Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.



Published on

  • Be the first to comment

  • Be the first to like this


  2. 2. MATRICES  An matrix is a set of items of any nature, but in general, numbers are usually arranged in rows and columns. Order matrix is called "m × n" to a set of elements Ɑij rectangular arranged in m rows and n columns.
  3. 3. TYPES OF MATRICES TYPES OF MATRIX DEFINITION EXAMPLE ROW That matrix has a single row, with order 1 × n COLUMN That matrix has a single column, and its order m × 1 RECTANGULAR That array that has different number of rows and columns, and its order m × n, TRANSPOSE Given a matrix A, is called the transpose of the matrix A is obtained by changing orderly rows of columns. Is represented by AT or AT OPPOSITE The opposite of a given matrix is the result of replacing each element by its opposite. The opposite of A is-A. SQUARE That parent has an equal number of rows and columns, m = n, saying that the matrix is of order n. Main diagonal: are the elements Ɑ11, Ɑ22, ..., Ɑnn Secondary Diagonal: Ɑij are the elements to Ɑij , i + j = n +1 Trace of a square matrix is: the sum of main diagonal elements of tr A.
  4. 4. TYPES OF MATRICES TYPES OF MATRIX DEFINITION EXAMPLES SYMMETRICAL It is a square matrix equals its transpose. A = At, Ɑij = Ɑji IDENTICAL Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. Tambien se denomina matriz unidad. REVERSE We say that a square matrix has an inverse, A-1 if it is verified that: A · A-1 = A-1 ° A = I TRIANGULAR It is a square matrix that has all the elements above (below) the main diagonal to zero.
  5. 5. OPERATIONS WITH MATRICES  SUM: The sum of two matrices of the same size (equidimensional) another mat is another matrix EXAMPLE: PROPERTIES: o Associations: A + (B + C) = (A + B) + C · Commutative: A + B = B + A · Elem. Neutral: (0m × n zero matrix), 0 + A = A +0 = A · Elem. symmetric (opposite-matrix A), A + (-A) = (-A) + A = 0
  6. 6. PRODUCT MATRIX  Given two matrices A = (Ɑij) m × n and B = (bij) p × q = p were n=p , the number of columns in the first matrix equals the number of rows of the matrix B, is defined A · B product as follows:  EXAMPLE:
  7. 7. INVERSE MATRIX  Inverse matrix is called a square matrix An and represent the A-1, a matrix that verifies the following property: A-1 ° A = A ° .A-1 = I PROPERTIES :
  8. 8. BIBLIOGRAPHY  CHAPRA , STEVEN C. Y CANALE, RAYMOND P. Numerics Mathods for Engineers. McGraw Hill 2002.  es. Wikipedia. Org/wiki.  SANTAFE, Elkin R. “Elementos básicos de modelamiento matemático”.  Clases -universidad de Santander año-2009.