SlideShare a Scribd company logo
1 of 49
Download to read offline
Chapter 6 : Calculus
06-01 Limits
Activity 1
Run the following cell that gives the limit of sin x
x
as x 0.
Limit Sin x x, x 0
1
Run the following cell that gives the limit of 1
x
first as x 0 and then as x
0 .
Note: The limit is by default taken from above (right).
Directional Limit : +1 means left,-1 means right.
Limit 1 x, x 0, Direction 1
Limit 1 x, x 0, Direction 1
Activity 2
Mathematica can't evaluate the limit of the greatest integer function as x
1 . Run the following cell.
Mathematica can't evaluate the limit of the greatest integer function as x
1 . Run the following cell.
Limit Floor x , x 1, Direction 1
0
The limit of a function that is defined by several rules can't be evaluated
directly. Run the following cell and comment on the results.
Clear f, a, b, c, d ;
f x_ : If x 4, 3 x 2, 2 7 x^2 ;
a Limit f x , x 1
b Limit f x , x 7
c Limit f x , x 4, Direction 1
d Limit f x , x 4, Direction 1
5
19
110
10
Try to run the following code to overcome this difficulty.
2 Chapter 6..Calculus .nb
fup4 x_ : 3 x 2;
fbelow4 x_ : 2 7 x^2;
a Limit fbelow4 x , x 1
b Limit fup4 x , x 7
c Limit fup4 x , x 4
d Limit fbelow4 x , x 4
5
19
10
110
06-02 Differentiation
Mathematica Commands for Differentiation Operations.
Activity 3
Run the following cell that gives x
x n
.
D[x^n, x]
n x 1 n
Run the following cell that gives the first three derivatives of f x x n
Chapter 6..Calculus .nb 3
f x_ : xn
f' x
f'' x
f''' x
n x 1 n
1 n n x 2 n
2 n 1 n n x 3 n
Activity 4
Run the following cell that gives the partial derivative x
x 2
y 2
. y is
assumed to be independent of x.
Clear[x,y,f]
f=x^2 + y^2;
D[f, x]
2 x
Run the following cells. Any of them gives the mixed derivative of
f(x,y)=sin(xy) .
D D Sin x y , x , y
Cos x y x y Sin x y
D Sin x y , x, y
Cos x y x y Sin x y
4 Chapter 6..Calculus .nb
x,y Sin x y
Cos x y x y Sin x y
Total Derivative
Activity 5
Run the following cell that gives the total differential of f(x,y) = x 2
y 3
, i.e. it
gives fx dx + fy dy.
Note: Dt[x] denotes dx and Dt[y] denotes dy
Dt x2
y3
2 x y3
Dt x 3 x2
y2
Dt y
Local Minimum and Maximum values of a function
Ask Mathematica about the commands "FindMaximum" and "FindMinimum"
?? FindMaximum
FindMaximum f, x, x0 searches for a
local maximum in f, starting from the point x x0.
FindMaximum f, x, x0 , y, y0 , ... searches for a
local maximum in a function of several variables. More…
Attributes FindMaximum HoldAll, Protected
Options FindMaximum AccuracyGoal Automatic,
Compiled True, EvaluationMonitor None, Gradient Automatic,
MaxIterations 100, Method Automatic, PrecisionGoal Automatic,
StepMonitor None, WorkingPrecision MachinePrecision
Chapter 6..Calculus .nb 5
?? FindMinimum
FindMinimum f, x, x0 searches for a
local minimum in f, starting from the point x x0.
FindMinimum f, x, x0 , y, y0 , ... searches for a
local minimum in a function of several variables. More…
Attributes FindMinimum HoldAll, Protected
Options FindMinimum AccuracyGoal Automatic,
Compiled True, EvaluationMonitor None, Gradient Automatic,
MaxIterations 100, Method Automatic, PrecisionGoal Automatic,
StepMonitor None, WorkingPrecision MachinePrecision
Is there a need for two commands? Is one of them enough?
Activity 6
Run the following cell that evaluates the local minimum of f(x)=x 3
+x 2
-3x+5
starting the search from x = 2.
6 Chapter 6..Calculus .nb
Clear f, g, x
f x_ : x3
x2
3 x 5
Plot f x , x, 10, 10
FindMinimum f x , x, 2
10 5 5 10
500
500
1000
3.73165, x 0.720759
Activity 7
Note: The maximum value of f(x) occurs at the point x at which -f(x) has a
minimum value.
Study the following code that gives a local maximum of f starting the search
from x = a. Then activate it.
Find a local maximum of f(x)=x 3
+x 2
-3x+5
Solution:
First plot the function is a suitable domain to estimate a starting point for the
search of the maximum. Run the following cell to get the plot.
Chapter 6..Calculus .nb 7
Clear f, x
f x_ : x3
x2
3 x 5
Plot f x , x, 10, 10
10 5 5 10
500
500
1000
From this plot one may guess that a local maximum may occur near x = -2.
06-02 Integration
Indefinite Integral
Activity 8
Run the following two cells that give the indefinite integral of f(x) = 1
x4 a4
8 Chapter 6..Calculus .nb
Integrate[1/(x^4 - a^4), x]
1
250
ArcTan
5
x
1
500
Log 5 x
1
500
Log 5 x
1
x4
a4
x
1
250
ArcTan
5
x
1
500
Log 5 x
1
500
Log 5 x
Definite Integrals
Activity 9
Run the following two cells that evaluate the definite integral a
b
ln x d x .
Integrate[ Log[x], {x, a, b} ]
24 5 Π 5 Log 5 19 Log 19
a
b
Log x x
24 5 Π 5 Log 5 19 Log 19
Mathematica cannot give a formula for this definite integral 1
3
x x
x . Run the
following cell to check that.
a1=Integrate[ x^x, {x, 1, 3} ]
1
3
xx
x
However, you can still get a numerical result of that integral by running the
following cell.
Chapter 6..Calculus .nb 9
However, you can still get a numerical result of that integral by running the
following cell.
N[a1]
13.7251
Integrating Piecewise Functions
Activity 10
Try to run the following cell that attempts to evaluate the Ceiling function
on the interval [0,2], and observe the output.
Integrate Ceiling x2
, x, 0, 2
7 2 3
However, using the Boole function you can evaluate the above integral by
running the following cell.
Integrate Ceiling x2
Boole 0 x 2 , x, ,
7 2 3
Improper integral
Activity 11
The true definite integral 2
2 1
x 2 x is divergent because of the double pole at
x 0. Run the following cell to check that.
10 Chapter 6..Calculus .nb
Integrate[1/x^2, {x, -2, 2}]
Integrate::idiv : Integral of
1
x2
does not converge on 2, 2 . More…
2
2 1
x2
x
Run the following cell that tries to evaluate 0
sin a x
x
x .
Integrate[Sin[a x]/x, {x, 0, Infinity}]
Π
2
Note that the If here gives the condition for the integral to be convergent.
Double integral
Activity 12
Run the following cell that the double integral 0
1
0
x
x 2
y 2
dy dx.
Note that the range of the outermost integration variable appears first. The y
integral is done first. Its limits can depend on the value of x.
Integrate[ x^2 + y^2, {x, 0, 1}, {y, 0, x} ]
1
3
Double Integration over Regions
The Boole function is very useful in computing definite double integral over a
given region.
Integrate[f[x] Boole[ ineq], {x, x1, x2}, {y, y1,y2} ] integrates the function f(x)
over the region defined by all points satisfying the inequality inside the rectan-
gle defined by values of x and y.
Note: You can use Integrate[f[x] Boole[ineq],{x,- , },{y,- , }] if you want
Chapter 6..Calculus .nb 11
The Boole function is very useful in computing definite double integral over a
given region.
Integrate[f[x] Boole[ ineq], {x, x1, x2}, {y, y1,y2} ] integrates the function f(x)
over the region defined by all points satisfying the inequality inside the rectan-
gle defined by values of x and y.
Note: You can use Integrate[f[x] Boole[ineq],{x,- , },{y,- , }] if you want
Mathematica to select the inter region defined by the inequality.
Activity 13
Run the following cell that integrates x y y 2
over the region R= {(x,y) :
0 x 1 and 0 y 1}.
Integrate x y y2
, x, 0, 1 , y, 0, 1
7
12
Run the following cells . Comment on the obtained results. Write the inte-
grals that have been evaluated..
Integrate Boole x2
y2
1 , x, 1, 1 , y, 1, 1
Π
Integrate Boole x2
y2
1 , x, 0, 1 , y, 0, 1
Π
4
Integrate Boole x2
y2
1 , x, , , y, ,
Π
Run the following cell . Write the integrals that have been evaluated..
12 Chapter 6..Calculus .nb
Integrate x2
Boole x2
4 y2
1 Abs y x , y, , ,
x, ,
1
40
2 5 ArcTan 2
06-03 Differential Operations
Note: Some of the following commands are set for spherical coordinates, so
to use them in Cartesian coordinates, we need to run the following cell.
VectorAnalysis`
SetCoordinates Cartesian x, y, z
Cartesian x, y, z
Grad ( f the gradient of the scalar function f)
Activity 14
Run the following cell that computes the f where f x, y, z 5 x2
y3
z4
Clear[x,y,z]
Grad[5 x^2 y^3 z^4, Cartesian[x, y, z]]
10 x y3
z4
, 15 x2
y2
z4
, 20 x2
y3
z3
Curl ( ×f curl of a vector valued function f)
Chapter 6..Calculus .nb 13
Curl ( ×f curl of a vector valued function f)
Activity 15
Run the following cell that computes the f where
f x, y, z x2
, sin x y , e 3 zy
Clear f, x, y, z
f x^2, Sin x y , Exp 3 z y ;
Curl f
3 3 y z
z, 0, y Cos x y
Div ( .f divergence of a vector valued function f)
Activity 16
Run the following cell that computes the .f where
f x, y, z x2
, sin x y , e 3 zy
Clear f, x, y, z
f x^2, Sin x y , Exp 3 z y ;
Div f
2 x 3 3 y z
y x Cos x y
14 Chapter 6..Calculus .nb
06-04 Vector Field
Arrow
Activity 17
Run the following cell that plots a vector with starting point (1,2) and end
point (3,5).
Chapter 6..Calculus .nb 15
Graphics Arrow 1, 2 , 3, 5
Plot of Vector Field
Activity 18
Run the following cell that plots a vector field components given by sin x
and cos y .
16 Chapter 6..Calculus .nb
Needs "VectorFieldPlots`" ;
VectorFieldPlots`VectorFieldPlot Sin x , Cos y , x, 0, Π ,
y, 0, Π
Plot of Gradient Field
Activity 19
Run the following cell that plots a gradient field of the potential x 2
y 2
.
Chapter 6..Calculus .nb 17
Needs "VectorFieldPlots`" ;
VectorFieldPlots`GradientFieldPlot x2
y2
, x, 3, 3 , y, 3, 3
Plot Field in 3D
Activity 20
Run the following cell that plots a vector field with components given by y z
, x z , and 0.
18 Chapter 6..Calculus .nb
Needs "VectorFieldPlots`" ;
VectorFieldPlots`VectorFieldPlot3D
y, x, 0
z
, x, 1, 1 ,
y, 1, 1 , z, 1, 3
Run the following cell that plots the gradient field of the scalar function x y z .
Chapter 6..Calculus .nb 19
Needs "VectorFieldPlots`" ;
VectorFieldPlots`GradientFieldPlot3D x y z, x, 1, 1 ,
y, 1, 1 , z, 1, 1
06-05 Power Series
Power Series expansion
Activity 21
Run the following cell that gives a power series expansion of exp(x) around
x = 0, accurate to order x 5
.
20 Chapter 6..Calculus .nb
aa=Series[Exp[x], {x, 0, 5}]
1 x
x2
2
x3
6
x4
24
x5
120
O x 6
Run the following cell that turns the previous power series back into an ordi-
nary expression.
Normal[aa]
1 x
x2
2
x3
6
x4
24
x5
120
Run the following cell that gives a power series expansion of exp(x) around
x = 1, accurate to order x 5
.
Series[ Exp[x], {x, 1, 5} ]
x 1
1
2
x 1 2
1
6
x 1 3
1
24
x 1 4
1
120
x 1 5
O x 1 6
Operations on Power Series
Activity 22
Run the following cell that gives 1
1 aa
.
1 / (1 - aa)
1
x
1
2
x
12
x3
720
O x 4
Run the following cell that gives derivative with respect to x of aa.
Chapter 6..Calculus .nb 21
D[aa, x]
1 x
x2
2
x3
6
x4
24
O x 5
Run the following cell that integrates aa with respect to x .
Integrate[aa, x]
x
x2
2
x3
6
x4
24
x5
120
x6
720
O x 7
06-07 Laplace Transform
Activity 23
Ask Mathematica about the commands "LaplaceTransform ", and "
InverseLaplaceTransform"
?? LaplaceTransform
LaplaceTransform expr, t, s gives the Laplace transform of expr.
LaplaceTransform expr, t1, t2, ... , s1, s2, ...
gives the multidimensional Laplace transform of expr. More…
Attributes LaplaceTransform Protected, ReadProtected
?? InverseLaplaceTransform
InverseLaplaceTransform expr, s, t gives the inverse
Laplace transform of expr. InverseLaplaceTransform expr,
s1, s2, ... , t1, t2, ... gives the
multidimensional inverse Laplace transform of expr. More…
Attributes InverseLaplaceTransform Protected, ReadProtected
22 Chapter 6..Calculus .nb
Mathematica Commands
Activity 24
Run the following cell that computes the Laplace transform of f(t) = t n
using
the Mathematica command LaplaceTransform.
Clear[f,t,L,IL,s,a]
f[t_]:=t^n
L[f_]:=LaplaceTransform[f[t], t, s]
L[f]
s 1 n
Gamma 1 n
Run the following cell that computes the Inverse Laplace transform of the
previous result.
IL[f_]:=InverseLaplaceTransform[L[f], s, t]
IL[f]
tn
Properties of Laplace Transform
Activity 25
Run the following cell that shows that the Laplace transform is a linear
operator.
Chapter 6..Calculus .nb 23
Clear f, g, t, s
LaplaceTransform f t g t , t, s
LaplaceTransform f t g t , t, s
LaplaceTransform f t , t, s LaplaceTransform g t , t, s
LaplaceTransform f t , t, s LaplaceTransform g t , t, s
What do you conclude from the above output?
Laplace Transform of nth derivative of a function
Activity 26
Laplace transforms have the property that they turn integration and differentia-
tion into essentially algebraic operations. Run the following cell and com-
ment on the output
f t_ : Sin t ^2
Do Print LaplaceTransform D f t , t, k , t, s , k, 0, 2
2
4 s s3
2
4 s2
4
4 s s3
2 2 s2
4 s s3
Laplace Transform of an Integral
Activity 27
Integration becomes multiplication by 1 s when one does a Laplace trans-
form. Run the following cell and comment on the output.
24 Chapter 6..Calculus .nb
Clear f, s, t
f u_ : u Exp u
LaplaceTransform Integrate f u , u, 0, t , t, s
1 s LaplaceTransform f t , t, s
Apart
1
1 s 2
1
1 s
1
s
1
1 s 2 s
1
1 s 2
1
1 s
1
s
Multidimensional Laplace transforms.
Activity 28
Run the following cell that compute a two-dimensional Laplace transform of
f(t,u)= cos(t) eu
LaplaceTransform Cos t Exp u , t, u , s, v
s
1 s2 1 v
06-06 Programming Calculus
Limits
Chapter 6..Calculus .nb 25
Limits
Numerical Approach to Limits
Activity 29
Write a code that computes directional limits numerically. Then run it to
activate it.
Run the following cell that calculates the values of f(x)=sin x
x
as x
approaches 0 from right.
f x_ :
Sin x
x
; c 0; dir 1;
numericalapproachtolimits f, c, dir
Right limit of
Sin x
x
as x 0
x f x
Sin x
x
_______________________________
0.001 1.
0.0009 1.
0.0008 1.
0.0007 1.
0.0006 1.
0.0005 1.
0.0004 1.
0.0003 1.
0.0002 1.
0.0001 1.
Graphical Approach
Activity 30
26 Chapter 6..Calculus .nb
Activity 30
Write a code that shows directional limits graphically. Then run it to activate
it.
Run the following cell that illustrates the limit of f(x)= x 3
as x approaches 3 .
f x_ : x^3; c 3;
graphicalapproachtolimits f, c
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
Chapter 6..Calculus .nb 27
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
28 Chapter 6..Calculus .nb
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
Chapter 6..Calculus .nb 29
-4 -2 2 4 6 8 10
-50
50
100
150
-4 -2 2 4 6 8 10
-50
50
100
150
(Ε , ∆ ) Approach
Activity 31
Write a code that provides a graphical illustration of Ε and ∆ approach to
limits. Then activate it.
Run the following cell that illustrates the Ε and ∆ approach of limits based
on f(x)=x sin 1
x
as x 0.
f x_ : x Sin 1 x
c 0.; l 0;
analyticapproachtolimits f, c, l
30 Chapter 6..Calculus .nb
The relation between Ε and ∆ in the limit definition
Neiborhood of x 0. is 0.1, 0.1 with ∆ 0.1
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.01 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.009 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.008 eps
Chapter 6..Calculus .nb 31
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.007 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.006 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.005 eps
32 Chapter 6..Calculus .nb
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.004 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.003 eps
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.002 eps
Chapter 6..Calculus .nb 33
-0.1 -0.05 0.05 0.1
-0.075
-0.05
-0.025
0.025
0.05
0.001 eps
Evaluation of ∆ for a given Ε
Activity 32
Write a code that computes ∆ for a given Ε in the definition of limit. Then
activate it.
Run the following cell that computes ∆ if Ε =0.001 that illustrates that the
limx 1x 2
= 1
f x_ : x^2
c 1; epsilon .001;
evaluationofdelta f, c, epsilon
f x x2
c 1
limx c f x 1
Ε 0.001
∆ 0.000499875
Differentiation
34 Chapter 6..Calculus .nb
Differentiation
Average of a function
Activity 33
Run the following cell.
Comment on the output.
Write a code that gives the same output.
Clear f, x, a, b
f x_ : Sin x ; a 0; b Pi 2;
average f, a, b
2
Π
Compare derivative and average of a function
Activity 34
Run the following cell.
Comment on the output.
Write a code that gives the same output.
f x_ : Sin x ; x0 Pi; xn Pi;
derivativeandaverage f, x0, xn
Chapter 6..Calculus .nb 35
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
36 Chapter 6..Calculus .nb
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
Chapter 6..Calculus .nb 37
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
38 Chapter 6..Calculus .nb
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
Chapter 6..Calculus .nb 39
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
40 Chapter 6..Calculus .nb
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
Chapter 6..Calculus .nb 41
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
-3 -2 -1 1 2 3
-1
-0.5
0.5
1
First Derivative Test for Local Extreme Points
Activity 35
Run the following cell.
Comment on the output.
Write a code that gives the same output.
42 Chapter 6..Calculus .nb
Clear f, x
f x_ : x 1 x 2 x 5 ;
Ε 0.01;
extrempoints1 f, Ε
1 The function is f x 5 x 1 x 2 x
2 Its first derivative is f' x
5 x 1 x 5 x 2 x 1 x 2 x
3 The set of values of x such that f has critical points is
1
3
4 37 ,
1
3
4 37
5 Classification of critical points based on second derivative test :
For point number 1 :
1
3
4 37 , 5
1
3
4 37 1
1
3
4 37 2
1
3
4 37
is a maximum point
For point number 2 :
1
3
4 37 , 5
1
3
4 37 1
1
3
4 37 2
1
3
4 37
is a minimum point
Second Derivative Test for Local Extreme Points
Activity 36
Run the following cell.
Comment on the output.
Write a code that gives the same output.
Chapter 6..Calculus .nb 43
Clear f, x
f x_ : x 1 x 2 x 5 ;
extrempoints2 f
1 The function is f x 5 x 1 x 2 x
2 Its first derivative is f' x
5 x 1 x 5 x 2 x 1 x 2 x
3 The set of values of x such that f has critical points is
1
3
4 37 ,
1
3
4 37
4 The second derivative of f is f'' x 8 6 x
5 Classification of critical points based on second derivative test :
For point number 1 :
1
3
4 37 , 5
1
3
4 37 1
1
3
4 37 2
1
3
4 37
is a maximum point
For point number 2 :
1
3
4 37 , 5
1
3
4 37 1
1
3
4 37 2
1
3
4 37
is a minimum point
06-08 Evaluation on Calculus
Exercise 1
For each of the following cells:
a) Study the cell and Guess the output.
b) Run the cells.
c) Compare the output with your guess.
d) Write any general comments or remarks.
44 Chapter 6..Calculus .nb
Limit[ x Log[x], x -> 0 ]
Limit
x 1
x 1
, x 1
Limit x Sin 1 x , x 0
Limit Abs x 3 , x 3
D Sin x , x, 5
Integrate[x^2 + y^2, {x, 0, a}, {y, 0, b}]
Integrate[x/((x - 1)(x + 2)), x]
x
9 7 x2
x
f x_ :
x2
4
3 x 2 5 x
;
g x_ : Apart f x
g x
g x x
1
1
1 y2
1 y2
x y
Chapter 6..Calculus .nb 45
0
1
0
1
x y y2
x y
0
Π
3
y
Π
3 Sin x
x
x y
Integrate Max x y2
, x2
y Boole x2
y2
1 , x, , ,
y, ,
f t_ : Sin t
LaplaceTransform f t , t, s
InverseLaplaceTransform , s, t
LaplaceTransform t^4 f t , t, s
InverseLaplaceTransform , s, t
Exercise 2
Use Mathematica to evaluate the following
limx 1
x 1
x3
x
,
limh 0
1 h 2
1
h
,
limx
x2
9
2 x 6
,
,
46 Chapter 6..Calculus .nb
limx x2
x 1 x2
x ,
limx
ln x
1 ln x
,
limx ln 2 x ln 1 x ,
limx 0 1 x
2
x
0
4
x 16 3 x x,
cos 1
t
t2
t,
x2
ex
x,
x2
2 x 1
2 x3
3 x2
2 x
x,
0
1
x
1
e
x
y
y x,
Chapter 6..Calculus .nb 47
0
1
y2
1
y sin x2
x y,
Exercise 3
Calculate the first and the second
derivatives of each of the following
y x 2 8
4 x3
3
6
,
y
1
sin x sin x
,
y ln x2
ex
,
y 5x tan x
,
Exercise 4
Find the first and the mixed partial derivatives for the following
f x, y x3
ln x y ,
f x, y, z x ey
cos z
Exercise 5
Find the Taylor series expansion of each of the following
1
1 x2
, at x 0,
48 Chapter 6..Calculus .nb
ln x , at x 1
Chapter 6..Calculus .nb 49

More Related Content

What's hot

What's hot (17)

Solution of matlab chapter 4
Solution of matlab chapter 4Solution of matlab chapter 4
Solution of matlab chapter 4
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9
 
Matlab 1
Matlab 1Matlab 1
Matlab 1
 
Matlab ploting
Matlab plotingMatlab ploting
Matlab ploting
 
How to graph Functions
How to graph FunctionsHow to graph Functions
How to graph Functions
 
Jacobi iterative method
Jacobi iterative methodJacobi iterative method
Jacobi iterative method
 
PMHMathematicaSample
PMHMathematicaSamplePMHMathematicaSample
PMHMathematicaSample
 
quine mc cluskey method
 quine mc cluskey method quine mc cluskey method
quine mc cluskey method
 
Management Science
Management Science Management Science
Management Science
 
1.2 matlab numerical data
1.2  matlab numerical data1.2  matlab numerical data
1.2 matlab numerical data
 
Gr10 piecewise functions
Gr10 piecewise functionsGr10 piecewise functions
Gr10 piecewise functions
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Assignment4
Assignment4Assignment4
Assignment4
 
Matlab plotting
Matlab plottingMatlab plotting
Matlab plotting
 
Lec02 03 rasterization
Lec02 03 rasterizationLec02 03 rasterization
Lec02 03 rasterization
 
Midterm sols
Midterm solsMidterm sols
Midterm sols
 

Viewers also liked

Cone fender
Cone fender Cone fender
Cone fender beast0004
 
The feel of silk bagian kedua
The feel of silk bagian keduaThe feel of silk bagian kedua
The feel of silk bagian keduaBerti Subagijo
 
Tex Mobile advertising Europe
Tex Mobile advertising Europe Tex Mobile advertising Europe
Tex Mobile advertising Europe Reema Thomas
 
Management Training Presentation
Management Training PresentationManagement Training Presentation
Management Training PresentationHanelie Lategan
 
Classification on multi label dataset using rule mining technique
Classification on multi label dataset using rule mining techniqueClassification on multi label dataset using rule mining technique
Classification on multi label dataset using rule mining techniqueeSAT Publishing House
 
Loren beautifiers presentation
Loren beautifiers   presentationLoren beautifiers   presentation
Loren beautifiers presentationLoren Beautifiers
 
Fun with my small note animal tissue new
Fun with my small note animal tissue newFun with my small note animal tissue new
Fun with my small note animal tissue newCECE SUTIA
 
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...eSAT Publishing House
 
Jini - edit translations
Jini - edit translationsJini - edit translations
Jini - edit translationsjcmsdevelopment
 
NAAS Journal Rating 2013
NAAS Journal Rating 2013NAAS Journal Rating 2013
NAAS Journal Rating 2013sanchu007
 
explicacion del proyecto "todos para uno"
explicacion del proyecto "todos para uno"explicacion del proyecto "todos para uno"
explicacion del proyecto "todos para uno"Maira Alejandra Herrera
 
స్ఫూర్థి ఆగష్టు సంచిక.
స్ఫూర్థి ఆగష్టు సంచిక.స్ఫూర్థి ఆగష్టు సంచిక.
స్ఫూర్థి ఆగష్టు సంచిక.Sri Saraswathi Vidyapeetham
 
Design and development of aperture coupled
Design and development of aperture coupledDesign and development of aperture coupled
Design and development of aperture coupledeSAT Publishing House
 

Viewers also liked (19)

Cone fender
Cone fender Cone fender
Cone fender
 
Hari om diamonds
Hari om diamondsHari om diamonds
Hari om diamonds
 
The feel of silk bagian kedua
The feel of silk bagian keduaThe feel of silk bagian kedua
The feel of silk bagian kedua
 
Tex Mobile advertising Europe
Tex Mobile advertising Europe Tex Mobile advertising Europe
Tex Mobile advertising Europe
 
Presentation
PresentationPresentation
Presentation
 
Management Training Presentation
Management Training PresentationManagement Training Presentation
Management Training Presentation
 
Trinity Confusion
Trinity ConfusionTrinity Confusion
Trinity Confusion
 
Split block domination in graphs
Split block domination in graphsSplit block domination in graphs
Split block domination in graphs
 
Classification on multi label dataset using rule mining technique
Classification on multi label dataset using rule mining techniqueClassification on multi label dataset using rule mining technique
Classification on multi label dataset using rule mining technique
 
Loren beautifiers presentation
Loren beautifiers   presentationLoren beautifiers   presentation
Loren beautifiers presentation
 
Fun with my small note animal tissue new
Fun with my small note animal tissue newFun with my small note animal tissue new
Fun with my small note animal tissue new
 
History of life part 2
History of life part 2History of life part 2
History of life part 2
 
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...
A model of hybrid genetic algorithm particle swarm optimization(hgapso) based...
 
Jini - edit translations
Jini - edit translationsJini - edit translations
Jini - edit translations
 
NAAS Journal Rating 2013
NAAS Journal Rating 2013NAAS Journal Rating 2013
NAAS Journal Rating 2013
 
explicacion del proyecto "todos para uno"
explicacion del proyecto "todos para uno"explicacion del proyecto "todos para uno"
explicacion del proyecto "todos para uno"
 
స్ఫూర్థి ఆగష్టు సంచిక.
స్ఫూర్థి ఆగష్టు సంచిక.స్ఫూర్థి ఆగష్టు సంచిక.
స్ఫూర్థి ఆగష్టు సంచిక.
 
50 2015-tt-bct
 50 2015-tt-bct 50 2015-tt-bct
50 2015-tt-bct
 
Design and development of aperture coupled
Design and development of aperture coupledDesign and development of aperture coupled
Design and development of aperture coupled
 

Similar to Ch6

Generating functions (albert r. meyer)
Generating functions (albert r. meyer)Generating functions (albert r. meyer)
Generating functions (albert r. meyer)Ilir Destani
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to FunctionsMelanie Loslo
 
Piecewise Functions in Matlab
Piecewise Functions in MatlabPiecewise Functions in Matlab
Piecewise Functions in MatlabJorge Jasso
 
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxSAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxagnesdcarey33086
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with QuadraticsPLeach
 
1.  Write an equation in standard form of the parabola that has th.docx
1.  Write an equation in standard form of the parabola that has th.docx1.  Write an equation in standard form of the parabola that has th.docx
1.  Write an equation in standard form of the parabola that has th.docxKiyokoSlagleis
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Juan Miguel Palero
 
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docx
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docxMAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docx
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docxjessiehampson
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfyavig57063
 
Scilab for real dummies j.heikell - part 2
Scilab for real dummies j.heikell - part 2Scilab for real dummies j.heikell - part 2
Scilab for real dummies j.heikell - part 2Scilab
 
April 10, 2015
April 10, 2015April 10, 2015
April 10, 2015khyps13
 
Integral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewerIntegral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewerJoshuaAgcopra
 

Similar to Ch6 (20)

Generating functions (albert r. meyer)
Generating functions (albert r. meyer)Generating functions (albert r. meyer)
Generating functions (albert r. meyer)
 
Chap07
Chap07Chap07
Chap07
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
Lenier Equation
Lenier EquationLenier Equation
Lenier Equation
 
Relation and function pdf
Relation and function pdfRelation and function pdf
Relation and function pdf
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to Functions
 
Piecewise Functions in Matlab
Piecewise Functions in MatlabPiecewise Functions in Matlab
Piecewise Functions in Matlab
 
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxSAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with Quadratics
 
E10
E10E10
E10
 
1.  Write an equation in standard form of the parabola that has th.docx
1.  Write an equation in standard form of the parabola that has th.docx1.  Write an equation in standard form of the parabola that has th.docx
1.  Write an equation in standard form of the parabola that has th.docx
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Piecewise functions
Piecewise functions Piecewise functions
Piecewise functions
 
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docx
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docxMAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docx
MAT-121 COLLEGE ALGEBRAWritten Assignment 32 points eac.docx
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdf
 
Scilab for real dummies j.heikell - part 2
Scilab for real dummies j.heikell - part 2Scilab for real dummies j.heikell - part 2
Scilab for real dummies j.heikell - part 2
 
April 10, 2015
April 10, 2015April 10, 2015
April 10, 2015
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
Graph a function
Graph a functionGraph a function
Graph a function
 
Integral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewerIntegral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewer
 

Ch6

  • 1. Chapter 6 : Calculus 06-01 Limits Activity 1 Run the following cell that gives the limit of sin x x as x 0. Limit Sin x x, x 0 1 Run the following cell that gives the limit of 1 x first as x 0 and then as x 0 . Note: The limit is by default taken from above (right). Directional Limit : +1 means left,-1 means right. Limit 1 x, x 0, Direction 1 Limit 1 x, x 0, Direction 1 Activity 2 Mathematica can't evaluate the limit of the greatest integer function as x 1 . Run the following cell.
  • 2. Mathematica can't evaluate the limit of the greatest integer function as x 1 . Run the following cell. Limit Floor x , x 1, Direction 1 0 The limit of a function that is defined by several rules can't be evaluated directly. Run the following cell and comment on the results. Clear f, a, b, c, d ; f x_ : If x 4, 3 x 2, 2 7 x^2 ; a Limit f x , x 1 b Limit f x , x 7 c Limit f x , x 4, Direction 1 d Limit f x , x 4, Direction 1 5 19 110 10 Try to run the following code to overcome this difficulty. 2 Chapter 6..Calculus .nb
  • 3. fup4 x_ : 3 x 2; fbelow4 x_ : 2 7 x^2; a Limit fbelow4 x , x 1 b Limit fup4 x , x 7 c Limit fup4 x , x 4 d Limit fbelow4 x , x 4 5 19 10 110 06-02 Differentiation Mathematica Commands for Differentiation Operations. Activity 3 Run the following cell that gives x x n . D[x^n, x] n x 1 n Run the following cell that gives the first three derivatives of f x x n Chapter 6..Calculus .nb 3
  • 4. f x_ : xn f' x f'' x f''' x n x 1 n 1 n n x 2 n 2 n 1 n n x 3 n Activity 4 Run the following cell that gives the partial derivative x x 2 y 2 . y is assumed to be independent of x. Clear[x,y,f] f=x^2 + y^2; D[f, x] 2 x Run the following cells. Any of them gives the mixed derivative of f(x,y)=sin(xy) . D D Sin x y , x , y Cos x y x y Sin x y D Sin x y , x, y Cos x y x y Sin x y 4 Chapter 6..Calculus .nb
  • 5. x,y Sin x y Cos x y x y Sin x y Total Derivative Activity 5 Run the following cell that gives the total differential of f(x,y) = x 2 y 3 , i.e. it gives fx dx + fy dy. Note: Dt[x] denotes dx and Dt[y] denotes dy Dt x2 y3 2 x y3 Dt x 3 x2 y2 Dt y Local Minimum and Maximum values of a function Ask Mathematica about the commands "FindMaximum" and "FindMinimum" ?? FindMaximum FindMaximum f, x, x0 searches for a local maximum in f, starting from the point x x0. FindMaximum f, x, x0 , y, y0 , ... searches for a local maximum in a function of several variables. More… Attributes FindMaximum HoldAll, Protected Options FindMaximum AccuracyGoal Automatic, Compiled True, EvaluationMonitor None, Gradient Automatic, MaxIterations 100, Method Automatic, PrecisionGoal Automatic, StepMonitor None, WorkingPrecision MachinePrecision Chapter 6..Calculus .nb 5
  • 6. ?? FindMinimum FindMinimum f, x, x0 searches for a local minimum in f, starting from the point x x0. FindMinimum f, x, x0 , y, y0 , ... searches for a local minimum in a function of several variables. More… Attributes FindMinimum HoldAll, Protected Options FindMinimum AccuracyGoal Automatic, Compiled True, EvaluationMonitor None, Gradient Automatic, MaxIterations 100, Method Automatic, PrecisionGoal Automatic, StepMonitor None, WorkingPrecision MachinePrecision Is there a need for two commands? Is one of them enough? Activity 6 Run the following cell that evaluates the local minimum of f(x)=x 3 +x 2 -3x+5 starting the search from x = 2. 6 Chapter 6..Calculus .nb
  • 7. Clear f, g, x f x_ : x3 x2 3 x 5 Plot f x , x, 10, 10 FindMinimum f x , x, 2 10 5 5 10 500 500 1000 3.73165, x 0.720759 Activity 7 Note: The maximum value of f(x) occurs at the point x at which -f(x) has a minimum value. Study the following code that gives a local maximum of f starting the search from x = a. Then activate it. Find a local maximum of f(x)=x 3 +x 2 -3x+5 Solution: First plot the function is a suitable domain to estimate a starting point for the search of the maximum. Run the following cell to get the plot. Chapter 6..Calculus .nb 7
  • 8. Clear f, x f x_ : x3 x2 3 x 5 Plot f x , x, 10, 10 10 5 5 10 500 500 1000 From this plot one may guess that a local maximum may occur near x = -2. 06-02 Integration Indefinite Integral Activity 8 Run the following two cells that give the indefinite integral of f(x) = 1 x4 a4 8 Chapter 6..Calculus .nb
  • 9. Integrate[1/(x^4 - a^4), x] 1 250 ArcTan 5 x 1 500 Log 5 x 1 500 Log 5 x 1 x4 a4 x 1 250 ArcTan 5 x 1 500 Log 5 x 1 500 Log 5 x Definite Integrals Activity 9 Run the following two cells that evaluate the definite integral a b ln x d x . Integrate[ Log[x], {x, a, b} ] 24 5 Π 5 Log 5 19 Log 19 a b Log x x 24 5 Π 5 Log 5 19 Log 19 Mathematica cannot give a formula for this definite integral 1 3 x x x . Run the following cell to check that. a1=Integrate[ x^x, {x, 1, 3} ] 1 3 xx x However, you can still get a numerical result of that integral by running the following cell. Chapter 6..Calculus .nb 9
  • 10. However, you can still get a numerical result of that integral by running the following cell. N[a1] 13.7251 Integrating Piecewise Functions Activity 10 Try to run the following cell that attempts to evaluate the Ceiling function on the interval [0,2], and observe the output. Integrate Ceiling x2 , x, 0, 2 7 2 3 However, using the Boole function you can evaluate the above integral by running the following cell. Integrate Ceiling x2 Boole 0 x 2 , x, , 7 2 3 Improper integral Activity 11 The true definite integral 2 2 1 x 2 x is divergent because of the double pole at x 0. Run the following cell to check that. 10 Chapter 6..Calculus .nb
  • 11. Integrate[1/x^2, {x, -2, 2}] Integrate::idiv : Integral of 1 x2 does not converge on 2, 2 . More… 2 2 1 x2 x Run the following cell that tries to evaluate 0 sin a x x x . Integrate[Sin[a x]/x, {x, 0, Infinity}] Π 2 Note that the If here gives the condition for the integral to be convergent. Double integral Activity 12 Run the following cell that the double integral 0 1 0 x x 2 y 2 dy dx. Note that the range of the outermost integration variable appears first. The y integral is done first. Its limits can depend on the value of x. Integrate[ x^2 + y^2, {x, 0, 1}, {y, 0, x} ] 1 3 Double Integration over Regions The Boole function is very useful in computing definite double integral over a given region. Integrate[f[x] Boole[ ineq], {x, x1, x2}, {y, y1,y2} ] integrates the function f(x) over the region defined by all points satisfying the inequality inside the rectan- gle defined by values of x and y. Note: You can use Integrate[f[x] Boole[ineq],{x,- , },{y,- , }] if you want Chapter 6..Calculus .nb 11
  • 12. The Boole function is very useful in computing definite double integral over a given region. Integrate[f[x] Boole[ ineq], {x, x1, x2}, {y, y1,y2} ] integrates the function f(x) over the region defined by all points satisfying the inequality inside the rectan- gle defined by values of x and y. Note: You can use Integrate[f[x] Boole[ineq],{x,- , },{y,- , }] if you want Mathematica to select the inter region defined by the inequality. Activity 13 Run the following cell that integrates x y y 2 over the region R= {(x,y) : 0 x 1 and 0 y 1}. Integrate x y y2 , x, 0, 1 , y, 0, 1 7 12 Run the following cells . Comment on the obtained results. Write the inte- grals that have been evaluated.. Integrate Boole x2 y2 1 , x, 1, 1 , y, 1, 1 Π Integrate Boole x2 y2 1 , x, 0, 1 , y, 0, 1 Π 4 Integrate Boole x2 y2 1 , x, , , y, , Π Run the following cell . Write the integrals that have been evaluated.. 12 Chapter 6..Calculus .nb
  • 13. Integrate x2 Boole x2 4 y2 1 Abs y x , y, , , x, , 1 40 2 5 ArcTan 2 06-03 Differential Operations Note: Some of the following commands are set for spherical coordinates, so to use them in Cartesian coordinates, we need to run the following cell. VectorAnalysis` SetCoordinates Cartesian x, y, z Cartesian x, y, z Grad ( f the gradient of the scalar function f) Activity 14 Run the following cell that computes the f where f x, y, z 5 x2 y3 z4 Clear[x,y,z] Grad[5 x^2 y^3 z^4, Cartesian[x, y, z]] 10 x y3 z4 , 15 x2 y2 z4 , 20 x2 y3 z3 Curl ( ×f curl of a vector valued function f) Chapter 6..Calculus .nb 13
  • 14. Curl ( ×f curl of a vector valued function f) Activity 15 Run the following cell that computes the f where f x, y, z x2 , sin x y , e 3 zy Clear f, x, y, z f x^2, Sin x y , Exp 3 z y ; Curl f 3 3 y z z, 0, y Cos x y Div ( .f divergence of a vector valued function f) Activity 16 Run the following cell that computes the .f where f x, y, z x2 , sin x y , e 3 zy Clear f, x, y, z f x^2, Sin x y , Exp 3 z y ; Div f 2 x 3 3 y z y x Cos x y 14 Chapter 6..Calculus .nb
  • 15. 06-04 Vector Field Arrow Activity 17 Run the following cell that plots a vector with starting point (1,2) and end point (3,5). Chapter 6..Calculus .nb 15
  • 16. Graphics Arrow 1, 2 , 3, 5 Plot of Vector Field Activity 18 Run the following cell that plots a vector field components given by sin x and cos y . 16 Chapter 6..Calculus .nb
  • 17. Needs "VectorFieldPlots`" ; VectorFieldPlots`VectorFieldPlot Sin x , Cos y , x, 0, Π , y, 0, Π Plot of Gradient Field Activity 19 Run the following cell that plots a gradient field of the potential x 2 y 2 . Chapter 6..Calculus .nb 17
  • 18. Needs "VectorFieldPlots`" ; VectorFieldPlots`GradientFieldPlot x2 y2 , x, 3, 3 , y, 3, 3 Plot Field in 3D Activity 20 Run the following cell that plots a vector field with components given by y z , x z , and 0. 18 Chapter 6..Calculus .nb
  • 19. Needs "VectorFieldPlots`" ; VectorFieldPlots`VectorFieldPlot3D y, x, 0 z , x, 1, 1 , y, 1, 1 , z, 1, 3 Run the following cell that plots the gradient field of the scalar function x y z . Chapter 6..Calculus .nb 19
  • 20. Needs "VectorFieldPlots`" ; VectorFieldPlots`GradientFieldPlot3D x y z, x, 1, 1 , y, 1, 1 , z, 1, 1 06-05 Power Series Power Series expansion Activity 21 Run the following cell that gives a power series expansion of exp(x) around x = 0, accurate to order x 5 . 20 Chapter 6..Calculus .nb
  • 21. aa=Series[Exp[x], {x, 0, 5}] 1 x x2 2 x3 6 x4 24 x5 120 O x 6 Run the following cell that turns the previous power series back into an ordi- nary expression. Normal[aa] 1 x x2 2 x3 6 x4 24 x5 120 Run the following cell that gives a power series expansion of exp(x) around x = 1, accurate to order x 5 . Series[ Exp[x], {x, 1, 5} ] x 1 1 2 x 1 2 1 6 x 1 3 1 24 x 1 4 1 120 x 1 5 O x 1 6 Operations on Power Series Activity 22 Run the following cell that gives 1 1 aa . 1 / (1 - aa) 1 x 1 2 x 12 x3 720 O x 4 Run the following cell that gives derivative with respect to x of aa. Chapter 6..Calculus .nb 21
  • 22. D[aa, x] 1 x x2 2 x3 6 x4 24 O x 5 Run the following cell that integrates aa with respect to x . Integrate[aa, x] x x2 2 x3 6 x4 24 x5 120 x6 720 O x 7 06-07 Laplace Transform Activity 23 Ask Mathematica about the commands "LaplaceTransform ", and " InverseLaplaceTransform" ?? LaplaceTransform LaplaceTransform expr, t, s gives the Laplace transform of expr. LaplaceTransform expr, t1, t2, ... , s1, s2, ... gives the multidimensional Laplace transform of expr. More… Attributes LaplaceTransform Protected, ReadProtected ?? InverseLaplaceTransform InverseLaplaceTransform expr, s, t gives the inverse Laplace transform of expr. InverseLaplaceTransform expr, s1, s2, ... , t1, t2, ... gives the multidimensional inverse Laplace transform of expr. More… Attributes InverseLaplaceTransform Protected, ReadProtected 22 Chapter 6..Calculus .nb
  • 23. Mathematica Commands Activity 24 Run the following cell that computes the Laplace transform of f(t) = t n using the Mathematica command LaplaceTransform. Clear[f,t,L,IL,s,a] f[t_]:=t^n L[f_]:=LaplaceTransform[f[t], t, s] L[f] s 1 n Gamma 1 n Run the following cell that computes the Inverse Laplace transform of the previous result. IL[f_]:=InverseLaplaceTransform[L[f], s, t] IL[f] tn Properties of Laplace Transform Activity 25 Run the following cell that shows that the Laplace transform is a linear operator. Chapter 6..Calculus .nb 23
  • 24. Clear f, g, t, s LaplaceTransform f t g t , t, s LaplaceTransform f t g t , t, s LaplaceTransform f t , t, s LaplaceTransform g t , t, s LaplaceTransform f t , t, s LaplaceTransform g t , t, s What do you conclude from the above output? Laplace Transform of nth derivative of a function Activity 26 Laplace transforms have the property that they turn integration and differentia- tion into essentially algebraic operations. Run the following cell and com- ment on the output f t_ : Sin t ^2 Do Print LaplaceTransform D f t , t, k , t, s , k, 0, 2 2 4 s s3 2 4 s2 4 4 s s3 2 2 s2 4 s s3 Laplace Transform of an Integral Activity 27 Integration becomes multiplication by 1 s when one does a Laplace trans- form. Run the following cell and comment on the output. 24 Chapter 6..Calculus .nb
  • 25. Clear f, s, t f u_ : u Exp u LaplaceTransform Integrate f u , u, 0, t , t, s 1 s LaplaceTransform f t , t, s Apart 1 1 s 2 1 1 s 1 s 1 1 s 2 s 1 1 s 2 1 1 s 1 s Multidimensional Laplace transforms. Activity 28 Run the following cell that compute a two-dimensional Laplace transform of f(t,u)= cos(t) eu LaplaceTransform Cos t Exp u , t, u , s, v s 1 s2 1 v 06-06 Programming Calculus Limits Chapter 6..Calculus .nb 25
  • 26. Limits Numerical Approach to Limits Activity 29 Write a code that computes directional limits numerically. Then run it to activate it. Run the following cell that calculates the values of f(x)=sin x x as x approaches 0 from right. f x_ : Sin x x ; c 0; dir 1; numericalapproachtolimits f, c, dir Right limit of Sin x x as x 0 x f x Sin x x _______________________________ 0.001 1. 0.0009 1. 0.0008 1. 0.0007 1. 0.0006 1. 0.0005 1. 0.0004 1. 0.0003 1. 0.0002 1. 0.0001 1. Graphical Approach Activity 30 26 Chapter 6..Calculus .nb
  • 27. Activity 30 Write a code that shows directional limits graphically. Then run it to activate it. Run the following cell that illustrates the limit of f(x)= x 3 as x approaches 3 . f x_ : x^3; c 3; graphicalapproachtolimits f, c -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 Chapter 6..Calculus .nb 27
  • 28. -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 28 Chapter 6..Calculus .nb
  • 29. -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 Chapter 6..Calculus .nb 29
  • 30. -4 -2 2 4 6 8 10 -50 50 100 150 -4 -2 2 4 6 8 10 -50 50 100 150 (Ε , ∆ ) Approach Activity 31 Write a code that provides a graphical illustration of Ε and ∆ approach to limits. Then activate it. Run the following cell that illustrates the Ε and ∆ approach of limits based on f(x)=x sin 1 x as x 0. f x_ : x Sin 1 x c 0.; l 0; analyticapproachtolimits f, c, l 30 Chapter 6..Calculus .nb
  • 31. The relation between Ε and ∆ in the limit definition Neiborhood of x 0. is 0.1, 0.1 with ∆ 0.1 -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.01 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.009 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.008 eps Chapter 6..Calculus .nb 31
  • 32. -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.007 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.006 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.005 eps 32 Chapter 6..Calculus .nb
  • 33. -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.004 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.003 eps -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.002 eps Chapter 6..Calculus .nb 33
  • 34. -0.1 -0.05 0.05 0.1 -0.075 -0.05 -0.025 0.025 0.05 0.001 eps Evaluation of ∆ for a given Ε Activity 32 Write a code that computes ∆ for a given Ε in the definition of limit. Then activate it. Run the following cell that computes ∆ if Ε =0.001 that illustrates that the limx 1x 2 = 1 f x_ : x^2 c 1; epsilon .001; evaluationofdelta f, c, epsilon f x x2 c 1 limx c f x 1 Ε 0.001 ∆ 0.000499875 Differentiation 34 Chapter 6..Calculus .nb
  • 35. Differentiation Average of a function Activity 33 Run the following cell. Comment on the output. Write a code that gives the same output. Clear f, x, a, b f x_ : Sin x ; a 0; b Pi 2; average f, a, b 2 Π Compare derivative and average of a function Activity 34 Run the following cell. Comment on the output. Write a code that gives the same output. f x_ : Sin x ; x0 Pi; xn Pi; derivativeandaverage f, x0, xn Chapter 6..Calculus .nb 35
  • 36. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 36 Chapter 6..Calculus .nb
  • 37. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 Chapter 6..Calculus .nb 37
  • 38. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 38 Chapter 6..Calculus .nb
  • 39. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 Chapter 6..Calculus .nb 39
  • 40. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 40 Chapter 6..Calculus .nb
  • 41. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 Chapter 6..Calculus .nb 41
  • 42. -3 -2 -1 1 2 3 -1 -0.5 0.5 1 -3 -2 -1 1 2 3 -1 -0.5 0.5 1 First Derivative Test for Local Extreme Points Activity 35 Run the following cell. Comment on the output. Write a code that gives the same output. 42 Chapter 6..Calculus .nb
  • 43. Clear f, x f x_ : x 1 x 2 x 5 ; Ε 0.01; extrempoints1 f, Ε 1 The function is f x 5 x 1 x 2 x 2 Its first derivative is f' x 5 x 1 x 5 x 2 x 1 x 2 x 3 The set of values of x such that f has critical points is 1 3 4 37 , 1 3 4 37 5 Classification of critical points based on second derivative test : For point number 1 : 1 3 4 37 , 5 1 3 4 37 1 1 3 4 37 2 1 3 4 37 is a maximum point For point number 2 : 1 3 4 37 , 5 1 3 4 37 1 1 3 4 37 2 1 3 4 37 is a minimum point Second Derivative Test for Local Extreme Points Activity 36 Run the following cell. Comment on the output. Write a code that gives the same output. Chapter 6..Calculus .nb 43
  • 44. Clear f, x f x_ : x 1 x 2 x 5 ; extrempoints2 f 1 The function is f x 5 x 1 x 2 x 2 Its first derivative is f' x 5 x 1 x 5 x 2 x 1 x 2 x 3 The set of values of x such that f has critical points is 1 3 4 37 , 1 3 4 37 4 The second derivative of f is f'' x 8 6 x 5 Classification of critical points based on second derivative test : For point number 1 : 1 3 4 37 , 5 1 3 4 37 1 1 3 4 37 2 1 3 4 37 is a maximum point For point number 2 : 1 3 4 37 , 5 1 3 4 37 1 1 3 4 37 2 1 3 4 37 is a minimum point 06-08 Evaluation on Calculus Exercise 1 For each of the following cells: a) Study the cell and Guess the output. b) Run the cells. c) Compare the output with your guess. d) Write any general comments or remarks. 44 Chapter 6..Calculus .nb
  • 45. Limit[ x Log[x], x -> 0 ] Limit x 1 x 1 , x 1 Limit x Sin 1 x , x 0 Limit Abs x 3 , x 3 D Sin x , x, 5 Integrate[x^2 + y^2, {x, 0, a}, {y, 0, b}] Integrate[x/((x - 1)(x + 2)), x] x 9 7 x2 x f x_ : x2 4 3 x 2 5 x ; g x_ : Apart f x g x g x x 1 1 1 y2 1 y2 x y Chapter 6..Calculus .nb 45
  • 46. 0 1 0 1 x y y2 x y 0 Π 3 y Π 3 Sin x x x y Integrate Max x y2 , x2 y Boole x2 y2 1 , x, , , y, , f t_ : Sin t LaplaceTransform f t , t, s InverseLaplaceTransform , s, t LaplaceTransform t^4 f t , t, s InverseLaplaceTransform , s, t Exercise 2 Use Mathematica to evaluate the following limx 1 x 1 x3 x , limh 0 1 h 2 1 h , limx x2 9 2 x 6 , , 46 Chapter 6..Calculus .nb
  • 47. limx x2 x 1 x2 x , limx ln x 1 ln x , limx ln 2 x ln 1 x , limx 0 1 x 2 x 0 4 x 16 3 x x, cos 1 t t2 t, x2 ex x, x2 2 x 1 2 x3 3 x2 2 x x, 0 1 x 1 e x y y x, Chapter 6..Calculus .nb 47
  • 48. 0 1 y2 1 y sin x2 x y, Exercise 3 Calculate the first and the second derivatives of each of the following y x 2 8 4 x3 3 6 , y 1 sin x sin x , y ln x2 ex , y 5x tan x , Exercise 4 Find the first and the mixed partial derivatives for the following f x, y x3 ln x y , f x, y, z x ey cos z Exercise 5 Find the Taylor series expansion of each of the following 1 1 x2 , at x 0, 48 Chapter 6..Calculus .nb
  • 49. ln x , at x 1 Chapter 6..Calculus .nb 49