SlideShare a Scribd company logo
1 of 5
The Elements Of An Efficient HVAC System
The typical HVAC system installed in today's new construction offers building owners operating
efficiencies that are unparalleled in previous construction. Owners can expect a new, energy-efficient
system designed to meet the needs of occupants better and more reliably than older systems, and to
do it using one-third to one-half the energy required by older systems.

Today's systems are designed to meet stricter environmental, indoor air quality and user
requirements. Many of the gains in HVAC system efficiency have come as the result of
improvements in the operating efficiency of key system components. Other gains are the result
of the use of technologies that are either new, or new to the HVAC field. Even the use of
computer-aided design tools have helped system engineers design HVAC systems that perform
more efficiently.

Although there are many individual advances that have helped to improve HVAC system
operating efficiency, much of the overall improvement can be attributed to five key factors:

- The development of low kW/ton chillers;
- The use of high-efficiency boiler control systems;
- The application of direct digital control (DDC) systems;
- The use of energy-efficient motors; and,
- The matching of variable frequency drives to pump, fan and chiller motors.

For years, building owners were satisfied with the performance and efficiencies of chillers that
operated in the range of 0.8 to 0.9 kW/ton when new. As they age, actual operating efficiencies
fall to more than 1.0 kW/ton at full load.

Today, new chillers are being installed with full load-rated efficiencies of 0.50 kW/ton, a near 50
percent increase. Equally impressive are the part-load efficiencies of the new generation of
chillers. Although the operating efficiency of nearly all older chillers rapidly falls off with
decreased load, the operating efficiency of new chillers does not drop off nearly as quickly.

Chiller design changes
Several design and operation changes have helped improve chiller performance. To improve the
heat transfer characteristics of the chillers, manufacturers have increased the size of the units'
heat exchangers. Electromechanical control systems have been replaced by microprocessor-
based electronic controls that provide greater precision, reliability and flexibility. Variable
frequency drives control the speed of the compressor, resulting in an increase in part-load
performance.

Increased energy efficiency is not the only benefit of the new generation of building chillers;
these chillers offer better refrigerant containment. Although older chillers routinely may have
lost 10 percent to 15 percent of the refrigerant charge per year, new chillers can limit losses to
less than 0.5 percent. Lower leak rates and better purge systems reduce the quantity of non-
condensable gasses found in the refrigerant system -- a key factor in maintaining chiller
performance over time.

Another significant development is in boiler operation: the replacement of pneumatic and manual
controls with microprocessor-based systems. As a rule of thumb, the systems can be expected to
achieve energy savings of 5 percent to 7 percent over conventional pneumatic-based systems.

Microprocessor-based control systems achieve their savings primarily as the result of their ability
to modulate the boiler's operation more accurately than pneumatic-based systems. By modulating
the boiler's operation accurately, the systems help to maintain the proper fuel-to-air ratio and
track the load placed on the boiler by the HVAC system.

Microprocessor-based systems offer several additional advantages, including remote monitoring
and operating capabilities, automated control sequences, monitoring of steam flow, and reduced
maintenance costs. One way the systems can help reduce maintenance costs is through their
ability to maintain proper fuel-to-air ratio. By maintaining the proper ratio, the systems reduce
the rate at which soot collects on boiler tubes, thus decreasing the frequency of required tear
down and cleaning. Keeping the boiler tubes clean of soot also helps to improve the thermal
efficiency of the boiler.

Direct digital controls

A major change in the HVAC field is the widespread implementation of direct digital controls
(DDC). Introduced more than 15 years ago, DDC systems have become the industry standard for
control systems design today. With the ability to provide accurate and precise control of
temperature and air and water flows, the systems have widely replaced pneumatic and electric
control systems.

DDC systems help building owners save energy in several ways. Their accuracy and precision
nearly eliminate the control problems of offset, overshoot, and hunting commonly found in
pneumatic systems, resulting in better regulation of the system. Their ability to respond to a
nearly unlimited range of sensors results in better coordinated control activities. This also allows
the systems to perform more complex control strategies than could be performed with pneumatic
controls. Finally, their simple or automatic calibration ensures that the control systems will
perform as designed over time, with little or no loss of accuracy.
DDC systems also offer several other advantages. Because the control strategies are software-
based, the systems can be easily modified to match changes in occupant requirements without
costly hardware changes. DDC systems also are ideal for applications that benefit from remote
monitoring and operation.

Energy-efficient motors

Today's HVAC systems are making use of energy-efficient motors. Energy-efficient motors offer
a moderate but significant increase in full-load operating efficiency over standard motor designs.
For example, an energy-efficient 10 hp motor operates at about 93 percent efficiency; a standard
motor of the same size is typically rated at 88 percent. Similarly, a 50 hp energy-efficient motor
is rated at approximately 94 percent efficiency in contrast to the 90 percent efficiency rating of a
50 hp standard motor.

This increase in operating efficiency accompanies a first-cost increase for the motors. How
rapidly this additional first cost is recovered depends on two factors: the loading of the motor,
and the number of hours the motor is operated per year.

The closer the motor is operated to its full-load rating and the greater the number of hours per
year the motor is operated, the quicker the first-cost differential is recovered. For most
applications where the motor is run continuously at or near full load, the payback period for the
additional first cost is typically between three and six months.

The combination of constant loading and long hours of operation have made HVAC applications
well-suited for the use of energy-efficient motors. Energy-efficient motors commonly are found
driving centrifugal circulation pumps and system fans. With these loads, the 4 percent or 5
percent increase in the electrical efficiency of the drive motor translates to a significant energy
savings, particularly when the systems operate 24 hours per day, year round.

A side benefit of energy-efficient motor design is its higher power factor. Increasing the power
factor of a drive motor reduces the current draw on the electrical system, frees additional
distribution capacity and reduces distribution losses in the system. Although increasing the
power factor isn't enough of a benefit to justify the cost differential of the higher efficiency
motor, it's an important consideration, particularly for large users of electricity where system
capacity is limited.

Although the motors have demonstrated themselves to be very cost-effective in new applications,
their use in existing applications is a little more difficult to justify. In most instances, the cost to
replace an existing, operating motor with one of higher efficiency will not be recovered for five
to 10 years or longer.

Of the improvements in HVAC systems that have helped to increase operating efficiency,
variable frequency drives have had the most dramatic results. Applied to system components
ranging from fans to chillers, the drives have demonstrated themselves to be very successful in
reducing system energy requirements during part-load operation. And with most systems
operating at part-load capacities 90 percent or more of the time, the energy savings produced by
variable frequency drives rapidly recover their investment, typically within one to two years.

In general, the larger the motor, the greater the savings. As a rule of thumb, nearly any HVAC
system motor 20 hp and larger can benefit from the installation of a variable frequency drive.

Variable frequency drive applications

Variable frequency drives produce their savings by varying the frequency and voltage of the
motor's electrical supply. This variation is used to reduce the operating speed of the equipment it
controls to match the load requirements. At reduced operating speed, the power draw of the drive
motor drops off rapidly.
For example, a centrifugal fan, when operated at 75 percent flow, draws only about 40 percent of
full-load power. At 50 percent flow, the power requirement for the fan decreases to less than 15
percent of full-load power. While conventional control systems, such as damper or vane control,
also reduce the energy requirements at partial flow, the savings are significantly less.

Another area where variable frequency drives have improved the operating efficiency of an
HVAC system is with centrifugal pumps found in hot and chilled water circulation systems.
Typically, these pumps supply a constant flow of water to terminal units. As the demand for
heating or cooling water decreases, the control valves at the terminal units throttle back. To keep
the pressure in the system constant, a bypass valve between the supply and return systems opens.
With the flow rate remaining nearly constant, the load on the pump's electric drive also remains
nearly constant.

Variable frequency drives regulate the pressure in the system in response to varying demands by
slowing the pump. As with centrifugal fans, the power required by the pumps falls off as the load
and speed are decreased. Again, because most systems operate well below design capacity 90
percent of the time, the savings produced by reduced speed operation are significant, typically
recovering the cost of the unit in one to two years.

Chiller loads

A third application for variable frequency drives is centrifugal chillers. Chillers are sized for
peak cooling loads, although these loads occur only a few hours per year.

With conventional control systems that close vanes on the chiller inlet, chiller efficiency falls off
significantly during part-load operation. When variable frequency drives are applied to these
chillers, they regulate the operation of the chiller by reducing the speed of the compressor. The
result is near full-load operating efficiency over a very wide range of cooling loads. This increase
in part-load efficiency translates into a 15 percent to 20 percent increase in the chiller's seasonal
efficiency.

Energy conservation isn't the only benefit of variable frequency drives. A strain is placed on an
electric motor and the mechanical system it drives every time a pump, fan or chiller is started at
full-line voltage: Motor winding becomes heated, belts slip, drive chains stretch and high-
pressure is developed in circulation systems. Variable frequency drives reduce these stresses by
starting systems at reduced voltages and frequencies in a soft start, resulting in increased motor
and equipment life.

Finally, the most important element in an energy-efficient HVAC system is how the system is
operated. No matter how sophisticated the system, or how extensive its energy-conserving
features, the system's performance depends upon the way in which it's operated and maintained.
Operating personnel must be properly trained in how best to use the system and its features.
Maintenance personnel must be trained and equipped with the proper tools to keep the system
operating in the way it was designed. Maintenance cannot be deferred.

Energy-efficient HVAC systems offer the facility manager the ability to improve system
performance while reducing energy requirements. But they benefit building owners only as long
as they are taken care of. If facility managers choose to ignore maintenance requirements, they
may soon find systems malfunctioning to the point where they have actually increased the
requirement for energy.

Julian Arhire is a Manager with DtiCorp.com - DtiCorp.com carries more than 35,000
HVAC products, including industrial, commercial and residential parts and equipment
from Honeywell, Johnson Contols, Robertshaw, Jandy, Grundfos, Armstrong and more.

More Related Content

Recently uploaded

[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 

Recently uploaded (20)

[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

The elements of an efficient hvac system

  • 1. The Elements Of An Efficient HVAC System The typical HVAC system installed in today's new construction offers building owners operating efficiencies that are unparalleled in previous construction. Owners can expect a new, energy-efficient system designed to meet the needs of occupants better and more reliably than older systems, and to do it using one-third to one-half the energy required by older systems. Today's systems are designed to meet stricter environmental, indoor air quality and user requirements. Many of the gains in HVAC system efficiency have come as the result of improvements in the operating efficiency of key system components. Other gains are the result of the use of technologies that are either new, or new to the HVAC field. Even the use of computer-aided design tools have helped system engineers design HVAC systems that perform more efficiently. Although there are many individual advances that have helped to improve HVAC system operating efficiency, much of the overall improvement can be attributed to five key factors: - The development of low kW/ton chillers; - The use of high-efficiency boiler control systems; - The application of direct digital control (DDC) systems; - The use of energy-efficient motors; and, - The matching of variable frequency drives to pump, fan and chiller motors. For years, building owners were satisfied with the performance and efficiencies of chillers that operated in the range of 0.8 to 0.9 kW/ton when new. As they age, actual operating efficiencies fall to more than 1.0 kW/ton at full load. Today, new chillers are being installed with full load-rated efficiencies of 0.50 kW/ton, a near 50 percent increase. Equally impressive are the part-load efficiencies of the new generation of chillers. Although the operating efficiency of nearly all older chillers rapidly falls off with decreased load, the operating efficiency of new chillers does not drop off nearly as quickly. Chiller design changes
  • 2. Several design and operation changes have helped improve chiller performance. To improve the heat transfer characteristics of the chillers, manufacturers have increased the size of the units' heat exchangers. Electromechanical control systems have been replaced by microprocessor- based electronic controls that provide greater precision, reliability and flexibility. Variable frequency drives control the speed of the compressor, resulting in an increase in part-load performance. Increased energy efficiency is not the only benefit of the new generation of building chillers; these chillers offer better refrigerant containment. Although older chillers routinely may have lost 10 percent to 15 percent of the refrigerant charge per year, new chillers can limit losses to less than 0.5 percent. Lower leak rates and better purge systems reduce the quantity of non- condensable gasses found in the refrigerant system -- a key factor in maintaining chiller performance over time. Another significant development is in boiler operation: the replacement of pneumatic and manual controls with microprocessor-based systems. As a rule of thumb, the systems can be expected to achieve energy savings of 5 percent to 7 percent over conventional pneumatic-based systems. Microprocessor-based control systems achieve their savings primarily as the result of their ability to modulate the boiler's operation more accurately than pneumatic-based systems. By modulating the boiler's operation accurately, the systems help to maintain the proper fuel-to-air ratio and track the load placed on the boiler by the HVAC system. Microprocessor-based systems offer several additional advantages, including remote monitoring and operating capabilities, automated control sequences, monitoring of steam flow, and reduced maintenance costs. One way the systems can help reduce maintenance costs is through their ability to maintain proper fuel-to-air ratio. By maintaining the proper ratio, the systems reduce the rate at which soot collects on boiler tubes, thus decreasing the frequency of required tear down and cleaning. Keeping the boiler tubes clean of soot also helps to improve the thermal efficiency of the boiler. Direct digital controls A major change in the HVAC field is the widespread implementation of direct digital controls (DDC). Introduced more than 15 years ago, DDC systems have become the industry standard for control systems design today. With the ability to provide accurate and precise control of temperature and air and water flows, the systems have widely replaced pneumatic and electric control systems. DDC systems help building owners save energy in several ways. Their accuracy and precision nearly eliminate the control problems of offset, overshoot, and hunting commonly found in pneumatic systems, resulting in better regulation of the system. Their ability to respond to a nearly unlimited range of sensors results in better coordinated control activities. This also allows the systems to perform more complex control strategies than could be performed with pneumatic controls. Finally, their simple or automatic calibration ensures that the control systems will perform as designed over time, with little or no loss of accuracy.
  • 3. DDC systems also offer several other advantages. Because the control strategies are software- based, the systems can be easily modified to match changes in occupant requirements without costly hardware changes. DDC systems also are ideal for applications that benefit from remote monitoring and operation. Energy-efficient motors Today's HVAC systems are making use of energy-efficient motors. Energy-efficient motors offer a moderate but significant increase in full-load operating efficiency over standard motor designs. For example, an energy-efficient 10 hp motor operates at about 93 percent efficiency; a standard motor of the same size is typically rated at 88 percent. Similarly, a 50 hp energy-efficient motor is rated at approximately 94 percent efficiency in contrast to the 90 percent efficiency rating of a 50 hp standard motor. This increase in operating efficiency accompanies a first-cost increase for the motors. How rapidly this additional first cost is recovered depends on two factors: the loading of the motor, and the number of hours the motor is operated per year. The closer the motor is operated to its full-load rating and the greater the number of hours per year the motor is operated, the quicker the first-cost differential is recovered. For most applications where the motor is run continuously at or near full load, the payback period for the additional first cost is typically between three and six months. The combination of constant loading and long hours of operation have made HVAC applications well-suited for the use of energy-efficient motors. Energy-efficient motors commonly are found driving centrifugal circulation pumps and system fans. With these loads, the 4 percent or 5 percent increase in the electrical efficiency of the drive motor translates to a significant energy savings, particularly when the systems operate 24 hours per day, year round. A side benefit of energy-efficient motor design is its higher power factor. Increasing the power factor of a drive motor reduces the current draw on the electrical system, frees additional distribution capacity and reduces distribution losses in the system. Although increasing the power factor isn't enough of a benefit to justify the cost differential of the higher efficiency motor, it's an important consideration, particularly for large users of electricity where system capacity is limited. Although the motors have demonstrated themselves to be very cost-effective in new applications, their use in existing applications is a little more difficult to justify. In most instances, the cost to replace an existing, operating motor with one of higher efficiency will not be recovered for five to 10 years or longer. Of the improvements in HVAC systems that have helped to increase operating efficiency, variable frequency drives have had the most dramatic results. Applied to system components ranging from fans to chillers, the drives have demonstrated themselves to be very successful in reducing system energy requirements during part-load operation. And with most systems
  • 4. operating at part-load capacities 90 percent or more of the time, the energy savings produced by variable frequency drives rapidly recover their investment, typically within one to two years. In general, the larger the motor, the greater the savings. As a rule of thumb, nearly any HVAC system motor 20 hp and larger can benefit from the installation of a variable frequency drive. Variable frequency drive applications Variable frequency drives produce their savings by varying the frequency and voltage of the motor's electrical supply. This variation is used to reduce the operating speed of the equipment it controls to match the load requirements. At reduced operating speed, the power draw of the drive motor drops off rapidly. For example, a centrifugal fan, when operated at 75 percent flow, draws only about 40 percent of full-load power. At 50 percent flow, the power requirement for the fan decreases to less than 15 percent of full-load power. While conventional control systems, such as damper or vane control, also reduce the energy requirements at partial flow, the savings are significantly less. Another area where variable frequency drives have improved the operating efficiency of an HVAC system is with centrifugal pumps found in hot and chilled water circulation systems. Typically, these pumps supply a constant flow of water to terminal units. As the demand for heating or cooling water decreases, the control valves at the terminal units throttle back. To keep the pressure in the system constant, a bypass valve between the supply and return systems opens. With the flow rate remaining nearly constant, the load on the pump's electric drive also remains nearly constant. Variable frequency drives regulate the pressure in the system in response to varying demands by slowing the pump. As with centrifugal fans, the power required by the pumps falls off as the load and speed are decreased. Again, because most systems operate well below design capacity 90 percent of the time, the savings produced by reduced speed operation are significant, typically recovering the cost of the unit in one to two years. Chiller loads A third application for variable frequency drives is centrifugal chillers. Chillers are sized for peak cooling loads, although these loads occur only a few hours per year. With conventional control systems that close vanes on the chiller inlet, chiller efficiency falls off significantly during part-load operation. When variable frequency drives are applied to these chillers, they regulate the operation of the chiller by reducing the speed of the compressor. The result is near full-load operating efficiency over a very wide range of cooling loads. This increase in part-load efficiency translates into a 15 percent to 20 percent increase in the chiller's seasonal efficiency. Energy conservation isn't the only benefit of variable frequency drives. A strain is placed on an electric motor and the mechanical system it drives every time a pump, fan or chiller is started at full-line voltage: Motor winding becomes heated, belts slip, drive chains stretch and high-
  • 5. pressure is developed in circulation systems. Variable frequency drives reduce these stresses by starting systems at reduced voltages and frequencies in a soft start, resulting in increased motor and equipment life. Finally, the most important element in an energy-efficient HVAC system is how the system is operated. No matter how sophisticated the system, or how extensive its energy-conserving features, the system's performance depends upon the way in which it's operated and maintained. Operating personnel must be properly trained in how best to use the system and its features. Maintenance personnel must be trained and equipped with the proper tools to keep the system operating in the way it was designed. Maintenance cannot be deferred. Energy-efficient HVAC systems offer the facility manager the ability to improve system performance while reducing energy requirements. But they benefit building owners only as long as they are taken care of. If facility managers choose to ignore maintenance requirements, they may soon find systems malfunctioning to the point where they have actually increased the requirement for energy. Julian Arhire is a Manager with DtiCorp.com - DtiCorp.com carries more than 35,000 HVAC products, including industrial, commercial and residential parts and equipment from Honeywell, Johnson Contols, Robertshaw, Jandy, Grundfos, Armstrong and more.