Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
The use of WPS in a Science Collaboration Environment  implementation of a Greenhouse Gas Emissions model
Topics Introduce Landcare Research Our Vision Architecture Model implementation Closing thoughts Previous slide: Cloud Gat...
Manaaki Whenua - Manaaki Tangata care for the land - care for the people http://www.landcareresearch.co.nz Sustaining biod...
LRIS: Land Resource Information System 1978-2008+ NZLRI NZLRI NSD Soil DB S-map Soil DB : National Coverage of Environment...
Observations Data and Computational pressure: NOW – 25m national data density  NEAR FUTURE – sub 5m national data density ...
The Vision: SCENZ-Grid SCE NZ-Grid proposes that we can: Do science research on-line together   Share each other’s data – ...
Phase 1: Regolith Portlet REANNZ funded project (2007-2009):  GNS and Landcare Research  QMAP WMS NZFSL WMS Lookup WS Port...
Phase 2: Platform FRST Backbone funding and BeSTGRID integration (2009-)
'SDI' <ul><li>Find </li><ul><li>Koordinates </li></ul></ul><ul><li>Visualize </li><ul><li>Geoserver / OL </li></ul></ul><u...
WPS Geoserver Globus / Grisu ~1.16 TFLOPS Air cooled Gb Ethernet nterconnects 4.2kW power 104 Intel Xeon cores 2.8GHz each...
WPS Extensions: Computation - Collaboration WPS – G Current: Unicore, Gridgain Planning to implement Grisu => waiting for ...
LCR Algorithm Repository LCR (Landcare Research) Specific algorithms Raster implementations: Emissions Modeling Landcare r...
Modularity <ul><li>Algorithms: fully modular
Parsers: problem with xml parser </li></ul><ul><ul><li>Diff requestHandler (left lcr branch, right trunk) </li></ul></ul>
Emissions Algorithm - inputs <ul><li>Landuse (dairy, sheep/beef, deer) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Stoc...
<ul><ProcessDescription wps:processVersion=&quot;2&quot; storeSupported=&quot;true&quot; statusSupported=&quot;false&quot;...
Current Issues <ul><li>Fetching WCS coverages efficiently </li><ul><li>Crop to smallest extent
No checking for CRS validity </li></ul><li>Value Attribute Table implementation </li><ul><li>Custom XML / GeoTiff 'linkup'...
Closing thoughts (1) <ul><li>OGC Standards => Big and Bulky </li><ul><li>WPS very flexible but 'heavyweight' </li></ul><li...
Upcoming SlideShare
Loading in …5
×

Ifgi presentation

435 views

Published on

Presentation about scenz-grid vision for GI-Forum

  • Be the first to comment

  • Be the first to like this

Ifgi presentation

  1. 1. The use of WPS in a Science Collaboration Environment implementation of a Greenhouse Gas Emissions model
  2. 2. Topics Introduce Landcare Research Our Vision Architecture Model implementation Closing thoughts Previous slide: Cloud Gate, Chicago. Photo: Niels Hoffmann
  3. 3. Manaaki Whenua - Manaaki Tangata care for the land - care for the people http://www.landcareresearch.co.nz Sustaining biodiversity & restoration Sustaining land environments Sustaining business & living Climate change Maori sustainable futures Weeds, pests and diseases Capability and collaboration Landcare Research Manaaki Whenua Key outcomes Cross-cutting outcomes Underpinning strengths
  4. 4. LRIS: Land Resource Information System 1978-2008+ NZLRI NZLRI NSD Soil DB S-map Soil DB : National Coverage of Environmental Data at 1:50:000 to 15m resolution : Leading the Implementation of geospatial web-delivery in NZ S-Map soil NZLRI ECOSAT veg Curvature horiz Curvature perp Curvature slope S-map Landform Elements S-map siblings S-map pedo-func S-map variability Height Aspect Slope FSL:Phys FSL:Chem FSL:Wet FSL:Env NZEEM Soil loss tons/ha/yr ECOSAT fPAR ECOSAT Woody ECOSAT Indig. Forest PinRadGrow FertReq StockCCap LUNZ & LENZ Rock Slope Soil Erosion Veg LUC
  5. 5. Observations Data and Computational pressure: NOW – 25m national data density NEAR FUTURE – sub 5m national data density with significant peri-urban sub 1m LIDAR data density Modelling environment NOW – essentially batch oriented & 2.5D DESIRED – interactive 4D, with real-time visualisation feedback Managed data NOW – preserve the data, memorise the model DESIRED – keep the model for on-demand re-use
  6. 6. The Vision: SCENZ-Grid SCE NZ-Grid proposes that we can: Do science research on-line together Share each other’s data – not duplicate it Collaboratively develop & use shared models / workflows Use shared compute resources Connect researchers directly to consumers : policy / managers / educators / public
  7. 7. Phase 1: Regolith Portlet REANNZ funded project (2007-2009): GNS and Landcare Research QMAP WMS NZFSL WMS Lookup WS Portal User WF Engine User Interface View Portlet WebService WorkFlow Engine Model Kepler Mono / Java class Web Services Data: WMS Business Logic: SOAP
  8. 8. Phase 2: Platform FRST Backbone funding and BeSTGRID integration (2009-)
  9. 9. 'SDI' <ul><li>Find </li><ul><li>Koordinates </li></ul></ul><ul><li>Visualize </li><ul><li>Geoserver / OL </li></ul></ul><ul><li>Process </li><ul><li>52N WPS </li></ul></ul>
  10. 10. WPS Geoserver Globus / Grisu ~1.16 TFLOPS Air cooled Gb Ethernet nterconnects 4.2kW power 104 Intel Xeon cores 2.8GHz each 386GB RAM 2.6TB storage
  11. 11. WPS Extensions: Computation - Collaboration WPS – G Current: Unicore, Gridgain Planning to implement Grisu => waiting for release v3 WPS – T Started porting to Apache ODE 80% complete, need to refactor the execute part to use the new(er) architecture
  12. 12. LCR Algorithm Repository LCR (Landcare Research) Specific algorithms Raster implementations: Emissions Modeling Landcare repository Sextante repository
  13. 13. Modularity <ul><li>Algorithms: fully modular
  14. 14. Parsers: problem with xml parser </li></ul><ul><ul><li>Diff requestHandler (left lcr branch, right trunk) </li></ul></ul>
  15. 15. Emissions Algorithm - inputs <ul><li>Landuse (dairy, sheep/beef, deer) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Stocking rate (animals/ha) </li><ul><li>Table => xml </li></ul><li>Sheep/Beef Ratio (dependent per district) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Methane + Nitrous Oxide => CO2eq/animal/year </li><ul><li>Table => xml </li></ul></ul>
  16. 16. <ul><ProcessDescription wps:processVersion=&quot;2&quot; storeSupported=&quot;true&quot; statusSupported=&quot;false&quot;> </ul><ows:Identifier>org.n52.wps.server.lcr.algorithm.EmissionsAlgorithm</ows:Identifier> <DataInputs> <ows:Identifier> landuse </ows:Identifier> <MimeType>image/tiff</MimeType> <ows:Identifier> districts </ows:Identifier> <MimeType>image/tiff</MimeType> <ows:Identifier> emissionslookup </ows:Identifier> <MimeType>text/XML</MimeType> <Schema>http://arwen/schemas/EmissionsTable.xsd</Schema> <ows:Identifier> stockingrate </ows:Identifier> <MimeType>text/XML</MimeType> <Schema>http://arwen/schemas/EmissionsTable.xsd</Schema> <ows:Identifier> districtlookup </ows:Identifier> <MimeType>text/XML</MimeType> <Schema> http://arwen/schemas/EmissionsTable.xsd </Schema> <ows:Identifier>result</ows:Identifier> <MimeType>image/tiff</MimeType> </ProcessDescription> Emissions Algorithm – link Value Attribute Table for Landuse and Districts <ul><li>XML Key-Value pair implementation </li><ul><li>Key = raster value, Value = list of attributes </li></ul></ul>
  17. 17. Current Issues <ul><li>Fetching WCS coverages efficiently </li><ul><li>Crop to smallest extent
  18. 18. No checking for CRS validity </li></ul><li>Value Attribute Table implementation </li><ul><li>Custom XML / GeoTiff 'linkup' </li><ul><li>GMLJP2 ??? </li></ul></ul><li>Client with raster capabilities </li></ul>
  19. 19. Closing thoughts (1) <ul><li>OGC Standards => Big and Bulky </li><ul><li>WPS very flexible but 'heavyweight' </li></ul><li>Like to be small and nimble </li><ul><li>(rest, custom architecture) </li></ul><li>Selling point for OGC is Interoperability </li><ul><li>need good clients => again difficult because of flexibility of standards </li></ul><li>WPS 2.0 profiles ? </li></ul>
  20. 20. Closing thoughts (2) <ul><li>WPS-G / Grid processing </li><ul><li>Scalability / high availability </li><ul><li>Easy to implement, but also possible via alternatives </li></ul><li>Parallelization </li><ul><li>new class of problems
  21. 21. No easy solution for splitting (spatial) problems
  22. 22. split/merge might still be the bottleneck </li></ul></ul></ul>
  23. 23. Questions ? [email_address] Milford Sound, NZ. Photo: Niels Hoffmann

×