SlideShare a Scribd company logo
1 of 49
Download to read offline
Atomic Layer Deposition
Atomic Layer Deposition
(ALD)
Erwin Kessels
w.m.m.kessels@tue.nl
www.phys.tue.nl/pmp
Vapor phase deposition technologies
Physical Vapor Deposition (PVD)
– sputtering –
Chemical Vapor Deposition (CVD)
Energetic ions! Heat!
/Applied Physics - Erwin Kessels
g
More applications have stricter requirements on
1. Precise growth and thickness control
2 Hi h f lit / t
2. High conformality/step coverage
3. Good uniformity on large substrates
4. Low substrate temperatures
/Applied Physics - Erwin Kessels
Very demanding applications
Nanoelectronics Photovoltaics
f
Protective thin films Flexible electronics
/Applied Physics - Erwin Kessels
CMOS scaling in nanoelectronics
???
???
graphene
graphene
ActiveArea
Gate Field
Spacers
ActiveArea
Gate Field
Spacers
ActiveArea
Gate Field
Spacers
???
???
???
???
ActiveArea
Gate Field
Spacers
ActiveArea
Gate Field
Spacers
ActiveArea
Gate Field
Spacers
Ge/IIIV
Ge/IIIV
nanowires
nanowires
g p
g p
HfO
metal gate
metal gate
FinFET
FinFET
L=35nm
SiGe
L=35nm
L=35nm
SiGe
strain
strain
HfO 2
high
high -
-

time
silicide
silicide
USJ
USJ
Time
e
Courtesy of Marc Heyns, IMEC
/Applied Physics - Erwin Kessels
Field-effect transistor: replacing SiO2 by HfO2
32 nm
Thermally grown SiO2
Thermally grown SiO2
/Applied Physics - Erwin Kessels
Precise deposition of nanometer-thick Hf-based oxides
www.chipworks .com
Field-effect transistor: going from 2D to 3D gates
22 nm
Precise deposition of nanometer-thick Hf-based oxides
with excellent conformality
/Applied Physics - Erwin Kessels
with excellent conformality
www.chipworks .com
Outline
1. Atomic layer deposition (ALD): basics and key features
2. ALD equipment
3. Materials & ALD surface chemistries
4. Some applications of ALD
5. Recent developments in high-throughput ALD
/Applied Physics - Erwin Kessels
Atomic Layer Deposition (ALD)
• Reactants (precursors) are pulsed into reactor alternately and cycle-wise (ABAB..)
• Precursors react through saturative (self-limiting) surface reactions
• A sub-monolayer of material deposited per cycle
/Applied Physics - Erwin Kessels
ALD of Al2O3 films: Al(CH3)3 - H2O process
/Applied Physics - Erwin Kessels
Thickness vs. number of cycles
Film thickness is ruled
by the number of cycles chosen
30
1. Al(CH3)3
2 SiH {N(C H )}
H3C Al
CH3
CH3
N(C2H5)2
30
1. Al2
O3
2. SiO2
3. Ta2
O5
m)
2. SiH2{N(C2H5)}2
3 T {N(CH ) }
N(CH3)2
Si
H
H
N(C2H5)2
20
2 5
4. ZnO2
5. TiO2
ness
(nm
3. Ta{N(CH3)2}5
(H3C)2N Ta
N(CH3)2
N(CH3)2
( 3)2
N(CH3)2
10
Thickn
4. Zn(CH2CH3)2
H3C
H2
C
Zn
H2
C
CH3
0 50 100 150 200 250
0
ALD C l
5. Ti(Cp*)(OCH3)3
Ti
H3CO
OC
OCH3
H3C
CH3
CH3
H3C CH3
+
/Applied Physics - Erwin Kessels
Potts et al., J. Electrochem. Soc., 157, P66 ( 2010).
Dingemans et al., J. Electrochem. Soc. 159, H277 (2012)
ALD Cycles
H3CO
OCH3
+
H2O, O3, or O2 plasma
Key features of ALD
1. Control of film growth and thickness
‘Digital’ thickness control
2. High conformality/step coverage
Self-limiting surface reactions
3 G d if it l b t t
3. Good uniformity on large substrates
300 mm and even bigger
4. Low substrate temperatures
p
Between 25 - 400 °C
5. Multilayer structures and nanolaminates
Easy to alternate between processes
6. Large set of materials and processes
Many different materials demonstrated
Many different materials demonstrated
/Applied Physics - Erwin Kessels
Line-of-sight vs. conformal growth
/Applied Physics - Erwin Kessels
Materials deposited ALD
/Applied Physics - Erwin Kessels
Puurunen, J. Appl. Phys. 97, 121301 (2005)
Miikkulainen et al., J. Appl. Phys. 113, 021301 (2013).
Outline
1. Atomic layer deposition (ALD): basics and key features
2. ALD equipment
3. Materials & ALD surface chemistries
4. Some applications of ALD
5. Recent developments in high-throughput ALD
/Applied Physics - Erwin Kessels
Single wafer ALD reactor
Shower head reactor
(warm or hot wall reactor)
Flow-type reactor
(hot wall reactor)
• Temporal ALD
P l t i f
• Pulse-train of precursors
• Reactor pressure 1-10 Torr
• Applications: semiconductor (logic)
/Applied Physics - Erwin Kessels
pp ( g )
Batch ALD reactor
Temporal ALD
Batch reactor
• Temporal ALD
• Typically 50-500 substrates in a single deposition run
• Single-side deposition can be challenging
g p g g
• Applications: semiconductor (memory), displays,
solar cells, etc.
/Applied Physics - Erwin Kessels
Plasma ALD reactors
Plasma-assisted ALD can yield additional benefits for specific applications:
1. Improved material properties
2. Deposition at lower temperatures (also room temperature)
Direct plasma Remote plasma
p p ( p )
3. Higher growth rates/cycle and shorter cycle times
4. More versatility/freedom in process and materials etc.
Direct plasma
Substrate part of plasma creation zone
Remote plasma
Substrate “downstream” of plasma creation
zone
/Applied Physics - Erwin Kessels
Heil et al., J. Vac. Sci. Technol. A 25, 1357 (2007).
Profijt et al., J. Vac. Sci. Technol. A 29 050801 (2011)
Plasma-based chemistry (metal oxides)
1.
Al(CH3)3
2.
H3C Al
CH3
CH3
Si
N(C2H5)2
2 0 Al2
O3
TiO2
- Ti(O
i
Pr)4
e)
SiH2{N(C2H5)}2
3.
Ta{N(CH3)2}5
(H3C)2N Ta
(C )
N(CH3)2
N(CH3)2
Si
H
H
N(C2H5)2
1.6
2.0 2 3 2
( )4
SiO2
TiO2
- Ti(Cp
Me
)(O
i
Pr)3
Ta2
O5
TiO2
- Ti(Cp*)(OMe)3
e
(Å/cycle
( 3)2 5
4.
Ti(OiPr)4
N(CH3)2
N(CH3)2
Ti i
Oi
Pr
0.8
1.2
per
Cycle
4
5.
Ti(CpMe)(OiPr)3 Ti
Ti
i
PrO
Oi
Pr
Oi
Pr
CH3
0 0
0.4
Growth
3
6.
Ti(Cp*)(OCH )
Ti
i
PrO
Oi
Pr
Oi
Pr
H3C
CH3
CH3
0 50 100 150 200 250 300
0.0
Substrate Temperature (°C)
/Applied Physics - Erwin Kessels
Ti(Cp*)(OCH3)3
Ti
H3CO
OCH3
OCH3
H3C CH3
Potts et al., J. Electrochem. Soc., 157, P66 ( 2010).
Dingemans et al., J. Electrochem. Soc. 159, H277 (2012)
Oxford Instruments OpAL reactor – Plasma ALD
/Applied Physics - Erwin Kessels
ALD equipment suppliers (incomplete list)
Semiconductor Solar / R2R
R&D / Pilot
/Applied Physics - Erwin Kessels
Outline
1. Atomic layer deposition (ALD): basics and key features
2. ALD equipment
3. Materials & ALD surface chemistries
4. Some applications of ALD
5. Recent developments in high-throughput ALD
/Applied Physics - Erwin Kessels
Metalorganic and H2O: ligand exchange (Al2O3)
Al(CH3)3 exposure Purge
10
-8
H O
ry
signal
(A)
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
H
2
O
H
2
O
H
2
O
H
2
O
10
-8
H O
ry
signal
(A)
10
-8
H O
ry
signal
(A)
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
H
2
O
H
2
O
H
2
O
H
2
O
10
-10
10
-9
H2
O
spectrometr
CH4
10
-10
10
-9
H2
O
spectrometr
CH4
10
-10
10
-9
H2
O
spectrometr
CH4
AlOH*+ Al(CH3)3 AlOAl(CH3)2* + CH4
Cycle
0 25 50 75 100
10
-11
Mass
Time (s)
4
0 25 50 75 100
10
-11
Mass
Time (s)
4
0 25 50 75 100
10
-11
Mass
Time (s)
4
AlOH Al(CH3)3 AlOAl(CH3)2 CH4
Surface chemistry rules ALD process:
ligand exchange between Al(CH ) and
AlOH* + CH4
AlCH3* + H2O
ligand exchange between Al(CH3)3 and
–OH surface groups and H2O and –CH3
surface groups leads to CH4 reaction
products
* are surface species
H2O exposure
Purge
/Applied Physics - Erwin Kessels
Metalorganic and H2O: ligand exchange (Al2O3)
Al(CH3)3 exposure Purge
10
-8
H O
ry
signal
(A)
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
H
2
O
H
2
O
H
2
O
H
2
O
10
-8
H O
ry
signal
(A)
10
-8
H O
ry
signal
(A)
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
Al(CH
3
)
3
H
2
O
H
2
O
H
2
O
H
2
O
10
-10
10
-9
H2
O
spectrometr
CH4
10
-10
10
-9
H2
O
spectrometr
CH4
10
-10
10
-9
H2
O
spectrometr
CH4
Cycle
0 25 50 75 100
10
-11
Mass
Time (s)
4
0 25 50 75 100
10
-11
Mass
Time (s)
4
0 25 50 75 100
10
-11
Mass
Time (s)
4
Surface chemistry rules ALD process:
ligand exchange between Al(CH ) and
ligand exchange between Al(CH3)3 and
–OH surface groups and H2O and –CH3
surface groups leads to CH4 reaction
products
H2O exposure
Purge
/Applied Physics - Erwin Kessels
Metalorganic and H2O: ligand exchange (Al2O3)
4x10
-5
rbance
2940 cm-1
1207 cm-1
Al(CH3)3
chemisorption
Al(CH3)3 exposure Purge
frared
abso
OH
stretching
CHx
stretching
CHx
deformation
2940 cm 1
1207 cm 1
H O
4000 3500 3000 2500 2000 1500 1000
In
Wavenumber (cm
-1
)
H2O
exposure
Cycle
Surface chemistry rules ALD process:
Surface alternately covered by –OH
Surface alternately covered by –OH
surface groups and –CH3 surface groups
/Applied Physics - Erwin Kessels
H2O exposure
Purge
Metalorganic and H2O: ligand exchange (Al2O3)
0.8
1.2
Cycle
(
Å
)
Al(CH3)3 exposure Purge
0.4
owth
per
C
0 20 40 60
0.0
Gro
Al(CH3
)3
dose (ms)
Cycle
Conditions such that precursors react
through saturative surface reactions:
Al(CH3)3 does not react with –CH3
surface groups
/Applied Physics - Erwin Kessels
H2O exposure
Purge
Metalorganic and H2O: ligand exchange (Al2O3)
0 8
1.2
ycle
(
Å
)
Al(CH3)3 exposure Purge
0.4
0.8
wth
per
Cy
0 20 40 60 80
0.0
Grow
H2
O dose (ms)
Cycle
Conditions such that precursors react
through saturative surface reactions:
H2O does not react with –OH
surface groups
/Applied Physics - Erwin Kessels
H2O exposure
Purge
Metalorganic and H2O: ligand exchange (Al2O3)
1.2
1.6
cle
(
Å
)
Al(CH3)3 exposure Purge
0.4
0.8
wth
per
Cyc
CVD+ALD ALD
0 2 4 6 8
0.0
Grow
Purge after Al(CH3
)3
dose (s)
Cycle
Precursors and reactants should be
very well evacuated/separated from
reactor before pulsing the next
precursor/reaction:
Otherwise parasitic CVD
/Applied Physics - Erwin Kessels
H2O exposure
Purge
ALD process: saturation curves (Al2O3)
(a)
0.15
0.20
(nm/cycle)
Thermal ALD - Al(CH3)3 & H2O
0.05
0.10
wth
per
Cycle
(
CVD
Subsaturation CVD
0 20
le)
(b)
0 20 40 60 80 100
0.00
Grow
Dose time (ms)
0 1 2 3 4 5
Purge time (s)
0 20 40 60 80
H2
O dose (ms)
0 1 2 3
Purge time (s)
Plasma ALD - Al(CH3)3 & O2 plasma
0.10
0.15
0.20
Cycle
(nm/cycl
Subsaturation
0 20 40 60 80 100
0.00
0.05
Growth
per
C
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3
CVD
/Applied Physics - Erwin Kessels
Dose time (ms) Purge time (s) Plasma time (s) Purge time (s)
ALD process: substrate temperature (Al2O3)
e)
0.2
Plasma ALD
Thermal ALD
e
(nm/cycle
(a)
0.0
0.1
Growth
rate
3
4
5
6
(b)
per
cycle
cm
-2
)
0
1
2
3
#
Al
atoms
(10
15
c
0 100 200 300 400
0
Substrate temperature (
o
C)
AlOH* + Al(CH3)3 AlOAl(CH3)2* + CH4
/Applied Physics - Erwin Kessels
( 3)3 ( 3)2 4
AlOH* + CH4
AlCH3* + H2O
Van Hemmen et al., J. Electrochem. Soc. 154, G165 (2007)
Potts et al., J. Electrochem. Soc., 157, P66 ( 2010).
ALD process: substrate temperature (ideal case)
ALD Temperature
Window

A. Condensation
B Insufficient
Window
Cycle

A C
A
C
B. Insufficient
thermal energy
C. CVD
wth
per
C
B
D. Evaporation
H2O
Grow
B D
B
D OH OH O
∆T
Substrate Temperature 
Substrate/film surface
/Applied Physics - Erwin Kessels
Metal halide: ligand exchange (HfO2 and TiN)
HfOH* + HfCl HfOHfCl * + HCl
Metal oxides: ligand exchange
HfOH* + HfCl4 HfOHfCl3* + HCl
HfOH* + HCl
HfCl* + H2O
TiNH* + TiCl TiNTiCl * + HCl
Metals nitrides: ligand exchange
TiNH + TiCl4 TiNTiCl3 + HCl
TiNH2* + HCl
TiCl* + NH3
/Applied Physics - Erwin Kessels * are surface species
Metals: combustion (Pt) and reduction (W)
Noble metals: combustion by chemisorbed O2
3 O* + 2 (MeCp)PtMe3 2 (MeCp)PtMe2* + CH4 + CO2 + H2O
2 Pt* + 3 O* + 16 CO2 + 13 H2O
2 (MeCp)PtMe2* + 24 O2
Pt
Metals: fluorosilane elimination reactions
WSiF H* + WF WWF * + SiF H
WSiF2H + WF6 WWF5 + SiF3H
WSiF2H* + SiF3H + 2H2
WWF5* + Si2H6
/Applied Physics - Erwin Kessels * are surface species
Plasma-based chemistry (Al2O3 and TiN)
Metal oxides: combustion
AlOH*+ Al(CH3)3 AlOAl(CH3)2* + CH4
AlOH* + CO2 + H2O
AlCH3* + 4O
Metal nitrides: ligand exchange and reduction
TiNH* + TiCl TiNTiCl * + HCl
TiNH + TiCl4 TiNTiCl3 + HCl
TiNH2* + HCl
TiCl* + 3H + N
/Applied Physics - Erwin Kessels * are surface species
ALD of doped films, ternary compounds, etc.
/Applied Physics - Erwin Kessels
ALD of Al-doped ZnO films
Zn(C2H5)2 + H2O ZnO + 2 C2H6
ZnO
ZnO:Al n cycles ZnO + m cycles Al2O3
101
150 ºC
Al2O3 TMA or DMAI + H2O
100
TMA
cm)
2
10-1
sistivity
(
0 5 10 15 20 25 30
10-3
10-2
Res
DMAI
/Applied Physics - Erwin Kessels Wu et al., J. Appl. Phys. 114, 024308 (2013)
0 5 10 15 20 25 30
Al fraction (at.%)
Outline
1. Atomic layer deposition (ALD): basics and key features
2. ALD equipment
3. Materials & ALD surface chemistries
4. Some applications of ALD
5. Recent developments in high-throughput ALD
/Applied Physics - Erwin Kessels
Thin-film electroluminescent (TFEL) displays
New large-area display in 1983
Atomic layer deposited ZnS:Mn
1974 First patent on ALD filed by Tuomo Suntala
1983 Introduction of first ALD (non)-transparent inorganic TFEL display
Since 1989 Commercial production of ALD-TFEL displays by Planar
/Applied Physics - Erwin Kessels T. Suntola, Mater. Sci. Rep. 4, 261 (1989)
Encapsulation of OLED Devices
No encapsulation
Thin-film-encapsulated OLEDs after testing
40 nm ALD Al2O3 film
Thin film encapsulation requires:
• low deposition temperatures
• low water vapor transmission rates
• low pinhole (black spot) density
/Applied Physics - Erwin Kessels
Langereis et al., Appl. Phys. Lett. 89, 081915 (2006).
Keuning et al., J. Vac. Sci. Technol. A 30, 01A131 (2012).
Defect (dust particle) encapsulation
/Applied Physics - Erwin Kessels Courtesy of Jian Jim Wang (NanoNuvo Corporation, USA)
ALD films for photovoltaics
CIGS solar cells
Dye-sensitized
solar cells
c-Si solar cells
Organic solar cells
Buffer layers
Zn(O S)
Barrier layer
Al O HfO
Surface
passivation
Transparent
conductive oxide
On the verge of
Zn(O,S)
(Zn,Mg)O
In2O3
l
Al2O3, HfO2,
TiO2, etc.
Photoanode
Z O S O
p
Al2O3
ZnO:Al
Electron
selective layer
industrial application
High-throughput
equipment
Encapsulation
Al2O3
ZnO, SnO2,
TiO2, etc.
Blocking layer Encapsulation
Al2O3, ZnO, TiO2
selective layer
/Applied Physics - Erwin Kessels
Van Delft et al., Semicond. Sci. Technol. 27, 074002 (2012).
q p
available
g y
HfO2, SnO2, TiO2
p
Al2O3
Outline
1. Atomic layer deposition (ALD): basics and key features
2. ALD equipment
3. Materials & ALD surface chemistries
4. Some applications of ALD
5. Recent developments in high-throughput ALD
/Applied Physics - Erwin Kessels
Large substrate ALD reactors
• Temporal ALD
• Can be (inline) single wafer or batch reactor
• Substrate size up to 120 x 120 cm2
• Applications: Thin-film transistors, encapsulation,
CIGS solar cells, transparent conductive oxides
b
www.beneq.com
/Applied Physics - Erwin Kessels
Batch ALD reactor
• Temporal ALD
• Typically 50-500 substrates in a single deposition run
• Single-side deposition can be challenging
• Applications: semiconductor (memory), displays,
Applications: semiconductor (memory), displays,
solar cells, etc.
/Applied Physics - Erwin Kessels
www.asm.com www.beneq.com
Spatial ALD concept
• Precursor and reactant pulsing occur at different positions
• The substrate or the “ALD deposition head” must move
The substrate or the ALD deposition head must move
• Purge areas created by inert gas barriers prevent CVD reactions
 requires operation at high pressure
• No gas switching or vacuum pumps no deposition on the reactor walls
• No gas switching or vacuum pumps, no deposition on the reactor walls
/Applied Physics - Erwin Kessels
Spatial ALD: S2S and R2R
• Sheet-to-sheet (S2S, or wafer-to-wafer)
M i 1
www.levitech.nl
Movie 1
Movie 2
• Roll-to-roll (R2R)
www.solaytec.com
Movie 2
www.lotusat.com www.beneq.com
www.tno.nl
Movie 3
/Applied Physics - Erwin Kessels
Summary
1. ALD can fulfill stricter requirements on thin film growth in terms of
growth control, conformality, uniformity and low temperature
2 ALD is therefore complementary to PVD and CVD techniques
2. ALD is therefore complementary to PVD and CVD techniques
3. ALD relies on surface chemistry – not all materials can be prepared
4. ALD cycle yields sub-monolayer of film (typically 0.5 – 1 Å/cycle)
( )
5. ALD is gaining popularity also outside semiconductor industry
6. Runner up (method): Plasma ALD
7. Runner up (application): ALD for photovoltaics
8. High-volume manufacturing equipment is available
9 Equipment for batch ALD and S2S and R2R spatial ALD launched
9. Equipment for batch ALD and S2S and R2R spatial ALD launched
10. ALD has a bright future
/Applied Physics - Erwin Kessels
Further reading and downloads
Recent literature on ALD
• Book on ALD, Pinna and Knez (Eds.) Wiley VHC (2011)
, ( ) y ( )
• Kessels and Putkonen, MRS Bull. 36, 907 (2011)
Recent literature on plasma ALD
p
• Profijt et al., J. Vac. Sci. Technol. A 29 050801 (2011)
Recent literature on ALD for PV
Recent literature on ALD for PV
• Van Delft et al., Semicond. Sci. Technol. 27 074002 (2012)
• Bakke et al., Nanoscale 3, 3482 (2011)
/Applied Physics - Erwin Kessels
Title
/Department of Applied Physics

More Related Content

What's hot

Introduction to atomic layer deposition (ALD): principles, applications, future
Introduction to atomic layer deposition (ALD): principles, applications, futureIntroduction to atomic layer deposition (ALD): principles, applications, future
Introduction to atomic layer deposition (ALD): principles, applications, futureRiikka Puurunen
 
Product Showcase: Battery Show Europe 2022
Product Showcase: Battery Show Europe 2022Product Showcase: Battery Show Europe 2022
Product Showcase: Battery Show Europe 2022Beneq
 
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control ChallengesThe Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control Challengeschiportal
 
ALD for energy application - Lithium ion battery and fuel cells
ALD for energy application - Lithium ion battery and fuel cellsALD for energy application - Lithium ion battery and fuel cells
ALD for energy application - Lithium ion battery and fuel cellsLaurent Lecordier
 
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka Puurunen
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka PuurunenALD for Industry 2019: Slides of invited tutorial by Prof. Riikka Puurunen
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka PuurunenRiikka Puurunen
 
Rotary PEALD: in-situ monitoring of optical coatings
Rotary PEALD: in-situ monitoring of optical coatingsRotary PEALD: in-situ monitoring of optical coatings
Rotary PEALD: in-situ monitoring of optical coatingsBeneq
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Tapan Patel
 
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production Scale
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production ScaleRoll-to-Roll ALD Coatings for Battery Cell Interfaces at Production Scale
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production ScaleBeneq
 
Photocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxidePhotocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxideHariprasad Narayanan
 
Hybrid bonding methods for lower temperature 3 d integration 1
Hybrid bonding methods for lower temperature 3 d integration 1Hybrid bonding methods for lower temperature 3 d integration 1
Hybrid bonding methods for lower temperature 3 d integration 1SUSS MicroTec
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Akinola Oyedele
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisNova Fabrica Ltd
 
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMS
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMSOPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMS
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMSMike Fowler
 
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole DeveloppementYole Developpement
 

What's hot (20)

Introduction to atomic layer deposition (ALD): principles, applications, future
Introduction to atomic layer deposition (ALD): principles, applications, futureIntroduction to atomic layer deposition (ALD): principles, applications, future
Introduction to atomic layer deposition (ALD): principles, applications, future
 
Product Showcase: Battery Show Europe 2022
Product Showcase: Battery Show Europe 2022Product Showcase: Battery Show Europe 2022
Product Showcase: Battery Show Europe 2022
 
Atomic layer Deposition _Mukhtar Hussain awan
Atomic layer Deposition _Mukhtar Hussain awanAtomic layer Deposition _Mukhtar Hussain awan
Atomic layer Deposition _Mukhtar Hussain awan
 
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control ChallengesThe Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
 
ALD for energy application - Lithium ion battery and fuel cells
ALD for energy application - Lithium ion battery and fuel cellsALD for energy application - Lithium ion battery and fuel cells
ALD for energy application - Lithium ion battery and fuel cells
 
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka Puurunen
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka PuurunenALD for Industry 2019: Slides of invited tutorial by Prof. Riikka Puurunen
ALD for Industry 2019: Slides of invited tutorial by Prof. Riikka Puurunen
 
Rotary PEALD: in-situ monitoring of optical coatings
Rotary PEALD: in-situ monitoring of optical coatingsRotary PEALD: in-situ monitoring of optical coatings
Rotary PEALD: in-situ monitoring of optical coatings
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
 
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production Scale
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production ScaleRoll-to-Roll ALD Coatings for Battery Cell Interfaces at Production Scale
Roll-to-Roll ALD Coatings for Battery Cell Interfaces at Production Scale
 
Organic Semiconductor Optoelectronics.
Organic Semiconductor Optoelectronics.Organic Semiconductor Optoelectronics.
Organic Semiconductor Optoelectronics.
 
Photocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxidePhotocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxide
 
Hybrid bonding methods for lower temperature 3 d integration 1
Hybrid bonding methods for lower temperature 3 d integration 1Hybrid bonding methods for lower temperature 3 d integration 1
Hybrid bonding methods for lower temperature 3 d integration 1
 
Cvd
CvdCvd
Cvd
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
 
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMS
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMSOPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMS
OPTICAL AND PHOTOELECTRICAL APPLICATIONS OF LANGMUIR-BLODGETT FILMS
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Thin film gas sensor
Thin film gas sensorThin film gas sensor
Thin film gas sensor
 
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement
3DIC & 2,5D TSV Interconnect trends 2014 Kinsale Presentation Yole Developpement
 

Similar to ALD_Kessels.pdf

The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...LandimarMendesDuarte
 
Optical properties of semiconducting pyrite deposited by aerosol
Optical properties of semiconducting pyrite deposited by aerosolOptical properties of semiconducting pyrite deposited by aerosol
Optical properties of semiconducting pyrite deposited by aerosolAlexander Decker
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfQamarIqbal50
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpak21121991
 
Part III. Metal-Organic Chemical Vapor Deposition
Part III. Metal-Organic Chemical Vapor DepositionPart III. Metal-Organic Chemical Vapor Deposition
Part III. Metal-Organic Chemical Vapor DepositionAnthony Liu
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.changCesar Diaz
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Riikka Puurunen
 
Pvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozPvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozMahfooz Alam
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
Steward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennSteward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennJohn Glenning
 
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...Growth, structure, and morphology of TiO2 films deposited by molecular beam e...
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...Oleg Maksimov
 

Similar to ALD_Kessels.pdf (20)

Understanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic InterfaceUnderstanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic Interface
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
THIN FILMS.pdf
THIN FILMS.pdfTHIN FILMS.pdf
THIN FILMS.pdf
 
SAMS tutorial
SAMS tutorialSAMS tutorial
SAMS tutorial
 
Optical properties of semiconducting pyrite deposited by aerosol
Optical properties of semiconducting pyrite deposited by aerosolOptical properties of semiconducting pyrite deposited by aerosol
Optical properties of semiconducting pyrite deposited by aerosol
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdf
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgp
 
Part III. Metal-Organic Chemical Vapor Deposition
Part III. Metal-Organic Chemical Vapor DepositionPart III. Metal-Organic Chemical Vapor Deposition
Part III. Metal-Organic Chemical Vapor Deposition
 
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.chang
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
 
Pvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozPvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfooz
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 
Steward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennSteward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glenn
 
Tammy Final Presentation 4100 4_23 keynote
Tammy Final Presentation 4100 4_23 keynoteTammy Final Presentation 4100 4_23 keynote
Tammy Final Presentation 4100 4_23 keynote
 
ALD Tutorial
ALD Tutorial ALD Tutorial
ALD Tutorial
 
ALD Tutorial
ALD TutorialALD Tutorial
ALD Tutorial
 
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...Growth, structure, and morphology of TiO2 films deposited by molecular beam e...
Growth, structure, and morphology of TiO2 films deposited by molecular beam e...
 

Recently uploaded

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 

ALD_Kessels.pdf

  • 1. Atomic Layer Deposition Atomic Layer Deposition (ALD) Erwin Kessels w.m.m.kessels@tue.nl www.phys.tue.nl/pmp
  • 2. Vapor phase deposition technologies Physical Vapor Deposition (PVD) – sputtering – Chemical Vapor Deposition (CVD) Energetic ions! Heat! /Applied Physics - Erwin Kessels g
  • 3. More applications have stricter requirements on 1. Precise growth and thickness control 2 Hi h f lit / t 2. High conformality/step coverage 3. Good uniformity on large substrates 4. Low substrate temperatures /Applied Physics - Erwin Kessels
  • 4. Very demanding applications Nanoelectronics Photovoltaics f Protective thin films Flexible electronics /Applied Physics - Erwin Kessels
  • 5. CMOS scaling in nanoelectronics ??? ??? graphene graphene ActiveArea Gate Field Spacers ActiveArea Gate Field Spacers ActiveArea Gate Field Spacers ??? ??? ??? ??? ActiveArea Gate Field Spacers ActiveArea Gate Field Spacers ActiveArea Gate Field Spacers Ge/IIIV Ge/IIIV nanowires nanowires g p g p HfO metal gate metal gate FinFET FinFET L=35nm SiGe L=35nm L=35nm SiGe strain strain HfO 2 high high - -  time silicide silicide USJ USJ Time e Courtesy of Marc Heyns, IMEC /Applied Physics - Erwin Kessels
  • 6. Field-effect transistor: replacing SiO2 by HfO2 32 nm Thermally grown SiO2 Thermally grown SiO2 /Applied Physics - Erwin Kessels Precise deposition of nanometer-thick Hf-based oxides www.chipworks .com
  • 7. Field-effect transistor: going from 2D to 3D gates 22 nm Precise deposition of nanometer-thick Hf-based oxides with excellent conformality /Applied Physics - Erwin Kessels with excellent conformality www.chipworks .com
  • 8. Outline 1. Atomic layer deposition (ALD): basics and key features 2. ALD equipment 3. Materials & ALD surface chemistries 4. Some applications of ALD 5. Recent developments in high-throughput ALD /Applied Physics - Erwin Kessels
  • 9. Atomic Layer Deposition (ALD) • Reactants (precursors) are pulsed into reactor alternately and cycle-wise (ABAB..) • Precursors react through saturative (self-limiting) surface reactions • A sub-monolayer of material deposited per cycle /Applied Physics - Erwin Kessels
  • 10. ALD of Al2O3 films: Al(CH3)3 - H2O process /Applied Physics - Erwin Kessels
  • 11. Thickness vs. number of cycles Film thickness is ruled by the number of cycles chosen 30 1. Al(CH3)3 2 SiH {N(C H )} H3C Al CH3 CH3 N(C2H5)2 30 1. Al2 O3 2. SiO2 3. Ta2 O5 m) 2. SiH2{N(C2H5)}2 3 T {N(CH ) } N(CH3)2 Si H H N(C2H5)2 20 2 5 4. ZnO2 5. TiO2 ness (nm 3. Ta{N(CH3)2}5 (H3C)2N Ta N(CH3)2 N(CH3)2 ( 3)2 N(CH3)2 10 Thickn 4. Zn(CH2CH3)2 H3C H2 C Zn H2 C CH3 0 50 100 150 200 250 0 ALD C l 5. Ti(Cp*)(OCH3)3 Ti H3CO OC OCH3 H3C CH3 CH3 H3C CH3 + /Applied Physics - Erwin Kessels Potts et al., J. Electrochem. Soc., 157, P66 ( 2010). Dingemans et al., J. Electrochem. Soc. 159, H277 (2012) ALD Cycles H3CO OCH3 + H2O, O3, or O2 plasma
  • 12. Key features of ALD 1. Control of film growth and thickness ‘Digital’ thickness control 2. High conformality/step coverage Self-limiting surface reactions 3 G d if it l b t t 3. Good uniformity on large substrates 300 mm and even bigger 4. Low substrate temperatures p Between 25 - 400 °C 5. Multilayer structures and nanolaminates Easy to alternate between processes 6. Large set of materials and processes Many different materials demonstrated Many different materials demonstrated /Applied Physics - Erwin Kessels
  • 13. Line-of-sight vs. conformal growth /Applied Physics - Erwin Kessels
  • 14. Materials deposited ALD /Applied Physics - Erwin Kessels Puurunen, J. Appl. Phys. 97, 121301 (2005) Miikkulainen et al., J. Appl. Phys. 113, 021301 (2013).
  • 15. Outline 1. Atomic layer deposition (ALD): basics and key features 2. ALD equipment 3. Materials & ALD surface chemistries 4. Some applications of ALD 5. Recent developments in high-throughput ALD /Applied Physics - Erwin Kessels
  • 16. Single wafer ALD reactor Shower head reactor (warm or hot wall reactor) Flow-type reactor (hot wall reactor) • Temporal ALD P l t i f • Pulse-train of precursors • Reactor pressure 1-10 Torr • Applications: semiconductor (logic) /Applied Physics - Erwin Kessels pp ( g )
  • 17. Batch ALD reactor Temporal ALD Batch reactor • Temporal ALD • Typically 50-500 substrates in a single deposition run • Single-side deposition can be challenging g p g g • Applications: semiconductor (memory), displays, solar cells, etc. /Applied Physics - Erwin Kessels
  • 18. Plasma ALD reactors Plasma-assisted ALD can yield additional benefits for specific applications: 1. Improved material properties 2. Deposition at lower temperatures (also room temperature) Direct plasma Remote plasma p p ( p ) 3. Higher growth rates/cycle and shorter cycle times 4. More versatility/freedom in process and materials etc. Direct plasma Substrate part of plasma creation zone Remote plasma Substrate “downstream” of plasma creation zone /Applied Physics - Erwin Kessels Heil et al., J. Vac. Sci. Technol. A 25, 1357 (2007). Profijt et al., J. Vac. Sci. Technol. A 29 050801 (2011)
  • 19. Plasma-based chemistry (metal oxides) 1. Al(CH3)3 2. H3C Al CH3 CH3 Si N(C2H5)2 2 0 Al2 O3 TiO2 - Ti(O i Pr)4 e) SiH2{N(C2H5)}2 3. Ta{N(CH3)2}5 (H3C)2N Ta (C ) N(CH3)2 N(CH3)2 Si H H N(C2H5)2 1.6 2.0 2 3 2 ( )4 SiO2 TiO2 - Ti(Cp Me )(O i Pr)3 Ta2 O5 TiO2 - Ti(Cp*)(OMe)3 e (Å/cycle ( 3)2 5 4. Ti(OiPr)4 N(CH3)2 N(CH3)2 Ti i Oi Pr 0.8 1.2 per Cycle 4 5. Ti(CpMe)(OiPr)3 Ti Ti i PrO Oi Pr Oi Pr CH3 0 0 0.4 Growth 3 6. Ti(Cp*)(OCH ) Ti i PrO Oi Pr Oi Pr H3C CH3 CH3 0 50 100 150 200 250 300 0.0 Substrate Temperature (°C) /Applied Physics - Erwin Kessels Ti(Cp*)(OCH3)3 Ti H3CO OCH3 OCH3 H3C CH3 Potts et al., J. Electrochem. Soc., 157, P66 ( 2010). Dingemans et al., J. Electrochem. Soc. 159, H277 (2012)
  • 20. Oxford Instruments OpAL reactor – Plasma ALD /Applied Physics - Erwin Kessels
  • 21. ALD equipment suppliers (incomplete list) Semiconductor Solar / R2R R&D / Pilot /Applied Physics - Erwin Kessels
  • 22. Outline 1. Atomic layer deposition (ALD): basics and key features 2. ALD equipment 3. Materials & ALD surface chemistries 4. Some applications of ALD 5. Recent developments in high-throughput ALD /Applied Physics - Erwin Kessels
  • 23. Metalorganic and H2O: ligand exchange (Al2O3) Al(CH3)3 exposure Purge 10 -8 H O ry signal (A) Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 H 2 O H 2 O H 2 O H 2 O 10 -8 H O ry signal (A) 10 -8 H O ry signal (A) Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 H 2 O H 2 O H 2 O H 2 O 10 -10 10 -9 H2 O spectrometr CH4 10 -10 10 -9 H2 O spectrometr CH4 10 -10 10 -9 H2 O spectrometr CH4 AlOH*+ Al(CH3)3 AlOAl(CH3)2* + CH4 Cycle 0 25 50 75 100 10 -11 Mass Time (s) 4 0 25 50 75 100 10 -11 Mass Time (s) 4 0 25 50 75 100 10 -11 Mass Time (s) 4 AlOH Al(CH3)3 AlOAl(CH3)2 CH4 Surface chemistry rules ALD process: ligand exchange between Al(CH ) and AlOH* + CH4 AlCH3* + H2O ligand exchange between Al(CH3)3 and –OH surface groups and H2O and –CH3 surface groups leads to CH4 reaction products * are surface species H2O exposure Purge /Applied Physics - Erwin Kessels
  • 24. Metalorganic and H2O: ligand exchange (Al2O3) Al(CH3)3 exposure Purge 10 -8 H O ry signal (A) Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 H 2 O H 2 O H 2 O H 2 O 10 -8 H O ry signal (A) 10 -8 H O ry signal (A) Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 Al(CH 3 ) 3 H 2 O H 2 O H 2 O H 2 O 10 -10 10 -9 H2 O spectrometr CH4 10 -10 10 -9 H2 O spectrometr CH4 10 -10 10 -9 H2 O spectrometr CH4 Cycle 0 25 50 75 100 10 -11 Mass Time (s) 4 0 25 50 75 100 10 -11 Mass Time (s) 4 0 25 50 75 100 10 -11 Mass Time (s) 4 Surface chemistry rules ALD process: ligand exchange between Al(CH ) and ligand exchange between Al(CH3)3 and –OH surface groups and H2O and –CH3 surface groups leads to CH4 reaction products H2O exposure Purge /Applied Physics - Erwin Kessels
  • 25. Metalorganic and H2O: ligand exchange (Al2O3) 4x10 -5 rbance 2940 cm-1 1207 cm-1 Al(CH3)3 chemisorption Al(CH3)3 exposure Purge frared abso OH stretching CHx stretching CHx deformation 2940 cm 1 1207 cm 1 H O 4000 3500 3000 2500 2000 1500 1000 In Wavenumber (cm -1 ) H2O exposure Cycle Surface chemistry rules ALD process: Surface alternately covered by –OH Surface alternately covered by –OH surface groups and –CH3 surface groups /Applied Physics - Erwin Kessels H2O exposure Purge
  • 26. Metalorganic and H2O: ligand exchange (Al2O3) 0.8 1.2 Cycle ( Å ) Al(CH3)3 exposure Purge 0.4 owth per C 0 20 40 60 0.0 Gro Al(CH3 )3 dose (ms) Cycle Conditions such that precursors react through saturative surface reactions: Al(CH3)3 does not react with –CH3 surface groups /Applied Physics - Erwin Kessels H2O exposure Purge
  • 27. Metalorganic and H2O: ligand exchange (Al2O3) 0 8 1.2 ycle ( Å ) Al(CH3)3 exposure Purge 0.4 0.8 wth per Cy 0 20 40 60 80 0.0 Grow H2 O dose (ms) Cycle Conditions such that precursors react through saturative surface reactions: H2O does not react with –OH surface groups /Applied Physics - Erwin Kessels H2O exposure Purge
  • 28. Metalorganic and H2O: ligand exchange (Al2O3) 1.2 1.6 cle ( Å ) Al(CH3)3 exposure Purge 0.4 0.8 wth per Cyc CVD+ALD ALD 0 2 4 6 8 0.0 Grow Purge after Al(CH3 )3 dose (s) Cycle Precursors and reactants should be very well evacuated/separated from reactor before pulsing the next precursor/reaction: Otherwise parasitic CVD /Applied Physics - Erwin Kessels H2O exposure Purge
  • 29. ALD process: saturation curves (Al2O3) (a) 0.15 0.20 (nm/cycle) Thermal ALD - Al(CH3)3 & H2O 0.05 0.10 wth per Cycle ( CVD Subsaturation CVD 0 20 le) (b) 0 20 40 60 80 100 0.00 Grow Dose time (ms) 0 1 2 3 4 5 Purge time (s) 0 20 40 60 80 H2 O dose (ms) 0 1 2 3 Purge time (s) Plasma ALD - Al(CH3)3 & O2 plasma 0.10 0.15 0.20 Cycle (nm/cycl Subsaturation 0 20 40 60 80 100 0.00 0.05 Growth per C 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 CVD /Applied Physics - Erwin Kessels Dose time (ms) Purge time (s) Plasma time (s) Purge time (s)
  • 30. ALD process: substrate temperature (Al2O3) e) 0.2 Plasma ALD Thermal ALD e (nm/cycle (a) 0.0 0.1 Growth rate 3 4 5 6 (b) per cycle cm -2 ) 0 1 2 3 # Al atoms (10 15 c 0 100 200 300 400 0 Substrate temperature ( o C) AlOH* + Al(CH3)3 AlOAl(CH3)2* + CH4 /Applied Physics - Erwin Kessels ( 3)3 ( 3)2 4 AlOH* + CH4 AlCH3* + H2O Van Hemmen et al., J. Electrochem. Soc. 154, G165 (2007) Potts et al., J. Electrochem. Soc., 157, P66 ( 2010).
  • 31. ALD process: substrate temperature (ideal case) ALD Temperature Window  A. Condensation B Insufficient Window Cycle  A C A C B. Insufficient thermal energy C. CVD wth per C B D. Evaporation H2O Grow B D B D OH OH O ∆T Substrate Temperature  Substrate/film surface /Applied Physics - Erwin Kessels
  • 32. Metal halide: ligand exchange (HfO2 and TiN) HfOH* + HfCl HfOHfCl * + HCl Metal oxides: ligand exchange HfOH* + HfCl4 HfOHfCl3* + HCl HfOH* + HCl HfCl* + H2O TiNH* + TiCl TiNTiCl * + HCl Metals nitrides: ligand exchange TiNH + TiCl4 TiNTiCl3 + HCl TiNH2* + HCl TiCl* + NH3 /Applied Physics - Erwin Kessels * are surface species
  • 33. Metals: combustion (Pt) and reduction (W) Noble metals: combustion by chemisorbed O2 3 O* + 2 (MeCp)PtMe3 2 (MeCp)PtMe2* + CH4 + CO2 + H2O 2 Pt* + 3 O* + 16 CO2 + 13 H2O 2 (MeCp)PtMe2* + 24 O2 Pt Metals: fluorosilane elimination reactions WSiF H* + WF WWF * + SiF H WSiF2H + WF6 WWF5 + SiF3H WSiF2H* + SiF3H + 2H2 WWF5* + Si2H6 /Applied Physics - Erwin Kessels * are surface species
  • 34. Plasma-based chemistry (Al2O3 and TiN) Metal oxides: combustion AlOH*+ Al(CH3)3 AlOAl(CH3)2* + CH4 AlOH* + CO2 + H2O AlCH3* + 4O Metal nitrides: ligand exchange and reduction TiNH* + TiCl TiNTiCl * + HCl TiNH + TiCl4 TiNTiCl3 + HCl TiNH2* + HCl TiCl* + 3H + N /Applied Physics - Erwin Kessels * are surface species
  • 35. ALD of doped films, ternary compounds, etc. /Applied Physics - Erwin Kessels
  • 36. ALD of Al-doped ZnO films Zn(C2H5)2 + H2O ZnO + 2 C2H6 ZnO ZnO:Al n cycles ZnO + m cycles Al2O3 101 150 ºC Al2O3 TMA or DMAI + H2O 100 TMA cm) 2 10-1 sistivity ( 0 5 10 15 20 25 30 10-3 10-2 Res DMAI /Applied Physics - Erwin Kessels Wu et al., J. Appl. Phys. 114, 024308 (2013) 0 5 10 15 20 25 30 Al fraction (at.%)
  • 37. Outline 1. Atomic layer deposition (ALD): basics and key features 2. ALD equipment 3. Materials & ALD surface chemistries 4. Some applications of ALD 5. Recent developments in high-throughput ALD /Applied Physics - Erwin Kessels
  • 38. Thin-film electroluminescent (TFEL) displays New large-area display in 1983 Atomic layer deposited ZnS:Mn 1974 First patent on ALD filed by Tuomo Suntala 1983 Introduction of first ALD (non)-transparent inorganic TFEL display Since 1989 Commercial production of ALD-TFEL displays by Planar /Applied Physics - Erwin Kessels T. Suntola, Mater. Sci. Rep. 4, 261 (1989)
  • 39. Encapsulation of OLED Devices No encapsulation Thin-film-encapsulated OLEDs after testing 40 nm ALD Al2O3 film Thin film encapsulation requires: • low deposition temperatures • low water vapor transmission rates • low pinhole (black spot) density /Applied Physics - Erwin Kessels Langereis et al., Appl. Phys. Lett. 89, 081915 (2006). Keuning et al., J. Vac. Sci. Technol. A 30, 01A131 (2012).
  • 40. Defect (dust particle) encapsulation /Applied Physics - Erwin Kessels Courtesy of Jian Jim Wang (NanoNuvo Corporation, USA)
  • 41. ALD films for photovoltaics CIGS solar cells Dye-sensitized solar cells c-Si solar cells Organic solar cells Buffer layers Zn(O S) Barrier layer Al O HfO Surface passivation Transparent conductive oxide On the verge of Zn(O,S) (Zn,Mg)O In2O3 l Al2O3, HfO2, TiO2, etc. Photoanode Z O S O p Al2O3 ZnO:Al Electron selective layer industrial application High-throughput equipment Encapsulation Al2O3 ZnO, SnO2, TiO2, etc. Blocking layer Encapsulation Al2O3, ZnO, TiO2 selective layer /Applied Physics - Erwin Kessels Van Delft et al., Semicond. Sci. Technol. 27, 074002 (2012). q p available g y HfO2, SnO2, TiO2 p Al2O3
  • 42. Outline 1. Atomic layer deposition (ALD): basics and key features 2. ALD equipment 3. Materials & ALD surface chemistries 4. Some applications of ALD 5. Recent developments in high-throughput ALD /Applied Physics - Erwin Kessels
  • 43. Large substrate ALD reactors • Temporal ALD • Can be (inline) single wafer or batch reactor • Substrate size up to 120 x 120 cm2 • Applications: Thin-film transistors, encapsulation, CIGS solar cells, transparent conductive oxides b www.beneq.com /Applied Physics - Erwin Kessels
  • 44. Batch ALD reactor • Temporal ALD • Typically 50-500 substrates in a single deposition run • Single-side deposition can be challenging • Applications: semiconductor (memory), displays, Applications: semiconductor (memory), displays, solar cells, etc. /Applied Physics - Erwin Kessels www.asm.com www.beneq.com
  • 45. Spatial ALD concept • Precursor and reactant pulsing occur at different positions • The substrate or the “ALD deposition head” must move The substrate or the ALD deposition head must move • Purge areas created by inert gas barriers prevent CVD reactions  requires operation at high pressure • No gas switching or vacuum pumps no deposition on the reactor walls • No gas switching or vacuum pumps, no deposition on the reactor walls /Applied Physics - Erwin Kessels
  • 46. Spatial ALD: S2S and R2R • Sheet-to-sheet (S2S, or wafer-to-wafer) M i 1 www.levitech.nl Movie 1 Movie 2 • Roll-to-roll (R2R) www.solaytec.com Movie 2 www.lotusat.com www.beneq.com www.tno.nl Movie 3 /Applied Physics - Erwin Kessels
  • 47. Summary 1. ALD can fulfill stricter requirements on thin film growth in terms of growth control, conformality, uniformity and low temperature 2 ALD is therefore complementary to PVD and CVD techniques 2. ALD is therefore complementary to PVD and CVD techniques 3. ALD relies on surface chemistry – not all materials can be prepared 4. ALD cycle yields sub-monolayer of film (typically 0.5 – 1 Å/cycle) ( ) 5. ALD is gaining popularity also outside semiconductor industry 6. Runner up (method): Plasma ALD 7. Runner up (application): ALD for photovoltaics 8. High-volume manufacturing equipment is available 9 Equipment for batch ALD and S2S and R2R spatial ALD launched 9. Equipment for batch ALD and S2S and R2R spatial ALD launched 10. ALD has a bright future /Applied Physics - Erwin Kessels
  • 48. Further reading and downloads Recent literature on ALD • Book on ALD, Pinna and Knez (Eds.) Wiley VHC (2011) , ( ) y ( ) • Kessels and Putkonen, MRS Bull. 36, 907 (2011) Recent literature on plasma ALD p • Profijt et al., J. Vac. Sci. Technol. A 29 050801 (2011) Recent literature on ALD for PV Recent literature on ALD for PV • Van Delft et al., Semicond. Sci. Technol. 27 074002 (2012) • Bakke et al., Nanoscale 3, 3482 (2011) /Applied Physics - Erwin Kessels