SlideShare a Scribd company logo
1 of 11
Methods and algorithms of speech recognition
                   course

                 Lection 5

             Nikolay V. Karpov

              nkarpov(а)hse.ru
Cepstral Coefficients
 Relation to pole positions
 Relation to LPC filter coefficients
    ◦ Line Spectrum Frequencies
   Relation to pole positions and to formant frequencies
    ◦ Summary of LPC parameter sets

   Most speech recognisers describe the spectrum of speech
    sounds using cepstral coefficients. This is because they are good
    at discriminating between different phonemes, are fairly
    independent of each other and have approximately Gaussian
    distributions for a particular phoneme.

   Most speech coders describe the spectrum of speech sounds
    using line spectrum frequencies. This is because they can be
    quantised to low precision without distorting the spectrum too
    much.
xk
Cepstrum: inverse Fourier transform of log spectrum (periodic
spectrum ⇒discrete cepstrum)
           1
    cn             log V (ei ) ei n d
          2
The coefficients   cn   can be obtained directly from the       xk
                                           1
 Define   C ( z)        cn z   n
                                    cn              C ( z )ei n d
                    n                     2
This is the standard inverse z-transform derived by taking the inverse
Fourier transform of both sides of the first equation.
By equating the Fourier transforms of the two expressions for cn, we
get                                         G
               C ( z ) log(V ( z )) log                  log(G ) log( A( z ))
                                           A( z )
                                                p                    p
                                                            k
                                   A( z ) 1          ak z                 (1 xk z 1 )
                                               k 1                  k 1
yn
By using the Taylor series          log(1 y )                     ; for y       1
                                                       n 1     n
                                                           p
  C ( z ) log(G ) log( A( z )) log(G )                         log(1 xk z 1 )
                                                       k 1
                p         n
                         xk     n
    log(G )                 z
               k 1 n 1   n
                                        n
By collecting all the terms in      z       , we can get   c n in terms of x k

                                    0 for n 0                        Because   kx    1
                                                                     the c n
                    cn          log(G ) for n 0                      decrease
                                 p   n                               exponentially
                                    xk                               with n
                                         for n 0
                                k 1
                                       n
Differentiating                    C ( z)       log(G ) log( A( z ))
                  A' ( z )
C ' ( z)                           A( z )C ' ( z )            A' ( z )             A( z ) zC ' ( z )      zA' ( z )
                  A( z )
             p                                                                 p
    (1            a k z k )( z           mcm z       ( m 1)
                                                              )        z              nan z      ( n 1)

            k 1                  m 0                                       n 1
             p                                           p
    (1            a k z k )(         mcm z m )                 nan z       n

            k 1                m 1                      n 1
                                     p                                         p
                         m                                    (m k )                         n
                 mcm z                      mcm ak z                                nan z
           m 1                     k 1m 1                                  n 1
replacing m by n-k (to make the z exponent uniform) gives
                                                   p                           p
                                            n                      n                                             n
                                   ncn z                nan z                            (n k )c( n k ) ak z
                             n 1                  n 1                      k 1n k 1
m in( p , n 1)
                                                    1 m in( p ,n 1)
ncn   nan             (n k )c( n k ) ak   cn   an               (n k )c( n k ) ak
                k 1                                 n k1
 Thus we have a recurrence relation to calculate the cn from the ak
 coefficients
                      c1     a1
                                  1
                      c2     a2     c1a1
                                  2
                                  1
                      c3     a3     (c2 a1 c1a2 )
                                  3
                                  1
                      c4     a4     (c3 a1 c2 a2 c1a3 )
                                  4
                      c5     
These coefficients are called the complex cepstrum coefficients
(even though they are real). The cepstrum coefficients use log|V|
instead of log(V) and (except for c0) are half as big.

Note the cute names: spectrum→cepstrum, frequency→quefrency,
filter→lifter, etc
p
         G                                    j            1           2                   p
 A( z )   1
               1                        ajz       1 a1 z       a2 z         ap z
        V ( z)                    j 1

                         ( p 1)
 P( z )   A( z ) z                A* ( z * 1 )
                     1                            2                            p       ( p 1)
   1 (a1 a p ) z            ( a2         ap 1)z        (a p          a1 ) z       z

                         ( p 1)
 Q( z )   A( z ) z                A* ( z * 1 )
                     1                            2                            p       ( p 1)
   1 (a1 a p ) z             ( a2 a p 1 ) z            (a p          a1 ) z       z

V(z) is stable if and only if the roots of P(z)and Q(z)all lie on the unit
circle and they are interleaved
If the roots of P(z) are at exp(2πjfi ) for i=1,3,… and those of Q(z)
are at exp(2πjfi ) for i=0,2,… with fi+1>fi≥ 0 then the LSF
frequencies are defined as f1, f2, …,fp.
Note that it is always true that f0=+1 and fp+1=–1
                   1             2                                1           2       3
A( z ) 1 0.7 z           0.5 z                   P( z ) 1 0.2 z       0.2 z       z
z 3 A* ( z * 1 ) 0.5 z   1
                             0.7 z   2
                                         z   3
                                                 Q( z ) 1 1.2 z   1
                                                                      1.2 z   2
                                                                                  z   3
( p 1)
P( z ) 0            A( z )    z             A* ( z * 1 )   H ( z)   1
                                   ( p 1)
Q( z ) 0            A( z )     z            A* ( z * 1 )   H ( z)   1
                    A( z )                  p
                                                 (1 xi z 1 )    p
                                                                    ( z xi )
H ( z)         (p   1) *
                                     z                       z
           z          A ( z* 1 )         i 1
                                                   1     *
                                                z (1 xi z )    i 1 (1 xi* z )
here the   xi   are the roots of         A( z ) V 1 ( z )

It turns out that providing all the xi lie inside the unit circle, the
absolute values of the terms making up H(z) are either all > 1 or
else all < 1. Taking | | of a typical term
  Filter Coefficients:ai
– Stability check difficult; Sensitive to errors; Cannot interpolate
 Pole Positions: xi
+ Stability check easy; Can interpolate but unordered.
– Hard to calculate; Sensitive to errors near |xi|=1
 Reflection Coefficients: ri
+ Stability check easy; Can interpolate
– Sensitive to errors near ±1
 Log Area Ratios: gi
+ Stability guaranteed; Can interpolate
 Cepstral Coefficients :ci
+ Good for speech recognition
– Stability check difficult
 Line Spectrum Frequencies: fi
+ Stability check easy; Can interpolate; Vary smoothly in time; Strongly
correlated ⇒better coding; Related to spectral peaks (formants).
– Awkward to calculate

More Related Content

What's hot

Random Number Generators 2018
Random Number Generators 2018Random Number Generators 2018
Random Number Generators 2018rinnocente
 
11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.Alexander Decker
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modulguestcc333c
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
 
A Generalization of QN-Maps
A Generalization of QN-MapsA Generalization of QN-Maps
A Generalization of QN-MapsIOSR Journals
 
Module 16 Earth As A Sphere
Module 16  Earth As A SphereModule 16  Earth As A Sphere
Module 16 Earth As A Sphereguestcc333c
 
Ece512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutionsEce512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutionsnadia abd
 
Further discriminatory signature of inflation
Further discriminatory signature of inflationFurther discriminatory signature of inflation
Further discriminatory signature of inflationLaila A
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdtAdam Getchell
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologySEENET-MTP
 
Formulation of seismic passive resistance of non
Formulation of seismic passive resistance of nonFormulation of seismic passive resistance of non
Formulation of seismic passive resistance of nonAlexander Decker
 
11.formulation of seismic passive resistance of non
11.formulation of seismic passive resistance of non11.formulation of seismic passive resistance of non
11.formulation of seismic passive resistance of nonAlexander Decker
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
Scale Space: The Gaussion Approach
Scale Space: The Gaussion ApproachScale Space: The Gaussion Approach
Scale Space: The Gaussion Approachbugway
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainKetan Solanki
 

What's hot (19)

UCB 2012-02-28
UCB 2012-02-28UCB 2012-02-28
UCB 2012-02-28
 
Random Number Generators 2018
Random Number Generators 2018Random Number Generators 2018
Random Number Generators 2018
 
11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modul
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
 
A Generalization of QN-Maps
A Generalization of QN-MapsA Generalization of QN-Maps
A Generalization of QN-Maps
 
Module 16 Earth As A Sphere
Module 16  Earth As A SphereModule 16  Earth As A Sphere
Module 16 Earth As A Sphere
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
Ece512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutionsEce512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutions
 
Further discriminatory signature of inflation
Further discriminatory signature of inflationFurther discriminatory signature of inflation
Further discriminatory signature of inflation
 
Stack of Tasks Course
Stack of Tasks CourseStack of Tasks Course
Stack of Tasks Course
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
 
Formulation of seismic passive resistance of non
Formulation of seismic passive resistance of nonFormulation of seismic passive resistance of non
Formulation of seismic passive resistance of non
 
11.formulation of seismic passive resistance of non
11.formulation of seismic passive resistance of non11.formulation of seismic passive resistance of non
11.formulation of seismic passive resistance of non
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
Scale Space: The Gaussion Approach
Scale Space: The Gaussion ApproachScale Space: The Gaussion Approach
Scale Space: The Gaussion Approach
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier Domain
 
Paper5
Paper5Paper5
Paper5
 

Similar to Cepstral coefficients

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Udo Ornik
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filtersNikolay Karpov
 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...grssieee
 
Algorithm chapter 8
Algorithm chapter 8Algorithm chapter 8
Algorithm chapter 8chidabdu
 
How to design a linear control system
How to design a linear control systemHow to design a linear control system
How to design a linear control systemAlireza Mirzaei
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptxMohdNajibAliMokhtar
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dftmikeproud
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodSSA KPI
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: MixturesCVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtureszukun
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and notesmktsj2
 
State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...Anax Fotopoulos
 

Similar to Cepstral coefficients (20)

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Linear prediction
Linear predictionLinear prediction
Linear prediction
 
Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
 
Algorithm chapter 8
Algorithm chapter 8Algorithm chapter 8
Algorithm chapter 8
 
How to design a linear control system
How to design a linear control systemHow to design a linear control system
How to design a linear control system
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
Serieshw 2
Serieshw 2Serieshw 2
Serieshw 2
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: MixturesCVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
 
State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...
 

More from Nikolay Karpov

Principal characteristics of speech
Principal characteristics of speechPrincipal characteristics of speech
Principal characteristics of speechNikolay Karpov
 
Идентификация уровня сложности текста и его адаптация
Идентификация уровня сложности текста и его адаптацияИдентификация уровня сложности текста и его адаптация
Идентификация уровня сложности текста и его адаптацияNikolay Karpov
 
Идентификация уровня ложности текста и его адаптация
Идентификация уровня ложности текста и его адаптацияИдентификация уровня ложности текста и его адаптация
Идентификация уровня ложности текста и его адаптацияNikolay Karpov
 
Теория и практика обработки естественного языка
Теория и практика обработки естественного языкаТеория и практика обработки естественного языка
Теория и практика обработки естественного языкаNikolay Karpov
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
Principal characteristics of speech
Principal characteristics of speechPrincipal characteristics of speech
Principal characteristics of speechNikolay Karpov
 

More from Nikolay Karpov (7)

Principal characteristics of speech
Principal characteristics of speechPrincipal characteristics of speech
Principal characteristics of speech
 
Идентификация уровня сложности текста и его адаптация
Идентификация уровня сложности текста и его адаптацияИдентификация уровня сложности текста и его адаптация
Идентификация уровня сложности текста и его адаптация
 
Идентификация уровня ложности текста и его адаптация
Идентификация уровня ложности текста и его адаптацияИдентификация уровня ложности текста и его адаптация
Идентификация уровня ложности текста и его адаптация
 
Теория и практика обработки естественного языка
Теория и практика обработки естественного языкаТеория и практика обработки естественного языка
Теория и практика обработки естественного языка
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
Principal characteristics of speech
Principal characteristics of speechPrincipal characteristics of speech
Principal characteristics of speech
 
Tagger numbers
Tagger numbersTagger numbers
Tagger numbers
 

Cepstral coefficients

  • 1. Methods and algorithms of speech recognition course Lection 5 Nikolay V. Karpov nkarpov(а)hse.ru
  • 2. Cepstral Coefficients  Relation to pole positions  Relation to LPC filter coefficients ◦ Line Spectrum Frequencies  Relation to pole positions and to formant frequencies ◦ Summary of LPC parameter sets  Most speech recognisers describe the spectrum of speech sounds using cepstral coefficients. This is because they are good at discriminating between different phonemes, are fairly independent of each other and have approximately Gaussian distributions for a particular phoneme.  Most speech coders describe the spectrum of speech sounds using line spectrum frequencies. This is because they can be quantised to low precision without distorting the spectrum too much.
  • 3. xk Cepstrum: inverse Fourier transform of log spectrum (periodic spectrum ⇒discrete cepstrum) 1 cn log V (ei ) ei n d 2 The coefficients cn can be obtained directly from the xk 1 Define C ( z) cn z n cn C ( z )ei n d n 2 This is the standard inverse z-transform derived by taking the inverse Fourier transform of both sides of the first equation. By equating the Fourier transforms of the two expressions for cn, we get G C ( z ) log(V ( z )) log log(G ) log( A( z )) A( z ) p p k A( z ) 1 ak z (1 xk z 1 ) k 1 k 1
  • 4. yn By using the Taylor series log(1 y ) ; for y 1 n 1 n p C ( z ) log(G ) log( A( z )) log(G ) log(1 xk z 1 ) k 1 p n xk n log(G ) z k 1 n 1 n n By collecting all the terms in z , we can get c n in terms of x k 0 for n 0 Because kx 1 the c n cn log(G ) for n 0 decrease p n exponentially xk with n for n 0 k 1 n
  • 5. Differentiating C ( z) log(G ) log( A( z )) A' ( z ) C ' ( z) A( z )C ' ( z ) A' ( z ) A( z ) zC ' ( z ) zA' ( z ) A( z ) p p (1 a k z k )( z mcm z ( m 1) ) z nan z ( n 1) k 1 m 0 n 1 p p (1 a k z k )( mcm z m ) nan z n k 1 m 1 n 1 p p m (m k ) n mcm z mcm ak z nan z m 1 k 1m 1 n 1 replacing m by n-k (to make the z exponent uniform) gives p p n n n ncn z nan z (n k )c( n k ) ak z n 1 n 1 k 1n k 1
  • 6. m in( p , n 1) 1 m in( p ,n 1) ncn nan (n k )c( n k ) ak cn an (n k )c( n k ) ak k 1 n k1 Thus we have a recurrence relation to calculate the cn from the ak coefficients c1 a1 1 c2 a2 c1a1 2 1 c3 a3 (c2 a1 c1a2 ) 3 1 c4 a4 (c3 a1 c2 a2 c1a3 ) 4 c5 
  • 7. These coefficients are called the complex cepstrum coefficients (even though they are real). The cepstrum coefficients use log|V| instead of log(V) and (except for c0) are half as big. Note the cute names: spectrum→cepstrum, frequency→quefrency, filter→lifter, etc
  • 8. p G j 1 2 p A( z ) 1 1 ajz 1 a1 z a2 z  ap z V ( z) j 1 ( p 1) P( z ) A( z ) z A* ( z * 1 ) 1 2 p ( p 1) 1 (a1 a p ) z ( a2 ap 1)z  (a p a1 ) z z ( p 1) Q( z ) A( z ) z A* ( z * 1 ) 1 2 p ( p 1) 1 (a1 a p ) z ( a2 a p 1 ) z  (a p a1 ) z z V(z) is stable if and only if the roots of P(z)and Q(z)all lie on the unit circle and they are interleaved
  • 9. If the roots of P(z) are at exp(2πjfi ) for i=1,3,… and those of Q(z) are at exp(2πjfi ) for i=0,2,… with fi+1>fi≥ 0 then the LSF frequencies are defined as f1, f2, …,fp. Note that it is always true that f0=+1 and fp+1=–1 1 2 1 2 3 A( z ) 1 0.7 z 0.5 z P( z ) 1 0.2 z 0.2 z z z 3 A* ( z * 1 ) 0.5 z 1 0.7 z 2 z 3 Q( z ) 1 1.2 z 1 1.2 z 2 z 3
  • 10. ( p 1) P( z ) 0 A( z ) z A* ( z * 1 ) H ( z) 1 ( p 1) Q( z ) 0 A( z ) z A* ( z * 1 ) H ( z) 1 A( z ) p (1 xi z 1 ) p ( z xi ) H ( z) (p 1) * z z z A ( z* 1 ) i 1 1 * z (1 xi z ) i 1 (1 xi* z ) here the xi are the roots of A( z ) V 1 ( z ) It turns out that providing all the xi lie inside the unit circle, the absolute values of the terms making up H(z) are either all > 1 or else all < 1. Taking | | of a typical term
  • 11.  Filter Coefficients:ai – Stability check difficult; Sensitive to errors; Cannot interpolate  Pole Positions: xi + Stability check easy; Can interpolate but unordered. – Hard to calculate; Sensitive to errors near |xi|=1  Reflection Coefficients: ri + Stability check easy; Can interpolate – Sensitive to errors near ±1  Log Area Ratios: gi + Stability guaranteed; Can interpolate  Cepstral Coefficients :ci + Good for speech recognition – Stability check difficult  Line Spectrum Frequencies: fi + Stability check easy; Can interpolate; Vary smoothly in time; Strongly correlated ⇒better coding; Related to spectral peaks (formants). – Awkward to calculate