Early detection of highly pathogenic viral infections

529 views

Published on

My qualifying exam presentation

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
529
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Early detection of highly pathogenic viral infections

  1. 1. Early Detection ofHighly PathogenicViral InfectionsIgnacio Sanchez CaballeroWednesday, May 1, 13
  2. 2. InfectionWednesday, May 1, 13
  3. 3. ViremiaInfectionWednesday, May 1, 13
  4. 4. ViremiaInfectionTranscriptional changesWednesday, May 1, 13
  5. 5. LassaMarburg171 2 3 4 5 6 7 8 9 10 11 1204 6 3 6 315 3 3 3 3 3Days post-exposureNumber ofSamplesWednesday, May 1, 13
  6. 6.               Lassa MarburgSamples taken at the same time have similar gene expression valuesWednesday, May 1, 13
  7. 7.             CombinedSamples taken at the same time have similar gene expression valuesWednesday, May 1, 13
  8. 8. 30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  9. 9. No changeIncreasein expressionDecreasein expression30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  10. 10. No changeIncreasein expressionDecreasein expressionProbablyrandomProbably significant30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  11. 11. No changeIncreasein expressionDecreasein expressionProbablyrandomProbably significant30HighexpressionLowexpressionDays post-infectionSignificant high magnitude changeWednesday, May 1, 13
  12. 12. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant high magnitude change30Wednesday, May 1, 13
  13. 13. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantNot significant high magnitude change30Wednesday, May 1, 13
  14. 14. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantNot significant high magnitude change30Wednesday, May 1, 13
  15. 15. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant low magnitude change30Wednesday, May 1, 13
  16. 16. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant low magnitude change30Wednesday, May 1, 13
  17. 17. A subset of probes is differentially expressed 3 days post-exposureWednesday, May 1, 13
  18. 18. A subset of probes is differentially expressed 3 days post-exposureWednesday, May 1, 13
  19. 19.     Wednesday, May 1, 13
  20. 20.         Wednesday, May 1, 13
  21. 21.             Wednesday, May 1, 13
  22. 22. LassaMarburg41 2 3 4 5 6 7 8 9 10 11 12021Days post-exposureNumber ofSamples1Test data setWednesday, May 1, 13
  23. 23. LassaMarburg41 2 3 4 5 6 7 8 9 10 11 12021Days post-exposureNumber ofSamples1 ✖Test data setWednesday, May 1, 13
  24. 24. Aim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Wednesday, May 1, 13
  25. 25. Aim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  26. 26. Validate the current set of biomarkers using qPCRAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  27. 27. Validate the current set of biomarkers using qPCRCompare the differences in using sequencing to measure gene expressionAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  28. 28. Validate the current set of biomarkers using qPCRCompare the differences in using sequencing to measure gene expressionIncorporate additional viruses to the analysisAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  29. 29. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Wednesday, May 1, 13
  30. 30. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneWednesday, May 1, 13
  31. 31. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneAim 3: Experimental trainingDevelop core skills in experimental virologyWednesday, May 1, 13
  32. 32. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneAim 3: Experimental trainingDevelop core skills in experimental virologyDesign and carry out experiments to determine viral andhost gene functionWednesday, May 1, 13

×