Print.	
   	
  
"Parkridge	
  East	
  Hospital."	
  The	
  Center	
  for	
  Robotic	
  Surgery.	
  Brigham	
  and	
  
Women's	
  Hospital,	
  16	
  Oct.	
  2012.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐surgery>.	
  	
  
"Remote	
  Gallbladder	
  Operation	
  Spans	
  3,800	
  Miles."	
  The	
  New	
  York	
  Times.	
  The	
  
New	
  York	
  Times,	
  20	
  Sept.	
  2001.	
  Web.	
  10	
  Aug.	
  2013.	
  
<http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐operation-­‐
spans-­‐3800-­‐miles.html>.	
  
"Robot-­‐Assisted	
  Surgery:	
  Glossary."	
  Robot-­‐Assisted	
  Surgery:	
  Glossary.	
  Brown	
  
University,	
  n.d.	
  Web.	
  12	
  Aug.	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html
>	
  
"Robotics:	
  The	
  Future	
  of	
  Minimally	
  Invasive	
  Heart	
  Surgery."	
  Robotics:	
  The	
  
Future	
  of	
  Minimally	
  Invasive	
  Heart	
  Surgery.	
  Brown	
  University,	
  5	
  Mar.	
  2000.	
  Web.	
  21	
  
July	
  2013.	
  
<http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/R
obotics.html>.	
  
Rosen,	
  Jacob,	
  Blake	
  Hannaford,	
  and	
  Richard	
  M.	
  Satava.	
  Surgical	
  Robotics:	
  
Systems,	
  Applications,	
  and	
  Visions.	
  New	
  York:	
  Springer,	
  2011.Print.	
  
	
  

More Related Content

What's hot

Network1 basic practicetests_module1
Network1 basic practicetests_module1Network1 basic practicetests_module1
Network1 basic practicetests_module1Vanesa Duque
 
Μαθηματικά ΣΤ΄- Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄
Μαθηματικά ΣΤ΄-  Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄Μαθηματικά ΣΤ΄-  Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄
Μαθηματικά ΣΤ΄- Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄Χρήστος Χαρμπής
 
Tema de aoristo
Tema de aoristoTema de aoristo
Tema de aoristoisaacramos
 
Reglas de evolución fonética
Reglas de evolución fonéticaReglas de evolución fonética
Reglas de evolución fonéticasangelen
 
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥ
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥ
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥYulie Zika
 
Λατινικά, ενότητα 11
Λατινικά, ενότητα 11Λατινικά, ενότητα 11
Λατινικά, ενότητα 11gina zaza
 
Ένας μικρός δικτακτορίσκος
Ένας  μικρός  δικτακτορίσκοςΈνας  μικρός  δικτακτορίσκος
Ένας μικρός δικτακτορίσκοςFotini Dim
 
Ms2 diagnostic & assessment tasks
Ms2 diagnostic & assessment tasksMs2 diagnostic & assessment tasks
Ms2 diagnostic & assessment tasksMr Bounab Samir
 

What's hot (9)

Network1 basic practicetests_module1
Network1 basic practicetests_module1Network1 basic practicetests_module1
Network1 basic practicetests_module1
 
Μαθηματικά ΣΤ΄- Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄
Μαθηματικά ΣΤ΄-  Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄Μαθηματικά ΣΤ΄-  Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄
Μαθηματικά ΣΤ΄- Επαναληπτικό 2ης Ενότητας, Κεφ. 25 - 29, ΄΄Εξισώσεις΄΄
 
Ερωφίλη και Πανάρετος
Ερωφίλη και ΠανάρετοςΕρωφίλη και Πανάρετος
Ερωφίλη και Πανάρετος
 
Tema de aoristo
Tema de aoristoTema de aoristo
Tema de aoristo
 
Reglas de evolución fonética
Reglas de evolución fonéticaReglas de evolución fonética
Reglas de evolución fonética
 
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥ
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥ
ΠΟΛΙΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΣΤΗΝ ΙΘΑΚΗ- ΓΥΜΝΑΣΙΟ ΠΕΠΛΟΥ
 
Λατινικά, ενότητα 11
Λατινικά, ενότητα 11Λατινικά, ενότητα 11
Λατινικά, ενότητα 11
 
Ένας μικρός δικτακτορίσκος
Ένας  μικρός  δικτακτορίσκοςΈνας  μικρός  δικτακτορίσκος
Ένας μικρός δικτακτορίσκος
 
Ms2 diagnostic & assessment tasks
Ms2 diagnostic & assessment tasksMs2 diagnostic & assessment tasks
Ms2 diagnostic & assessment tasks
 

Similar to Extended Essay Final

Robotic colorectal surgery technique, advantages, disadvantages and its impac...
Robotic colorectal surgery technique, advantages, disadvantages and its impac...Robotic colorectal surgery technique, advantages, disadvantages and its impac...
Robotic colorectal surgery technique, advantages, disadvantages and its impac...Apollo Hospitals
 
Integrating Medical Robots for Brain Surgical Applications
Integrating Medical Robots for Brain Surgical ApplicationsIntegrating Medical Robots for Brain Surgical Applications
Integrating Medical Robots for Brain Surgical ApplicationsDR.P.S.JAGADEESH KUMAR
 
Robotics in healthcare
Robotics in healthcareRobotics in healthcare
Robotics in healthcareParas Wadher
 
Role of artificial intelligence in orthopaedics
Role of artificial intelligence in orthopaedicsRole of artificial intelligence in orthopaedics
Role of artificial intelligence in orthopaedicsprashanth nagaraj
 
Robotic Surgery Project Report
Robotic Surgery Project ReportRobotic Surgery Project Report
Robotic Surgery Project ReportSai Charan
 
Autonomous Camera Movement for Robotic-Assisted Surgery: A Survey
Autonomous Camera Movement for Robotic-Assisted Surgery: A SurveyAutonomous Camera Movement for Robotic-Assisted Surgery: A Survey
Autonomous Camera Movement for Robotic-Assisted Surgery: A SurveyIJAEMSJORNAL
 
ROBOTIC CATA.doc
ROBOTIC CATA.docROBOTIC CATA.doc
ROBOTIC CATA.doccofclan006
 
Su pd ph-dproposals
Su pd ph-dproposalsSu pd ph-dproposals
Su pd ph-dproposalsnaranbatn
 
Computer-Assisted Robotic Surgery and Telesurgery
Computer-Assisted Robotic Surgery and TelesurgeryComputer-Assisted Robotic Surgery and Telesurgery
Computer-Assisted Robotic Surgery and TelesurgeryTy Lantz
 
Robotic surgery
Robotic  surgeryRobotic  surgery
Robotic surgeryQualcomm
 
A Perspective on Medical Robotics
A Perspective on Medical RoboticsA Perspective on Medical Robotics
A Perspective on Medical Roboticsyashwanthn10
 
Advanced Robot Vision for Medical Surgical Applications
Advanced Robot Vision for Medical Surgical ApplicationsAdvanced Robot Vision for Medical Surgical Applications
Advanced Robot Vision for Medical Surgical ApplicationsDR.P.S.JAGADEESH KUMAR
 
Robotics in ehealth 2021
Robotics in ehealth 2021Robotics in ehealth 2021
Robotics in ehealth 2021Shazia Iqbal
 
Robotic Surgery(minimally invasive surgery)
Robotic Surgery(minimally invasive surgery)Robotic Surgery(minimally invasive surgery)
Robotic Surgery(minimally invasive surgery)Sgtm Saha
 
Early experience with the da vinci® surgical
Early experience with the da vinci® surgicalEarly experience with the da vinci® surgical
Early experience with the da vinci® surgicalTariq Mohammed
 

Similar to Extended Essay Final (20)

Robotic 1
Robotic 1Robotic 1
Robotic 1
 
Robotic colorectal surgery technique, advantages, disadvantages and its impac...
Robotic colorectal surgery technique, advantages, disadvantages and its impac...Robotic colorectal surgery technique, advantages, disadvantages and its impac...
Robotic colorectal surgery technique, advantages, disadvantages and its impac...
 
Integrating Medical Robots for Brain Surgical Applications
Integrating Medical Robots for Brain Surgical ApplicationsIntegrating Medical Robots for Brain Surgical Applications
Integrating Medical Robots for Brain Surgical Applications
 
Robotics in healthcare
Robotics in healthcareRobotics in healthcare
Robotics in healthcare
 
Role of artificial intelligence in orthopaedics
Role of artificial intelligence in orthopaedicsRole of artificial intelligence in orthopaedics
Role of artificial intelligence in orthopaedics
 
Bio robotics
Bio roboticsBio robotics
Bio robotics
 
Robotic Surgery Project Report
Robotic Surgery Project ReportRobotic Surgery Project Report
Robotic Surgery Project Report
 
Autonomous Camera Movement for Robotic-Assisted Surgery: A Survey
Autonomous Camera Movement for Robotic-Assisted Surgery: A SurveyAutonomous Camera Movement for Robotic-Assisted Surgery: A Survey
Autonomous Camera Movement for Robotic-Assisted Surgery: A Survey
 
ROBOTIC CATA.doc
ROBOTIC CATA.docROBOTIC CATA.doc
ROBOTIC CATA.doc
 
Su pd ph-dproposals
Su pd ph-dproposalsSu pd ph-dproposals
Su pd ph-dproposals
 
Computer-Assisted Robotic Surgery and Telesurgery
Computer-Assisted Robotic Surgery and TelesurgeryComputer-Assisted Robotic Surgery and Telesurgery
Computer-Assisted Robotic Surgery and Telesurgery
 
Robotic surgery
Robotic  surgeryRobotic  surgery
Robotic surgery
 
robotic surgery
robotic surgeryrobotic surgery
robotic surgery
 
A Perspective on Medical Robotics
A Perspective on Medical RoboticsA Perspective on Medical Robotics
A Perspective on Medical Robotics
 
Advanced Robot Vision for Medical Surgical Applications
Advanced Robot Vision for Medical Surgical ApplicationsAdvanced Robot Vision for Medical Surgical Applications
Advanced Robot Vision for Medical Surgical Applications
 
Robotics in ehealth 2021
Robotics in ehealth 2021Robotics in ehealth 2021
Robotics in ehealth 2021
 
Robotics in Healthcare
Robotics in Healthcare Robotics in Healthcare
Robotics in Healthcare
 
Robotic Surgery(minimally invasive surgery)
Robotic Surgery(minimally invasive surgery)Robotic Surgery(minimally invasive surgery)
Robotic Surgery(minimally invasive surgery)
 
Minimal Access Robotic Surgery
Minimal Access Robotic SurgeryMinimal Access Robotic Surgery
Minimal Access Robotic Surgery
 
Early experience with the da vinci® surgical
Early experience with the da vinci® surgicalEarly experience with the da vinci® surgical
Early experience with the da vinci® surgical
 

Extended Essay Final

  • 1. Submitted  in  Partial  Fulfillment  of  the  International  Baccalaureate  Diploma  for  the   Examination  Session  of  May  2014     Extended  Essay           -­‐Information  Technology  in  a  Global  Society  (ITGS)-­‐           To  What  Extent  is  Robotic  Surgery  an  Information  Technology   Solution  to  Traditional  Laparoscopic  Surgery?     Word  Count:  3960     Reza  Talieh   ITGS   2014  Graduate    
  • 2. 000782-­‐0151     2   Abstract   The  purpose  of  this  investigation  was  to  evaluate  the  multiple  facets  of   comparison  between  traditional  laparoscopic  minimally  invasive  surgery  with  its   contemporary  robotic  counterpart  and  conclude  with  an  overall  statement  on  how   well  robotic  surgery  can  be  merited  as  a  practical  solution  to  many  of  the  limitations   that  plague  human  surgery  methods.  Robotic  surgery  naturally  relegated  to  a  more   specific  realm  of  minimally  invasive  surgery,  the  scope  of  the  investigation  would  be   narrow  and  ubiquitous  enough  that  the  question  could  be  reasonably  answered   with  existing  research  and  a  primary  investigation.  This  investigation,  specifically,   would  manifest  itself  as  a  survey  delivered  to  local  surgeons  who  identify   themselves  as  representative  of  robotic  surgery  and  who  all  use  the  same   telesurgical  system.  Their  expert  opinions  would  serve  to  mostly  support  secondary   studies  of  the  abilities  of  robotic  surgery,  and  would  provide  qualitative  appraisals   of  the  merits  of  telerobotics  unobtainable  anywhere  else.  After  a  brief  experience   with  the  da  Vinci  machine  in  question  itself,  I  released  the  anonymous  survey   through  a  relative  in  the  medical  field  who  had  contact  with  the  14  surgeons   considered.  After  holistic,  logistic,  potential,  and  even  ethical  evaluations  of  robotics   in  the  realm  of  minimally  invasive  surgery,  it  was  concluded  that  robotics  have  all   the  potential  and  tangible  results  to  market  it  as  an  IT  solution  to  multiple   shortcoming  of  laparoscopy,  yet  telerobotics  faces  its  largest  obstacles  in  logistics  of   implementation  and  moral  acceptance  as  a  valid  medical  advancement.   Word  Count:  240  
  • 3. 000782-­‐0151     3   Table  of  Contents   Abstract………………………………………………………………………………………………………………  2   1.  Introduction……………………………………………………………………………………………………..  5   1.1  Why  I  chose  robotic  surgery  for  analysis…………………………………………………………  5   1.2  The  history  of  robotic  surgery……………………………………………………………………...5-­‐  6   1.3  An  exploration  into  robotic  surgery………………………………………………………………...  6   2.  The  mechanics  of  robotic  surgery……………………………………………………………………..  6   2.1  Myths  and  misconceptions…………………………………………………………………………..6-­‐  7   2.2  Features  of  a  robotic  surgery  system……………………………………………………………8-­‐  9   2.3  Information  technology  at  work…………………………………………………………………….10   3.  A  means  of  comparison…………………………………………………………………………………...10   3.1  Operating  room  time………………………………………………………………………………..10-­‐11   3.2  Length  of  stay………………………………………………………………………………………….11-­‐12   3.3  General  Benefits………………………………………………………………………………………12-­‐13   3.4  Ergonomics………………………….………………………………………………………....………13-­‐1  4   3.5  Learning  Curve………………………………………………………………………………………..15-­‐1  6   4.  Logistics  of  implementation……………………………………………………………………………1  7   4.1  Costs………………………………………………………………………………………………….……17-­‐18   4.2  Returns………………………………………………………………………………………………………..1  8   4.3  Accessibility…………………………………………………………………...…………………………….19   5.  Abilities  and  limitations  of  robotic  surgery………………………………………………………1  9   5.1  Extension  of  the  doctor……………………………………………………………………………19-­‐21  
  • 4. 000782-­‐0151     4   5.2  Tactile  sensation…………………………...…………………………………………………………21-­‐22   6.  Telemedicine………………………………………………………………………………………………….22   6.1  Telemedical  aspects  of  telerobotic  surgery…………………………………………………….2  2   6.2  Potential  of  a  worldwide  solution…………………………………………………………….22-­‐2  3   6.3  Ethics  of  remote  teleoperations…………….……………………………………………………….23   7.  Conclusion………………………………………………………………………………………………...24-­‐2  6   8.  Glossary………………………………………………………………………………….....……………...27-­‐2  8   9.  Works  Cited…………………………….…………………………………………………..…………….29-­‐31   10.  Bibliography…………………………………...………………………………...…………………….32-­‐3  4   11.  Appendices……………………….………………………………………………………………..……35-­‐44    
  • 5. 000782-­‐0151     5   1.  Introduction   1.1  Why  I  chose  robotic  surgery  for  analysis   Robotic  surgery  is  a  burgeoning  technology  in  the  medical  field  that  in  its  early   stages  has  demonstrated  tangible  medical  capabilities  while  still  retaining  the   potential  for  growth.  As  this  new  technique  is  an  avant-­‐garde  field  of  study  and   practice,  and  as  robotic  surgery  plays  a  pivotal  role  in  telemedicine,  the  concept  in   its  entirety  is  an  excellent  topic  for  an  Extended  Essay  regarding  Information   Technology  in  a  Global  Society  in  line  with  Strand  2.4  Health  of  the  ITGS  curriculum   in  analysis  of  IT  on  stakeholders.  Its  intrinsic  combination  with  technology  affords   this  new  category  of  procedure  a  whole  new  facet  to  medicine,  and  that  is  remotely   operated  surgery  for  a  global  approach  to  medicine.  This,  coupled  with  the  recent   adoption  of  surgical  robotics  in  our  local  hospital,  has  afforded  me  the  proximity  to   study  this  technology  first  hand,  and  affords  me  the  opportunity  beyond  simply  the   desire  to  investigate  the  objective  potential  of  robotic  surgery,  and  begs  the   question  of  to  what  extent  is  robotic  surgery  an  information  technology  solution  to   traditional  laparoscopic  surgery?   1.2  The  history  of  robotic  surgery   Since  1994,  the  modern  information  age  has  begun  to  adapt  itself  to  modern   medicine  in  the  endeavor  to  create  the  future  of  both  medicine  and  technology.  With   the  producer,  Computer  Motion,  at  the  forefront,  advanced  operating  room  tools   such  as  Aesop  have  assisted  in  over  70,000  pioneering  procedures.  Although  this   began  simply  as  a  method  to  control  a  video  interface  typical  in  normal  laparoscopic   surgery,  Aesop’s  successor,  Zeus,  performed  the  first  surgeon-­‐mimicking  
  • 6. 000782-­‐0151     6   movements,  such  as  incisions  or  grabbing  motions.1  Contemporarily,  the  da  Vinci   Surgical  System  integrates  and  advances  its  predecessor’s  developments,  and  is   currently  the  leading  FDA  approved  telesurgical  device.2  Modern  robotic  surgery   can  be  defined  as  a  subset  of  minimally  invasive  surgery  where  the  surgeon  him  or   herself  is  operating  from  a  different  location  a  set  distance  away,  linked  to  a   machine  that  captures  3-­‐dimensional  images  of  the  patient  for  the  surgeons   viewing,  and  translates  the  doctors  actions  into  the  surgical  procedure  done  via  the   robot’s  “arms”.   1.3  An  exploration  into  robotic  surgery   In  the  realm  of  robotic  laparoscopic  surgery,  taking  a  novel  approach  to  traditional   surgical  methods,  always  poses  the  question  of  whether  robotic  surgery  is  the   evolution  of  traditional  surgery,  or  simply  a  gimmick  with  no  future.  The  solution  to   this  question  in  a  contemporary  setting  has  its  ambiguities,  and  with  a  legal   adoption  beginning  only  in  the  year  2000,  telesurgery  is  still  in  its  youth.  Still,  with   Information  Technology  at  its  core  designed  to  overcome  shortcomings  in   traditional  laparoscopy  designed  in  mind  to  aid  human  progress  by  bringing   perhaps  both  economic  and  quality-­‐of-­‐life  benefits,  robotic  telesurgery  has  the   potential  to  both  enhance  and  detract  from  traditional  laparoscopic  surgery.   2.  The  mechanics  of  robotic  surgery   2.1  Myths  and  misconceptions                                                                                                                   1  "Robotics:  The  Future  of  Minimally  Invasive  Heart  Surgery."  Robotics:  The  Future  of  Minimally   Invasive  Heart  Surgery.  Brown  University,  5  Mar.  2000.  Web.  21  July  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/Robotics.html>.   2  Rosen,  Jacob,  Blake  Hannaford,  and  Richard  M.  Satava.  Surgical  Robotics:  Systems,  Applications,  and   Visions.  New  York:  Springer,  2011.203.Print.  
  • 7. 000782-­‐0151     7   The  first  and  perhaps  greatest  misconception  is  that  people  believe  that  commonly   practiced  robotic  surgery  relies  on  AI,  or  artificial  intelligence  of  a  robot  completing   the  surgery  with  little  or  no  human  interaction.  The  truth  is,  while  pre-­‐programmed   procedures  have  been  developed  for  robotic  purposes  in  the  past,  traditionally   adopted  telesurgery  as  with  the  FDA  approved  da  Vinci  Surgical  System  is   completely  surgeon  operated.  A  surgeon  stationed  in  the  same  room  operates  at  a   console  input  directly  wired  to  the  surgical  system  output,  which  performs  only   movements  directed  by  the  surgeon.  The  second  misconception  is  that  there  is  lag,   or  a  latency  period  between  the  surgeon’s  actions  and  those  of  the  robot  arm.   Latency  is  a  major  issue  with  any  remote  IT,  however,  in  this  case  again  the  surgeon   is  directly  wired  to  the  robot  in  the  same  room,  and  the  feedback  and  output  of  the   robot  are  all  but  synchronized  with  the  surgeon.3  The  third  major  myth  suggests   that  robotic  surgery  reduces  the  viewing  capabilities  of  the  surgeon,  who  looks  now   at  a  screen  instead  of  the  actual  patient.  While  this  is  true  to  a  small  degree,  that   traditional  endoscopic  instruments  allow  a  larger  range  of  view,  the  robotic  surgical   system  permits  the  doctor  a  3D  1080i  HD  view  of  the  patient,  which  when  coupled   with  greater  zoom  capabilities,  more  than  compensates  for  the  negligible  difference   in  range  of  view.4                                                                                                                   3  "All  About  Robotic  Surgery."  Q&A  about  Robotic  Surgery.  World  Wide  Information  Center  for   Minimally  Invasive  Robotic  Surgery,  2011.  Web.  31  July  2013.   <http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.   4  "Da  Vinci®  Surgical  System."  Robot-­‐Assisted  Surgery:  Da  Vinci.  Brown  University,  2005.  Web.  31  July   2013.  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.  
  • 8. 000782-­‐0151     8   2.2  Features  of  a  robotic  surgery  system   While  many  devices  fall  under  the  umbrella  of  robotically  assisted  surgery,  this   paper  will  focus  specifically  on  telesurgical  machines  such  as  the  da  Vinci  System.   The  basic  layout  (figure  1)  involves  a  console  at  which  the  doctor  sits  and  views  a   3D  zoomed  and  enhanced  reproduction  of  whatever  is  in  front  of  the  patient  cart’s   endoscope.  The  patient  cart,  connected  via  direct  cables  or  wireless,  is  where  the   surgery-­‐performing  robot  is  stationed.  Both  the  console  and  the  patient  cart  are   adjustable  via  turn  knobs  to  suit  the  doctor  and  the  patient  respectively.  In  an   unveiling  of  the  robot  at  the  local  hospital,  I  had  the  fortune  of  using  the  machine   myself.  Two  pincer  like  controls  lie  beneath  the  robot,  operated  by  mainly  the   thumb  and  forefinger  to  control  the  7-­‐degree  robots  grip,  and  hand  movements  of   the  surgeon  can  be  scaled  down  up  to  one-­‐fifth  the  motion  by  the  robot.5    A  pedal   known  as  the  “clutch”  is  used  readjust  the  operator’s  hand  movements  while  the   robot  lies  perfectly  still,  and  also  functions  as  a  zoom  if  coupled  with  push  and  pull   movements.  A  special  holding  rack  displays  the  multiple  EndoWrist®  surgical   instruments  for  a  nurse  to  swap  out  instruments  for  the  use  of  three  of  the  arms   (the  fourth  is  dedicated  to  the  endoscope).  The  da  Vinci  System  console  is   compatible  with  surgeon  training  software,  models,  and  simulations.6                                                                                                                   5  "Parkridge  East  Hospital."  The  Center  for  Robotic  Surgery.  Brigham  and  Women's  Hospital,  16  Oct.   2012.  Web.  12  Aug.  2013.  <http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐ surgery>.     6  "Da  Vinci®  Skills  Simulator™."  Intuitive  Surgical.  Intuitive  Surgical,  Oct.  2010.  Web.  07  Aug.  2013.   <http://www.intuitivesurgical.com/products/skills_simulator/>.  
  • 9. 000782-­‐0151     9     Figure  1-­‐Diagram  of  da  Vinci  Surgical  System7                                                                                                                   7  Bonsor,  Kevin,  and  Jonathan  Strickland.  "How  Robotic  Surgery  Will  Work."HowStuffWorks.   HowStuffWorks,  30  Oct.  2000.  Web.  08  Aug.  2013.  <http://science.howstuffworks.com/life/human-­‐ biology/robotic-­‐surgery1.htm>.  
  • 10. 000782-­‐0151     10   2.3  Information  technology  at  work   In  the  aspiration  of  aiding  all  stakeholders,  i.e.  the  hospital,  the  surgical  staff,  and  the   patients,  multiple  facets  of  Information  Technology  hardware  are  put  to  task.   Beginning  with  computer  simulations  synced  to  the  movements  of  the  surgical   console  to  train  surgeons,  the  telesurgical  system  progresses  to  a  thinner  3D   endoscope  with  10-­‐35x  zoom  of  traditional  endoscopes  plus  digital  zoom   capabilities.8  The  camera  of  the  endoscope  provides  direct  stereoscopic  1080i  High   Definition  video  uplink  to  the  surgical  console.9  Limited  haptic  sensors  provide   feedback  when  two  robotic  arms  come  into  contact  with  each  other,  and  sensors  on   the  console’s  controls  even  filter  tiny  hand  tremors  for  more  precise  surgery10.  Via   fiber  optics  at  an  average  speed  of  50  megabits  per  second,  there  is  the  capability  of   wireless  telesurgery  overseas  via  a  Protected  Network  connection,  although  this  has   yet  to  be  put  into  normal  practice.11   3.  A  means  of  comparison   3.1  Operating  room  time   Currently,  surgery  with  the  da  Vinci  Surgical  System  is  estimated  to  take  40-­‐50   minutes  longer  than  traditional  laparoscopy.12  This  figure  is  corroborated  by  the                                                                                                                   8  Nightdale,  C.  J.  "What  Can  Be  Expected  from  Magnification  Endoscopy?"  What  Can  Be  Expected  from   Magnification  Endoscopy?  Oeso  Knowledge,  May  1998.  Web.  08  Aug.  2013.   <http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.   9"Da  Vinci  Surgical  System  Overview  Video."  Intuitive  Surgical.  Intuitive  Surgical,  Oct.  2010.  Web.  08   Aug.  2013.   <http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_video.html>.   10  Park,  J.  "A  Haptic  Teleoperation  Approach  Based  on  Contact  Force  Control."  The  International   Journal  of  Robotics  Research  25.5-­‐6  (2006):  575-­‐91.  Print.   11  Bell,  Kay.  "Comparison  of  DSL,  Cable  &  Fiber  Optic."  Science.  OpposingViews.com,  n.d.  Web.  09  Aug.   2013.  <http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.   12  "Da  Vinci®  Surgical  System."  Robot-­‐Assisted  Surgery:  Da  Vinci.  Brown  University,  2005.  Web.  9  Aug.   2013.  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.  
  • 11. 000782-­‐0151     11   expert  survey  in  figure  2,  which  demonstrates  that  more  than  half  of  the  doctors   surveyed  believe  that  robotic  surgery  increases  procedure  time  on  average.  This   factor,  however,  is  heavily  linked  to  the  learning  curve  of  the  IT.  Once  robotic  arm   movements  become  familiar  and  truly  an  extension  of  the  surgeon,  then  this  statistic   could  very  well  change.     Figure  2  –  Robotic  surgery  decreases  OR  time  statistic   3.2  Length  of  stay   When  one  considers  that  the  duration  spent  recovering  in  any  hospital  is  not  only   detrimental  to  the  hospital’s  resources  but  the  patient’s  physical  and  financial  well   being  in  addition  to  time  spent  away  from  work,  this  becomes  a  significant  point  of   discussion;  both  parties  are  now  stakeholders.  According  to  a  study  conducted  by   the  Department  of  Urology  at  the  University  of  Washington,  “When  the  total  (fixed,   variable,  OR,  and  hospital  stay)  costs  for  robotic  surgery  and  open  surgery  are   comparable,  it  is  largely  due  to  a  considerable  shortening  of  the  length  of  hospital   stay  after  the  robotic  surgery,  resulting  in  total  cost  savings”13.  Logic  would  dictate   that,  a  more  minimally  invasive  surgery  would  result  in  a  faster  natural  healing                                                                                                                   13  Leddy,  Laura  S.,  Thomas  S.  Lendvay,  and  Richard  M.  Satava.  "Robotic  Surgery:  Applications  and   Cost  Effectiveness."  Robotic  Surgery:  Applications  and  Cost  Effectiveness.  Dove  Press,  2  Sept.  2012.   Web.  11  Aug.  2013.  <http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐ effectiveness-­‐peer-­‐reviewed-­‐article-­‐OAS>  
  • 12. 000782-­‐0151     12   process.  Fifty-­‐eight  percent  of  surgeons  surveyed  agreed  in  their  experience  that   telerobotic  methods  decrease  length  of  stay  for  their  patients  (figure  3).     Figure  3-­‐  Robotic  surgery  decreases  length  of  stay  statistic   3.3  General  benefits   One  must  also  consider  the  benefits  posed  for  the  patients  themselves.     Thirteen  doctors  agreed  that  telesurgery  provides  a  technical  advantage  for  the   surgeon  (figure  4)  and  six  doctors  (figure  5)  agreed  that  telerobotics  provided  a   better  overall  patient  outcome.       Figure  4  –  Technical  advantage  statistic       Figure  5  –  Better  comparative  patient  outcome  statistic  
  • 13. 000782-­‐0151     13     The  facets  of  this  general  conclusion  are  multiple  and  debatable.  One  sure   fact  is  the  size  of  incision,  usually  only  1-­‐2  centimeters,  made  possible  by  the   degrees  of  rotation  and  compact  3D  camera,  is  far  superior  to  the  wider  incisions   demanded  by  open  surgery,  reducing  blood  loss  and  potentially  length  of  stay  and   pain.14  Opinions  were  mixed  amongst  the  surgeons  surveyed  concerning  port  site   pain,  demonstrating  that  perhaps  this  qualitative  factor  might  be  specific  to  the  type   of  laparoscopic  surgery  or  the  patient  him  or  herself  as  opposed  to  the  robotic   appendages  versus  normal  endoscopic  instrumentation.     Figure  6-­‐  Robotic  surgery  decreases  port  site  pain  statistic   3.4  Ergonomics   It  is  essential  to  remember  that  the  patient  isn’t  the  only  one  whose  comfort  and   condition  matters  in  the  operating  room.  An  essential  element  of  ITGS  studies  is   Information  Technology’s  effect  on  the  ergonomics  of  the  user  of  the  technology  in   question.  Repetitive  strain  injury  exists  here  too,  as  the  doctor  is  performing  the   same  precise  movements  of  the  hand  with  high  levels  of  finesse  whilst  standing   upright  for  up  to  hours  on  end.  Over  years  of  this  physical  stress,  surgeons  will  often                                                                                                                   14  "EndoWrist®  Instruments."  Intuitive  Surgical.  Intuitive,  2012.  Web.  05  Aug.  2013.   <http://www.intuitivesurgical.com/products/instruments/>.  
  • 14. 000782-­‐0151     14   face  symptoms  of  bodily  degradation,  such  as  carpal  tunnel  syndrome  or  cervical   disc  disease15.  A  synthesis  of  studies  between  master-­‐slave  robotic  systems  and   traditional  laparoscopy  yielded  less  musculoskeletal  stress  to  the  back,  arms,  and   legs  with  only  minor  increases  in  stress  to  the  neck  from  monitor  viewing  in  terms   of  ergonomics16.  My  own  survey  also  concluded  with  11  out  of  14  surgeons  agreeing   that  robotic  surgery  reduced  overall  ergonomic  stress  on  their  bodies  (figure  7).     Figure  7-­‐  Ergonomic  stress  statistic   3.5  Learning  Curve                                                                                                                   15  Lawson,  Elise  H.,  Myriam  J.  Curet,  Barry  R.  Sanchez,  Rob  Schuster,  and  Ramon  Berguer.  "Postural   Ergonomics  during  Robotic  and  Laparoscopic  Gastric  Bypass  Surgery:  A  Pilot  Project."  Journal  of   Robotic  Surgery  1.1  (2007):  61-­‐67.  Print.   16  Lawson,  Elise  H.,  Myriam  J.  Curet,  Barry  R.  Sanchez,  Rob  Schuster,  and  Ramon  Berguer.  "Postural   Ergonomics  during  Robotic  and  Laparoscopic  Gastric  Bypass  Surgery:  A  Pilot  Project."  Journal  of   Robotic  Surgery  1.1  (2007):  61-­‐67.  Print.  
  • 15. 000782-­‐0151     15   Investigating  the  learning  curve  for  such  a  relatively  new  surgical  procedure  type   involves  a  look  at  not  only  personal  surgeon  opinions  but  also  the  IT  behind  the   surgical  training.  Standard  with  da  Vinci  Surgical  SI  systems  is  software  for  the   surgeons  to  hone  the  movements  specific  to  instrument  handling  inside  the  robot.   These  system  specific  simulations  utilize  seemingly  simple  “games”  that  react  to  the   console’s  movements  like  virtual  reality  to  train  the  dexterity  of  the  surgeon.  A   grade  is  issued  upon  completion  of  the  exercise,  deeming  whether  the  surgeon  can   move  onto  the  next  exercise  if  a  90%  quota  is  met.  While  this  can  help  the  novice   surgeon  become  familiar  with  the  reflexes  and  coordination  of  the  robot,  IT   simulation  serves  still  as  no  substitute  for  actual  surgical  practice.  On  average,  the   surgeons  interviewed  found  37  hours  of  actual  patient  surgery  practice  was  needed   to  reach  what  they  felt  was  proficiency.  Now  the  standard  deviation  of  this  data  was   high,  about  23  hours,  signaling  the  doctors  weren’t  in  consensus,  and  time  to  reach   proficiency  was  personal  to  the  doctor  (table  1).  
  • 16. 000782-­‐0151     16     Table  1-­‐  Hours  to  Proficiency  Data   Number  of  Surgeon  Surveyed   Hours  to  Proficiency   1   40   2   25   3   30   4   100   5   50   6   10   7   50   8   50   9   50   10   12   11   20   12   30   13   20   14   25   Arithmetic  Mean   36.57142857   Standard  Deviation   23.15404695    
  • 17. 000782-­‐0151     17     4.  Logistics  of  implementation   4.1  Costs   A  first  glimpse  at  the  cost  of  the  da  Vinci  Surgical  System  is  grim,  with  an  average   price  of  1.5  million  U.S.  dollars  per  unit  with  prices  ranging  between  1  million  and  2   million  depending  on  the  number  of  robotic  arms  and  dual  console  capabilities.17   This  high  acquisition  cost  is  coupled  with  the  costs  of  the  Endowrist®  attachment   surgical  instruments  for  the  robotic  arm  extensions,  which  can  cost  anywhere  from   $600  to  $1000  a  piece18.  Furthermore,  like  any  other  laparoscopic  instrument,  these   instruments  will  need  to  be  replaced  periodically,  making  the  cost  of  the  Endowrist   technology  a  linear  function,  and  not  simply  factored  into  the  acquisition  cost.   Another  important  facet  of  the  da  Vinci  Surgical  System  to  factor  in  is  its  user   interface,  simulation,  and  weak-­‐AI  software.  Being  the  only  brand  of  FDA  approved   telerobotic  systems  on  the  market,  and  containing  only  proprietary,  not  open   source,  software,  and  the  software  that  operates  the  master-­‐slave  surgical  tool  is  un-­‐ editable  and  incompatible  with  other  software19.  This  presents  a  scenario  where  the   cost  of  such  technology  is  artificially  higher  than  market  value,  since  competition   doesn’t  present  a  need  to  lower  prices.  Since  advancements  in  the  da  Vinci  product   line  have  not  yet  yielded  a  situation  where  a  software  upgrade  has  been  available                                                                                                                   17  Rosen,  Jacob,  Blake  Hannaford,  and  Richard  M.  Satava.  Surgical  Robotics:  Systems,  Applications,   and  Visions.  New  York:  Springer,  2011.216.Print.   18  "EndoWrist®  Instruments."  Intuitive  Surgical.  Intuitive,  2012.  Web.  03  Aug.  2013.   <http://www.intuitivesurgical.com/products/instruments/>.   19   "All  About  Robotic  Surgery."  Q&A  about  Robotic  Surgery.  World  Wide  Information  Center  for   Minimally  Invasive  Robotic  Surgery,  2011.  Web.  31  July  2013.   <http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.  
  • 18. 000782-­‐0151     18   separate  from  an  entirely  new  surgical  system  set,  this  concept  of  restrictive  and   potentially  costly  software  costs  is  still  speculative.   4.2  Returns   If  one  were  to  look  at  the  acquisition  of  telerobotics  from  the  perspective  of  a  capital   venture,  the  potential  for  “breaking  even”  or  turning  a  profit  is  ambiguous.  It  would   appear  that  most  hospitals  thus  far  have  not  been  fiscally  successful  if  one  considers   the  costs  of  performing  any  minimally  invasive  surgery  via  telerobotics  or   traditional  laparoscopy20.  However,  there  are  other  costs  to  consider  with  which  the   robotic  surgical  system  can  ameliorate.  From  a  patient’s  perspective,  the  prospect  of   a  more  advanced  minimally  invasive  surgery  that  can  reduce  return-­‐visits  is  in  itself   its  own  reward  for  the  higher  costs.  Often  for  the  patient,  he  or  she  only  pays  for  the   insurance  and  not  for  the  procedure  itself.  For  both  the  patient  and  the  hospital,   decreased  hospital  stays  will  reduce  the  expensive  costs  of  resources  post-­‐operation   by  33%,  and  will  consequently  lower  the  cost  on  the  patient’s  stay  as  well.21  In  short,   the  robot  is  a  cost-­‐effective  solution  only  in  a  liberal  sense  of  the  benefits  it  provides   and  potential  resources  it  saves  the  hospital  in  the  form  of  staff  and  hospital  beds,   but  can  easily  repay  a  patient,  who  opts  for  the  more  expensive  robotic  procedure,   in  his  or  her  health  and  time  spent  in  the  hospital  (paying  bills  and  away  from   work).                                                                                                                   20Aston,  Geri.  "Hospitals  and  Health  Network  Magazine."  Hospitals  and  Health  Network  Magazine.   Hospitals  &  Health  Networks,  Apr.  2012.  Web.  13  Aug.  2013.   <http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Article/data/04APR2 012/0412HHN_FEA_clinicalmanagement>.   21  "Da  Vinci®  Surgical  System."  Robot-­‐Assisted  Surgery:  Da  Vinci.  Brown  University,  2005.  Web.  4  Aug.   2013.  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.  
  • 19. 000782-­‐0151     19   4.3  Accessibility   In  a  truly  Global  Society,  it  is  unfortunate  that  in  terms  of  the  3D  visuals,  reduced   patient  and  doctor  stress,  and  potential  for  remote  use  that  an  IT  solution  such  as   this  can  be  confined  to  only  wealthier  parts  of  the  world  based  solely  on  costs.  This   is  evident  in  how  the  Digital  Divide  concept  applies  to  Internet  access  in  a  world  that   relies  on  wireless  communications  and  databases,  the  immense  cost  of  just  one  of   these  units  puts  it  out  of  the  reach  of  even  modest  universities  in  the  United  States.   Even  if  surgeons  were  to  work  “pro  bono”,  and  could  operate  from  richer  nations   overseas,  the  third  world  would  lack  the  technology  on  the  receiving  end  to  accept   the  satellite  uplink.  The  World  Health  Organization  “considers  equitable  access  to   safe  and  affordable  medicines  as  vital  to  the  attainment  of  the  highest  possible   standard  of  health  by  all”22,  which  would  define  telerobotic  surgery  as  failing  to   meet  the  quality  of  standards  of  world  health.   5.  Abilities  and  limitations  of  robotic  surgery   The  questions  of  whether  telerobotics  can  serve  as  and  the  degree  to  which  it  can   ameliorate  problems  are  two  different  questions,  and  with  the  former  answered,  the   latter  shall  be  explored.   5.1  An  extension  of  the  doctor   While  termed  “robotic”,  again,  this  system  is  really  only  a  telehealth-­‐advanced  tool   for  the  doctor,  an  extension  for  the  surgeon  not  unlike  the  endoscope  for   laparoscopy.  With  336o  of  rotation,  the  Endowrist  technology  allows  the  surgeon  to   enter,  and  adjust  even  within  the  body,  at  angles  impossible  physically  for  a  human                                                                                                                   22  "Access  to  Medicines."  WHO.  N.p.,  n.d.  Web.  12  Aug.  2013.   <http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐20090313/en/>.  
  • 20. 000782-­‐0151     20   to  perform.  Regarding  any  delay  between  the  robot’s  actions  and  the  surgeons’,  the   doctors  surveyed  came  to  a  100%  degree  consensus  that  there  is  no  noticeable  time   lapse  or  latency  present  in  the  robot  (figure  8)     Figure  8-­‐  Time  lapse  statistic     In  addition,  a  comparative  chart  of  human  versus  robotic  surgery  talents  is  listed   below  (table  2):    
  • 21. 000782-­‐0151     21   Table  2-­‐  Comparison  of  Human  versus  Robotic  Surgery   Human  Surgical  Strengths   Robot  Surgical  Strengths   1) More  direct  hand  eye  coordination   2) Tactile  sensation  in  the  patient   3) Faster  Procedure  Time   4) Can  quickly  adjust  to  unexpected  events   5) Easier  for  universities  to  teach   6) Initial  costs  cheaper   7) Has  been  improved  and  developed  for   decades   1) Clean  and  geometric  precision   2) Operational  in  smaller  incisions   3) Filters  surgeon  hand  tremors   4) 3D  HD  1080i  view  of  insides   5) Potential  for  remote  surgery   6) Four  appendages  usable   7) Superior  zoom  capabilities   8) More  degrees  of  rotation   Human  Surgical  Weaknesses   Robot  Surgical  Weaknesses   1) Larger  Incisions   2) Many  angles  of  entry  physiologically   impossible  for  surgeon   3) Humans  degrade  with  age   4) No  depth  perception  with  Endoscope   5) Fatigues  surgeon  faster  (with  hours  of   standing  still)   1) Limited  tactile  sensation   2) Danger  to  ever  roam  out  of  view   3) Only  as  talented  as  the  surgeon   4) Viable  mainly  in  simpler  surgeries   5) Costlier  procedures  to  cover  expenses   6) Reliant  on  a  power  source   7) Lengthier  procedures  on  average     5.2  Tactile  sensation   While  the  da  Vinci  system  does  support  tool  on  tool  haptic  responses,  the  machine  is   “numb”  to  the  insides  of  the  patient,  as  there  is  no  tactile  sensation,  a  doctor  could   tear  or  damage  the  patients  organs.  Developments  in  kinesthesia  have  allowed  for   the  machine  to  detect  some  of  the  force  of  harder  tissues  or  sutures  and  stop  the   appendages  and  alert  the  doctor,  yet  this  too  is  limited.  Biologic  sensors  have  been   developed  to  use  feedback  if  the  balloon  simulator  collapses  too  far,  yet  these  and  
  • 22. 000782-­‐0151     22   other  tactile  feedback  IT  solutions  have  been  difficult  to  integrate  into  existing   technology.23   6.  Telemedicine   In  accordance  to  multiple  resource  definitions  of  what  telemedicine  entails,   telemedicine  can  be  defined  as  the  phenomenon  of  providing  healthcare  from  a   source  remote  to  the  patient  utilizing  information  technology  in  some  type  of   telecommunications  method.  When  considering  robotic  surgery  as  the  quintessence   of  telemedicine,  both  the  potential  solutions  it  provides  and  the  ethical  questions  it   raises  shall  be  considered.   6.1  Telemedical  aspects  of  telerobotic  surgery   Robotic  surgery  as  a  whole  encompasses  far  more  ITGS  centric  telehealth  concepts   than  simply  the  “remote”  aspect  of  telesurgery.  One  must  also  consider  the  other  IT   aspects  of  telesurgery  that  comprise  it  as  a  whole.  The  same  monitor  that  projects   the  3D  visuals  also  carries  digital  information  from  the  patient  vital  to  the  surgeon’s   understanding.  The  robot  is  its  own  video  output  of  progress,  a  useful  tool  in   teaching  and  in  evaluation  of  medical  errors  as  well.  Finally,  the  same  charts  and  x-­‐ rays  created  in  the  radiology  department  are  electronically  available  to  surgeon  at   his  very  own  console,  integrated  with  the  rest  of  the  features  of  the  telesurgical   system.   6.2  Potential  of  a  worldwide  solution   In  2001,  the  da  Vinci  system’s  predecessor  Zeus  made  history  by  performing  the   first  complete  remote  robotic  surgery  via  fiber  optic  link  on  a  patient  in  France  from                                                                                                                   23  Rosen,  Jacob,  Blake  Hannaford,  and  Richard  M.  Satava.  Surgical  Robotics:  Systems,  Applications,   and  Visions.  New  York:  Springer,  2011.463.Print.  
  • 23. 000782-­‐0151     23   New  York,  3,800  miles  away24.  The  danger  of  latency,  or  delay,  was  overcome  by   fiber  optics,  and  the  entire  scenario  became  known  as  the  Lindbergh  Operation  XXII.   The  patient  was  discharged  after  a  typical  2  days,  and  while  currently  the  only  FDA   approved  telesurgical  devices  are  not  wireless  capable,  the  technology,  typically   fiber  optics  or  cell  relay  technology,  in  theory  exists  for  true  remote  surgery.   6.3  Ethics  of  remote  teleoperations   One  has  to  question  the  ethics  of  remote  telesurgery  to  go  into  true  ITGS  level   analysis.  Does  this,  perhaps,  remove  a  level  of  intimacy  between  the  patient  and  the   surgeon;  does  it  remove  the  “human”  element?  Is  trusting  a  secure  and  protected   wireless  network,  which  is  not  nearly  as  scrutinized  as  a  board  certified  surgeon,   ethical  and  in  the  patient’s  best  interest?  These  are  but  a  few  questions  that  plague   the  steady  adoption  of  telerobotics  worldwide.  In  regards  to  the  data  collected,   those  surveyed  seemed  reluctant  to  consider  performing  remote  surgery  between   different  hospitals  (figure  9).     Figure  9-­‐  Would  you  consider  remote  telesurgery  statistic                                                                                                                   24  "Remote  Gallbladder  Operation  Spans  3,800  Miles."  The  New  York  Times.  The  New  York  Times,  20   Sept.  2001.  Web.  10  Aug.  2013.  <http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐ operation-­‐spans-­‐3800-­‐miles.html>.  
  • 24. 000782-­‐0151     24   7.  Conclusion   Independent  of  the  research  this  paper  has  concluded,  the  majority  of  surgeons   surveyed  do  not  believe  that  traditional  laparoscopy  will  be  completely  phased  out   by  telerobotic  techniques  (figure  10).   Figure  10  –  Will  Robotic  surgery  phase  out  laparoscopic  surgery  statistic   This  said,  it  is  appropriate  to  criticize  the  survey  carried  out  as  perhaps  limited  in  its   scope  for  only  interviewing  local  surgeons,  of  difference  specialties  and  in  relatively   low  numbers.  It’s  also  important  to  note  that  those  surveyed,  coming  from  different   age  and  experience  backgrounds,  individually  shoulder  different  biases  and  even   interest  in  the  realm  of  robotic  surgery.  Fortunately,  the  survey  results  find  their   highest  merit  in  corroborating  or  simply  refuting  the  secondary  research  of  this   paper.  In  the  holistic  judgment  of  the  areas  to  compare  laparoscopic  and  robotic   surgery,  the  surveys  were  invaluable  as  a  method  to  measure  otherwise  difficult   qualitative  aspects  of  robotic  surgery.  Disputes  within  the  data  can  be  best   attributed  to  different  specializations  in  surgery  and  simply  different  levels  of   experience.     The  secondary  research  was  conducted  in  a  manner  to  avoid  potential  bias   and  to  extract  relevant  information  to  supplement  the  investigation  of  the  research  
  • 25. 000782-­‐0151     25   question.  Internet  sources  advertising  the  surgical  system  as  a  product  were  used   sparingly  and  only  to  describe  the  features  of  the  robotic  tool.  Multiple  medical   studies  were  chosen  as  representative  of  general  robotic  or  laparoscopic  surgery,  as   to  avoid  results  relevant  only  to  one  type  of  procedure.  The  efforts  of  surgeons   themselves  or  universities  in  their  evaluations  of  robotic  surgery  comprised  the   majority  of  sources.  While  this  essay  isn’t  simply  a  synthesis  of  past  research   endeavors,  it  would  be  futile  to  answer  such  a  pressing  research  question  with   limited  resources.   Where  does  this  leave  the  research  question  on  the  degree  that  telerobotics   is  an  IT  solution  to  many  shortcomings  of  traditional  human  laparoscopy?  With  the   undeniable  aspects  of  Information  Technology  permeating  the  existence  of   telesurgery,  any  advantage  should  be  seen  as  a  potential  solution.    In  the  realms  of   general  benefits,  length  of  stay,  ergonomics,  and  potential  for  remote  procedures,   the  da  Vinci  System,  and  those  akin  to  it,  are  undeniably  victorious  in  the  aspects  of   patient  and  surgeon  health.  That  being  established,  the  logistics  of  implementation,   often  the  only  factor  pragmatically  worth  considering,  and  ethics  of  robotic  surgery   cast  doubt  on  its  utility  and  functionality,  opening  the  door  to  labels  such  as   “gimmick  surgery”.  A  full  embrace  of  the  technology  would  sacrifice  limited  funds,   precious  time  in  the  operative  theatre,  and  breed  new  challenges  applicable  only  to   robotics.   A  hasty  appraisal  would  market  telerobotics  as  an  unobtainable  direction  in   the  future  of  medicine,  not  much  unlike  cold-­‐fusion  for  the  realm  of  energy.  But  is   this  taking  too  strict  a  definition  of  an  IT  solution?  The  earliest  computers  could  do  
  • 26. 000782-­‐0151     26   nothing  pen  and  paper  could  not,  were  prohibitively  expensive  and  occupied  the   space  of  a  room.  In  a  practical,  fiscal,  and  environmental  viewpoint,  the  technology   failed  miserably.  Seemingly,  what  constitutes  an  IT  solution  is  sheer  potential,   something  telerobotics  has  on  top  of  contemporary,  tangible  success.  As  much  as   surgical  technique  advances,  it  is  logarithmic  at  best,  only  slightly  deviating  from  its   predecessor  with  each  advance.  Technology  in  health  grows  exponentially;  doing   what  humans  can’t,  which  is  fundamentally  changed  in  only  a  few  short  years.  The   future  might  be  speculative,  but  the  field  of  medicine  will  never  vanish.  There  will   always  be  a  demand  to  fill,  and  upon  careful  and  thorough  research,  early   inclinations  support  that  robotic  surgery  could  more  than  hope  to  be  an  IT  solution,   or  evolution,  to  traditional  laparoscopy,  especially  when  considering  how  robotic   methods  provide  the  option  at  least  to  improve  the  well  being  of  all  types  of   stakeholders,  and  the  only  route  of  possibility  for  an  improvement  in  global,   international  health.
  • 27. 000782-­‐0151     27   8.  Glossary  of  Terms   Accessibility:  Equitable  access  to  safe  and  affordable  medicines.   Biologic  Sensors:  Devices  intended  to  convert  biological  stimuli  into  readable   electronic  signals.   Endoscope:  An  optical  tool  designed  for  use  in  magnification  of  inside  the  human   body.   Fiber  Optics:  A  telecommunications  method  involving  thin,  transparent  wires  to   transmit  light  over  great  distances  at  great  speed.   Haptics:  Feed  back  of  tactile,  if  not  other  perceptive,  information.   Kinesthesia:  Perception  of  body  position,  movement,  and  muscular  tensions25   Laparoscopy:  A  fundamental  facet  of  endoscopy,  more  commonly  known  as   minimally  invasive  surgery,  which  does  as  it  suggests.   Latency:  The  concept  of  a  time  lapse  between  the  input  of  surgical  command  and  the   output  of  robotic  biomimicry.   Master-­‐slave  system:  A  type  of  robotic  surgical  system  involving  little  to  no  artificial   intelligence,  where  the  robot  only  performs  exactly  what  the  surgeon  manipulates  it   to  through  a  console.   Minimally  invasive:  Any  surgery  with  minimal  incisions,  typically  involving   technology  to  compensate  for  a  surgeons  lack  of  sight  or  room  to  maneuver.   Port  Site  Pain:  Pain  felt  in  the  area  of  incision  post  operation.   Protected  Network:  A  secure,  private  wireless  network  for  telecommunication                                                                                                                   25  "Robot-­‐Assisted  Surgery:  Glossary."  Robot-­‐Assisted  Surgery:  Glossary.  Brown  University,  n.d.  Web.   12  Aug.  2013.  <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html>  
  • 28. 000782-­‐0151     28   Satellite  Uplink:  Use  of  a  communications  satellite  to  relay  information  between  a   transmitting  and  receiving  station  on  earth.   Stereoscopic:  use  of  binoculars  for  observing  the  surgical  field  and  providing  depth   Telesurgery:  Remote,  wireless  surgery,  no  matter  the  distance.  
  • 29. 000782-­‐0151     29   9.  Works  Cited   "Access  to  Medicines."  WHO.  N.p.,  n.d.  Web.  12  Aug.  2013.   <http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐ 20090313/en/>.   "All  About  Robotic  Surgery."  Q&A  about  Robotic  Surgery.  World  Wide  Information   Center  for  Minimally  Invasive  Robotic  Surgery,  2011.  Web.  31  July  2013.     <http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.   Aston,  Geri.  "Hospitals  and  Health  Network  Magazine."  Hospitals  and  Health   Network  Magazine.  Hospitals  &  Health  Networks,  Apr.  2012.  Web.  13  Aug.  2013.   <http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Arti cle/data/04APR2012/0412HHN_FEA_clinicalmanagement>.   Bell,  Kay.  "Comparison  of  DSL,  Cable  &  Fiber  Optic."  Science.   OpposingViews.com,  n.d.  Web.  09  Aug.  2013.   <http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.   Bonsor,  Kevin,  and  Jonathan  Strickland.  "How  Robotic  Surgery  Will   Work."HowStuffWorks.  HowStuffWorks,  30  Oct.  2000.  Web.  08  Aug.  2013.   <http://science.howstuffworks.com/life/human-­‐biology/robotic-­‐surgery1.htm>.   "Da  Vinci®  Skills  Simulator™."  Intuitive  Surgical.  Intuitive  Surgical,  Oct.  2010.   Web.  07  Aug.  2013.   <http://www.intuitivesurgical.com/products/skills_simulator/>.   "Da  Vinci®  Surgical  System."  Robot-­‐Assisted  Surgery:  Da  Vinci.  Brown   University,  2005.  Web.  9  Aug.  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.  
  • 30. 000782-­‐0151     30   Da  Vinci  Surgical  System  Overview  Video."  Intuitive  Surgical.  Intuitive   Surgical,  Oct.  2010.  Web.  08  Aug.  2013.   <http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_vi deo.html>.       "EndoWrist®  Instruments."  Intuitive  Surgical.  Intuitive,  2012.  Web.  05  Aug.   2013.  <http://www.intuitivesurgical.com/products/instruments.html>   Herron,  Daniel  M.  "A  Consensus  Document  on  Robotic  Surgery."  Society  of   American  Gastrointestinal  and  Endoscopic  Surgeons.  SAGES,  Nov.  2007.  Web.  03  Aug.   2013.  <http://www.sages.org/publications/guidelines/consensus-­‐document-­‐ robotic-­‐surgery/>.                          Lawson,  Elise  H.,  Myriam  J.  Curet,  Barry  R.  Sanchez,  Rob  Schuster,  and  Ramon   Berguer.  "Postural  Ergonomics  during  Robotic  and  Laparoscopic  Gastric  Bypass   Surgery:  A  Pilot  Project."  Journal  of  Robotic  Surgery  1.1  (2007):  61-­‐67.  Print.   Leddy,  Laura  S.,  Thomas  S.  Lendvay,  and  Richard  M.  Satava.  "Robotic  Surgery:   Applications  and  Cost  Effectiveness."  Robotic  Surgery:  Applications  and  Cost   Effectiveness.  Dove  Press,  2  Sept.  2012.  Web.  11  Aug.  2013.     http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐effectiveness-­‐ peer-­‐reviewed-­‐article-­‐OAS   Nightdale,  C.  J.  "What  Can  Be  Expected  from  Magnification  Endoscopy?"  What   Can  Be  Expected  from  Magnification  Endoscopy?  Oeso  Knowledge,  May  1998.  Web.   08  Aug.  2013.   <http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.  
  • 31. 000782-­‐0151     31   Park,  J.  "A  Haptic  Teleoperation  Approach  Based  on  Contact  Force   Control."  The  International  Journal  of  Robotics  Research  25.5-­‐6  (2006):  575-­‐91.   Print.     "Parkridge  East  Hospital."  The  Center  for  Robotic  Surgery.  Brigham  and   Women's  Hospital,  16  Oct.  2012.  Web.  12  Aug.  2013.   <http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐surgery>.     "Remote  Gallbladder  Operation  Spans  3,800  Miles."  The  New  York  Times.  The   New  York  Times,  20  Sept.  2001.  Web.  10  Aug.  2013.   <http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐operation-­‐ spans-­‐3800-­‐miles.html>.   "Robot-­‐Assisted  Surgery:  Glossary."  Robot-­‐Assisted  Surgery:  Glossary.  Brown   University,  n.d.  Web.  12  Aug.  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html >   "Robotics:  The  Future  of  Minimally  Invasive  Heart  Surgery."  Robotics:  The   Future  of  Minimally  Invasive  Heart  Surgery.  Brown  University,  5  Mar.  2000.  Web.  21   July  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/R obotics.html>.   Rosen,  Jacob,  Blake  Hannaford,  and  Richard  M.  Satava.  Surgical  Robotics:   Systems,  Applications,  and  Visions.  New  York:  Springer,  2011.Print.  
  • 32. 000782-­‐0151     32   10.  Appendices     8/24/13 Robotic Surgery Survey https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 1/3 Edit  this  form Robotic  Surgery  Survey This  survey  is  intended  for  use  in  an  academic  research  paper  objectively  involving  the  use  of   robotic  telesurgery.  You  will  only  be  reported  as  surgeons,  and  your  responses  shall  be  kept   anonymous. *  Required What  age  group  do  you  belong? Select  one.  <30  30-­40  41-­50  51-­60  >60 I  have  performed  both  traditional  laparoscopic  surgery  and  robotic  surgery.  * Select  one.  Yes  No Approximately  how  many  hours  of  training  were  required  to  become  proficient  in  robotic surgery  methods?  * Fill  in. Please  estimate  the  answers  to  the  following  questions. Prior  to  your  training  in  robotic  surgery,  approximately  how  many  laparoscopic  procedures were  you  performing  a  year? Approximately  what  percentage  of  these  cases  are  you  now  performing  robotically? Please  answer  the  following  statements  with  a  rating  of  to what  degree  you  agree  with  the  following  statements. Robotic  Surgery  offers  a  technical  advantage  over  laparoscopic  surgery. Select  one.
  • 33. 000782-­‐0151     33             8/24/13 Robotic Surgery Survey https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 2/3 Robotic  Surgery  is  cost  effective  for  the  hospital. Select  one. Robotic  surgery  provides  overall  better  patient  outcome  compared  to  laparoscopic  surgery. Select  one. Robotic  Surgery  offers  a  marketing  advantage  with  patients  over  laparoscopic  surgery. Select  one. I  believe  there  will  no  longer  be  a  role  for  traditional  laparoscopic  surgery  once  robotic surgery  becomes  more  prevalent. Select  one. Would  you  consider  having  an  expert  assist  you  robotically  from  a  remote  location? Select  one. Robotic  surgery  decreases  port  site  pain  in  patients. Select  one  to  complete  the  blank. Robotic  surgery  decreases  length  of  stay  for  patients. Select  one  to  complete  the  blank. Robotic  surgery  decreases  operating  room  procedure  time. Select  one  to  complete  the  blank. Would  you  consider  operating  on  patients  remotely  in  different  hospitals? Select  one.  Yes  No I  have  found  robotic  laparoscopic  surgery  ... Check  all  that  apply.  Has  generally  reduced  ergonomic  stress  on  my  body  while  performing  surgery.  Has  improved  handling  of  instruments  with  360  degree  rotational  capabilities.  Has  improved  the  view  of  the  patient  with  3D,  as  compared  to  2D,  patient  imaging.    Offers  a  significantly  more  useful  zoom  capability  compared  to  traditional  endoscopes.
  • 34. 000782-­‐0151     34       Human  Surgical  Strengths   Robot  Surgical  Strengths   1) More  direct  hand  eye  coordination   2) Tactile  sensation  in  the  patient   3) Faster  Procedure  Time   4) Can  quickly  adjust  to  unexpected  events   5) Easier  for  universities  to  teach   6) Initial  costs  cheaper   7) Has  been  improved  and  developed  for   decades   1) Clean  and  geometric  precision   2) Operational  in  smaller  incisions   3) Filters  surgeon  hand  tremors   4) 3D  HD  1080i  view  of  insides   5) Potential  for  remote  surgery   6) 4  appendages  usable   7) Superior  zoom  capabilities   8) More  degrees  of  rotation   Human  Surgical  Weaknesses   Robot  Surgical  Weaknesses   1) Larger  Incisions   2) Many  angles  of  entry  physiologically   impossible  for  surgeon   3) Humans  degrade  with  age   4) No  depth  perception  with  Endoscope   5) Fatigues  surgeon  faster  (with  hours  of   standing  still)   1) Limited  tactile  sensation   2) Danger  to  ever  roam  out  of  view   3) Only  as  talented  as  the  surgeon   4) Viable  mainly  in  simpler  surgeries   5) Costlier  procedures  to  cover  expenses   6) Reliant  on  a  power  source   7) Lengthier  procedures  on  average   8/24/13 Robotic Surgery Survey https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewform#start=publishanalytics 3/3  Impairs  my  tactile  sensation  inside  the  patient.  Has  decreased  my  overall  dexterity  as  a  surgeon.  Has  a  noticeable  time  lapse  between  when  I  use  the  controls  and  when  the  robot  acts. Thank  you  very  much  for  taking  the  time  to  take  this  survey. Your  anonymous  responses  are  appreciated. Powered  by   This  content  is  neither  created  nor  endorsed  by  Google.   Report  Abuse  -­  Terms  of  Service  -­  Additional  Terms Submit Never  submit  passwords  through  Google  Forms.
  • 36. 000782-­‐0151     36     8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 2/7 0-­50 3 21% 51-­100 4 29% 101-­150 2 14% 151-­200 4 29% >200 1 7% 0-­20% 5 36% 21-­40% 4 29% 41-­60% 2 14% 61-­80% 2 14% 81-­100% 1 7% Strongly  Agree 8 57% Agree 5 36% Unsure 1 7% Disagree 0 0% Strongly  Disagree 0 0% Approximately  what  percentage  of  these  cases  are  you  now  performing robotically? Please  answer  the  following  statements  with  a  rating  of to  what  degree  you  agree  with  the  following  statements. Robotic  Surgery  offers  a  technical  advantage  over  laparoscopic  surgery. Robotic  Surgery  is  cost  effective  for  the  hospital.
  • 37. 000782-­‐0151     37   8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 3/7 Strongly  Agree 0 0% Agree 3 21% Unsure 9 64% Disagree 1 7% Strongly  Disagree 1 7% Strongly  Agree 2 14% Agree 4 29% Unsure 8 57% Disagree 0 0% Strongly  Disagree 0 0% Robotic  surgery  provides  overall  better  patient  outcome  compared  to laparoscopic  surgery. Robotic  Surgery  offers  a  marketing  advantage  with  patients  over  laparoscopic surgery.
  • 38. 000782-­‐0151     38   8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 4/7 Strongly  Agree 3 21% Agree 8 57% Unsure 2 14% Disagree 1 7% Strongly  Disagree 0 0% Strongly  Agree 0 0% Agree 2 14% Unsure 1 7% Disagree 6 43% Strongly  Disagree 5 36% I  believe  there  will  no  longer  be  a  role  for  traditional  laparoscopic  surgery  once robotic  surgery  becomes  more  prevalent. Would  you  consider  having  an  expert  assist  you  robotically  from  a  remote location?
  • 39. 000782-­‐0151     39     8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 5/7 Strongly  Agree 1 7% Agree 4 29% Unsure 5 36% Disagree 4 29% Strongly  Disagree 0 0% Strongly  Agree 0 0% Agree 5 36% Unsure 4 29% Disagree 4 29% Strongly  Disagree 1 7% Robotic  surgery  decreases  port  site  pain  in  patients. Robotic  surgery  decreases  length  of  stay  for  patients.
  • 40. 000782-­‐0151     40   8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 6/7 Strongly  Agree 4 29% Agree 4 29% Unsure 2 14% Disagree 3 21% Strongly  Disagree 1 7% Strongly  Agree 0 0% Agree 4 29% Unsure 2 14% Disagree 7 50% Strongly  Disagree 1 7% Yes 6 43% No 8 57% Robotic  surgery  decreases  operating  room  procedure  time. Would  you  consider  operating  on  patients  remotely  in  different  hospitals? I  have  found  robotic  laparoscopic  surgery  ...
  • 41. 000782-­‐0151     41     Number  of  Surgeon  Surveyed   Hours  to  Proficiency   1   40   2   25   3   30   4   100   5   50   6   10   7   50   8   50   9   50   10   12   11   20   12   30   13   20   14   25   Arithmetic  Mean   36.57142857   Standard  Deviation   23.15404695               8/24/13 EE Survey - Google Drive https://docs.google.com/forms/d/1vvuAk7deQSJsxEo6g4FkMfh0Wd03-Mh7manscNGvuBI/viewanalytics 7/7 Has  generally  reduced  ergonomic  stress  on  my  body  while  performing  surgery. 11 19% Has  improved  handling  of  instruments  with  360  degree  rotational  capabilities. 13 22% Has  improved  the  view  of  the  patient  with  3D,  as  compared  to  2D,  patient  imaging.   12 20% Offers  a  significantly  more  useful  zoom  capability  compared  to  traditional  endoscopes. 13 22% Impairs  my  tactile  sensation  inside  the  patient. 9 15% Has  decreased  my  overall  dexterity  as  a  surgeon. 1 2% Has  a  noticeable  time  lapse  between  when  I  use  the  controls  and  when  the  robot  acts. 0 0% Thank  you  very  much  for  taking  the  time  to  take  this survey.  Your  anonymous  responses  are  appreciated. Number  of  daily  responses
  • 42. 000782-­‐0151     42   11.  Bibliography   "Access  to  Medicines."  WHO.  N.p.,  n.d.  Web.  12  Aug.  2013.                                 <http://www.who.int/mediacentre/news/statements/2009/access-­‐medicines-­‐ 20090313/en/>.   "All  About  Robotic  Surgery."  Q&A  about  Robotic  Surgery.  World  Wide         Information  Center  for  Minimally  Invasive  Robotic  Surgery,  2011.  Web.  31  July   2013.  <http://www.allaboutroboticsurgery.com/qaaboutroboticsurgery.php>.   Aston,  Geri.  "Hospitals  and  Health  Network  Magazine."  Hospitals  and  Health   Network  Magazine.  Hospitals  &  Health  Networks,  Apr.  2012.  Web.  13  Aug.  2013.   <http://www.hhnmag.com/hhnmag/jsp/articledisplay.jsp?dcrpath=HHNMAG/Arti cle/data/04APR2012/0412HHN_FEA_clinicalmanagement>.   Bell,  Kay.  "Comparison  of  DSL,  Cable  &  Fiber  Optic."  Science.   OpposingViews.com,  n.d.  Web.  09  Aug.  2013.   <http://science.opposingviews.com/comparison-­‐dsl-­‐cable-­‐fiber-­‐optic-­‐12994.html>.   Bonsor,  Kevin,  and  Jonathan  Strickland.  "How  Robotic  Surgery  Will   Work."HowStuffWorks.  HowStuffWorks,  30  Oct.  2000.  Web.  08  Aug.  2013.   <http://science.howstuffworks.com/life/human-­‐biology/robotic-­‐surgery1.htm>.   "Da  Vinci®  Skills  Simulator™."  Intuitive  Surgical.  Intuitive  Surgical,  Oct.  2010.   Web.  07  Aug.  2013.   <http://www.intuitivesurgical.com/products/skills_simulator/>.   "Da  Vinci®  Surgical  System."  Robot-­‐Assisted  Surgery:  Da  Vinci.  Brown   University,  2005.  Web.  9  Aug.  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html>.  
  • 43. 000782-­‐0151     43   Da  Vinci  Surgical  System  Overview  Video."  Intuitive  Surgical.  Intuitive   Surgical,  Oct.  2010.  Web.  08  Aug.  2013.   <http://www.intuitivesurgical.com/products/davinci_surgical_system/overview_vi deo.html>.       "EndoWrist®  Instruments."  Intuitive  Surgical.  Intuitive,  2012.  Web.  05  Aug.   2013.  <http://www.intuitivesurgical.com/products/instruments.html>   Herron,  Daniel  M.  "A  Consensus  Document  on  Robotic  Surgery."  Society  of   American  Gastrointestinal  and  Endoscopic  Surgeons.  SAGES,  Nov.  2007.  Web.  03  Aug.   2013.  <http://www.sages.org/publications/guidelines/consensus-­‐document-­‐ robotic-­‐surgery/>.                          Lawson,  Elise  H.,  Myriam  J.  Curet,  Barry  R.  Sanchez,  Rob  Schuster,  and  Ramon   Berguer.  "Postural  Ergonomics  during  Robotic  and  Laparoscopic  Gastric  Bypass   Surgery:  A  Pilot  Project."  Journal  of  Robotic  Surgery  1.1  (2007):  Print.   Leddy,  Laura  S.,  Thomas  S.  Lendvay,  and  Richard  M.  Satava.  "Robotic  Surgery:   Applications  and  Cost  Effectiveness."  Robotic  Surgery:  Applications  and  Cost   Effectiveness.  Dove  Press,  2  Sept.  2012.  Web.  11  Aug.  2013.     http://www.dovepress.com/robotic-­‐surgery-­‐applications-­‐and-­‐cost-­‐effectiveness-­‐ peer-­‐reviewed-­‐article-­‐OAS   Nightdale,  C.  J.  "What  Can  Be  Expected  from  Magnification  Endoscopy?"  What   Can  Be  Expected  from  Magnification  Endoscopy?  Oeso  Knowledge,  May  1998.  Web.   08  Aug.  2013.   <http://www.hon.ch/OESO/books/Vol_5_Eso_Junction/Articles/art265.html>.  
  • 44. 000782-­‐0151     44   Park,  J.  "A  Haptic  Teleoperation  Approach  Based  on  Contact  Force   Control."  The  International  Journal  of  Robotics  Research  25.5-­‐6  (2006):  Print.     "Parkridge  East  Hospital."  The  Center  for  Robotic  Surgery.  Brigham  and   Women's  Hospital,  16  Oct.  2012.  Web.  12  Aug.  2013.   <http://parkridgeeasthospital.com/service/the-­‐center-­‐for-­‐robotic-­‐surgery>.     "Remote  Gallbladder  Operation  Spans  3,800  Miles."  The  New  York  Times.  The   New  York  Times,  20  Sept.  2001.  Web.  10  Aug.  2013.   <http://www.nytimes.com/2001/09/20/world/remote-­‐gallbladder-­‐operation-­‐ spans-­‐3800-­‐miles.html>.   "Robot-­‐Assisted  Surgery:  Glossary."  Robot-­‐Assisted  Surgery:  Glossary.  Brown   University,  n.d.  Web.  12  Aug.  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/glossary.html >   "Robotics:  The  Future  of  Minimally  Invasive  Heart  Surgery."  Robotics:  The   Future  of  Minimally  Invasive  Heart  Surgery.  Brown  University,  5  Mar.  2000.  Web.  21   July  2013.   <http://biomed.brown.edu/Courses/BI108/BI108_2000_Groups/Heart_Surgery/R obotics.html>.   Rosen,  Jacob,  Blake  Hannaford,  and  Richard  M.  Satava.  Surgical  Robotics:   Systems,  Applications,  and  Visions.  New  York:  Springer,  2011.Print.