SlideShare a Scribd company logo
1 of 30
AXIAL COMPRESSION LOAD TRANSFER MECHANISMS
OF DRILLED SHAFTS IN WEAK POROUS LIMESTONE
Presentation of thesis in partial fulfill of the requirements for the degree of
Master of Science in Civil Engineering
José Roberto Ramírez Hernández
University of Puerto Rico at Mayaguez
Advisor: Dr. Miguel A. Pando López
Mayagüez, Puerto Rico – Thursday June 7, 2012
Index• Goals and specific aims
• Introduction
• Site Characterization
• Field test program
• Load test results
• Conclusions
• Acknowledgments
Mayagüez, Puerto Rico – Thursday June 7, 2012
2
Goals and specific aims
Provide a basis for a load transfer criterion and evaluate experimentally the
characteristics of the ultimate unit side resistance of drilled shafts in weak
porous rock of Puerto Rico
• Design an experimental study of load test of drilled shafts based on high
precision instrumentation
• Analyze data from the field tests and compare the prediction based on
empirical relationships
• Classify and establish a geotechnical and geological characterization of the
limestone rock from La Montaña farm in Aguadilla, PR
Mayagüez, Puerto Rico – Thursday June 7, 2012
3
Compressive axial bearing capacity
Mayagüez, Puerto Rico – Thursday June 7, 2012 4
Compressive axial bearing capacity
Mayagüez, Puerto Rico – Thursday June 7, 2012 5
Idealized load-displacement behavior (after Carter & Kulhawy, 1988)
Drilled shaft axial capacity
Mayagüez, Puerto Rico – Thursday June 7, 2012 6
Load transfer mechanism for socketed shaft (adapted from Zhang, 1998)
Unit side shear resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 7
Factors affecting the τmax for drilled shafts in rock
Factors related to the construction Technique
• Interface roughness
• Length of time borehole remains open prior to concreting
• Destroyed or intact base resistance
Factors related to drilled shaft geometry
• Length
• Diameter
Factors related to the load test method
• Rate of load applied
Unit side shear resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 8
Interface roughness
Wall roughness classification from Pells et al. (1980)
Roughness
Classification
Description
R1 Straight, smooth-side shaft, grooves or indentation less than 1.00 mm deep
R2 Grooves of depth 1-4 mm, width greater than 2 mm, at spacing 50 to 200 mm.
R3 Grooves of depth 4-10 mm, width > 5 mm, at spacing 50 to 200 mm.
R4 Grooves or undulations of depth greater than 10, width > 10mm, at spacing 50 to
200 mm.
Parameters for defining shaft wall roughness (after Horvath et al., 1980 and Kodikara et al., 1992)
Upper and lower bound guidelines for effective roughness adapted from (Seidel and Collingwood, 2001)
Unit side shear resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 9
Factors related to drilled shaft geometry
Unit side shear versus displacement for drilled shafts socket in rock with qu = 3 MPa (after Baycan, 1996)
Unit side shear resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 10
Factors related to the load test method
Comparison of typical Load-Displacement behavior four test procedures (adapted from Fellenius, 1975)
0
20
40
60
80
100
120
140
160
180
0 1 2 3 4 5 6 7 8
Load
Displacement
CRP
Quick
ML
Cyclic
Unit side shear resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 11
Reference α β C
1 Rosenberg and Jouneaux (1976) 0.34 0.51 1.05
2 Horvath (1978) 0.33 0.50 1.04
3
Horvath and Kenney (1979) lower
bound
0.21 0.50 0.65
Horvath and Kenney (1979) upper
bound
0.25 0.50 0.78
4 Meigh and Wolski (1979) 0.22 0.60 0.55
5 Reynolds and Kaderabek (1980) 0.30 1.00 0.30
6 Pells et al. (1980) R1, R2 & R3 0.40 0.50 1.26
Pells et al. (1980) R4 0.80 0.50 2.52
7 Williams et al. (1980) 0.44 0.37 1.85
8 Horvath (1982) smooth 0.20 0.50 0.63
9 Horvath (1982) roughness 0.30 0.50 0.95
10 Gupton and Logan (1984) 0.20 1.00 0.20
Reference α β C
11 Rowe and Armitage (1984) smooth 0.45 0.50 1.42
Rowe and Armitage (1984)
roughness
0.60 0.50 1.89
12 Reese and O'Neill (1987) 0.15 1.00 0.15
13 Carter and Kulhawy (1988) 0.2 0.50 0.63
14 Toh et al. (1989) 0.25 1.00 0.25
15 Kulhawy and Phoon (1993) 0.35 0.50 1.10
16 O'Neill and Reese (1999) 0.21 0.50 0.66
17
Zhang and Einstein (1998) lower
bound
0.20 0.50 0.63
Zhang and Einstein (1999) upper
bound
0.40 0.50 1.26
18 Prakoso (2002) lower bound 0.20 0.50 0.63
Prakoso (2002) upper bound 0.32 0.50 1.00
19 Kulhawy et al. (2005) 0.32 0.50 1.00
20 Turner (2006) 0.32 0.50 1.00
Summary of relations between t and qu (expanded version from O’Neill et al., 1996)
Unit end bearing resistance
Mayagüez, Puerto Rico – Thursday June 7, 2012 12
Design Method 𝜶 𝒃 𝜷 𝒃
Teng (1962) [5-8] 1
Coates (1967) 3 1
Rowe and Armitage (1987) 2.7 1
Zhang and Einstein (1998) 4.5 1
ARGEMA (1992) [3-6.6] 0.5
Empirical relationships between 𝑞 𝑢 and 𝑞 𝑚𝑎𝑥(expanded version from Zhang & Einstein, 1998)
• Between 10% - 20% (Williams et al., 1980; Carter & Kulhawy, 1988)
• A significant relative movement between concrete and rock is necessary to achieve
the total end bearing resistance (Qb)
• Some methods proposed for predict (Qb) are based on elastic solutions and depend
on the embedment ratio (L/B) and the rate of stiffness (Ec/Er)
Theoretical base load transfer (adapted from Rowe and Armitage, 1987b)
𝑞 𝑚𝑎𝑥 = 𝛼 𝑏 𝑞 𝑢
𝛽 𝑏
Weak rock / IGM’s definition
Mayagüez, Puerto Rico – Thursday June 7, 2012 13
Weak
rock
Weathered
and broken
rock (BS,
8004)
Indurated
soil
(Oliveira,
1993)
Soft rock
(Johnston,
1989)
Intermediate
geo-material
IGM
(FHWA, 1995)
IGM strength classification based on qu versus 𝝉 𝒎𝒂𝒙 (adapted from Kulhawy and Phoon, 1993)
Summary
Mayagüez, Puerto Rico – Thursday June 7, 2012 14
• Demand of loads of great magnitude
• 1976 – 2006
• Range of estimation to predict Qs 86% – 93%
• The 27.5% geomorphology area of Puerto Rico is conformed
fro three karst zones (North, South and disperse)
• $ versus capacity
0
5
10
15
20
25
30
10 30 50 70 90 110 130 150
τmax/Pa
qu/Pa
Rosenberg and Jouneaux (1976)
Horvath (1978)
Horvath and Kenney (1979) lower bound
Horvath and Kenney (1979) upper bound
Meigh and Wolski (1979)
Reynolds and Kaderabek (1980)
Pells et al. (1980) R1, R2 & R3
Pells et al. (1980) R4
Williams et al. (1980)
Horvath (1982) smooth
Horvath (1982) roughness
Gupton and Logan (1984)
Rowe and Armitage (1984) smooth
Rowe and Armitage (1984) roughness
Reese and O'Neill (1987)
Carter and Kulhawy (1988)
Toh et al. (1989)
Kulhawy and Phoon (1993)
O'Neill and Reese (1999)
Zhang and Einstein (1998) lower bound
Zhang and Einstein (1999) upper bound
Prakoso (2002) lower bound
Kulhawy et al. (2005)
Turner (2006)
Site Characterization
Mayagüez, Puerto Rico – Thursday June 7, 2012 15
• Location
General location map of test site not to scale (adapted from www.mapsof.net © 2012)
Aerial image showing location of experimental farm La Montaña (from Google Earth ©2012)
Aerial images showing general location of test site (from Google Earth © 2012)
Site Characterization
Mayagüez, Puerto Rico – Thursday June 7, 2012 16
Geology
Geological map of Puerto Rico (adapted from Renken et al., 2002)
Elevation view of the North Coast Belt of Puerto Rico (adapted from Renken et al., 2002)
Ta
Site Characterization
Mayagüez, Puerto Rico – Thursday June 7, 2012 17
Engineering properties
Drilled shafts load test and site investigation layout (not to scale)
Thermo-gravimetric analyses (TGA) of Aymamón limestone
Site Characterization
Mayagüez, Puerto Rico – Thursday June 7, 2012
18
Boring log DS_A2
Drilled shafts load test and site investigation layout (not to scale)
Stress-Strain diagram for Aymamón limestone (UCS) test
Field test program
Mayagüez, Puerto Rico – Thursday June 7, 2012
19
General test layout
Layout of load test arrangement
Setup and arrangement of axial compressive load test
Field test program
Mayagüez, Puerto Rico – Thursday June 7, 2012
20
Field test program
Layout of load test arrangement
1
2
0
10
20
30
40
50
60
70
0 50 100 150 200 250 300
time(min) Load (kips)
Duration of Load Test
0
5
10
15
20
25
30
0 50 100 150 200 250 300
time(sec) Load (kips)
Duration of Load Test
Field test program
Mayagüez, Puerto Rico – Thursday June 7, 2012 21
Construction of drilled shafts
Layout of load test arrangement
1
2
DS_LT 1
DS_LT 2
0
5
10
15
20
0.1 1 10 100 1000
Effectiveheightofroughness-Δr(mm)
qu (Mpa)
Upper Border
Bottom Border
DS_LT 1
DS_LT 2
DS_LT 1
Parameter Values Reference Roughness
Classification R3 Pells et al (1980) Medium to high
RF 0.20 Horvath et al (1980) Low to medium
hm 4.67 mm
Kodikara et al (1992) Medium
isd 5.51
Δre 4.67
Seidel y Collingwood
(2001)
See Figure
DS_LT 2
Parameter Values Reference Roughness
Classification R3 Pells et al (1980) Medium to high
RF 0.21 Horvath et al (1980) Low to medium
hm 4.78 mm
Kodikara et al (1992) Medium
isd 5.20
Δre 4.78
Seidel y Collingwood
(2001)
See Figure
Effective height roughness versus qu for drilled shafts DS_LT1 and DS_LT2
(after Seidel and Collingwood, 2001)
Summary of roughness parameters for drilled shafts DS_LT 1 and
DS_LT 2Summary of roughness parameters for drilled shafts DS_LT 1
and DS_LT 2
Field test program
Mayagüez, Puerto Rico – Thursday June 7, 2012
22
Construction of drilled shafts
Results
Mayagüez, Puerto Rico – Thursday June 7, 2012
23
DS_LT1
0.974
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0 50 100 150 200 250 300
Displacementoftoppile(in)
Load (kips)
1 sequence
2 sequence
3 sequence
Load versus displacement for the drilled shaft DS_LT 1
0
200
400
600
800
1,000
1,200
0 50 100 150 200 250 300
µstrain
Load (kips)
EGP1 (µɛ) level
46.25 in
EGP2 (µɛ) level
34.35 in
EGP3 (µɛ) level
21.75 in
EGP4 (µɛ) level
9.75 in
EGP5 (µɛ) level -
4.25 in
Load applied versus strains for drilled shaft DS_LT 1
Results
Mayagüez, Puerto Rico – Thursday June 7, 2012 24
DS_LT2
Load versus displacement for the drilled shaft DS_LT 2
0.773
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0 50 100 150 200 250 300
Displacementoftoppile(in)
Load (kips)
0
200
400
600
800
1,000
1,200
0 50 100 150 200 250 300
µstrain
Load (kips)
EGP1 (µɛ) level
49.5 in
EGP2 (µɛ) level
36.5 in
EGP3 (µɛ) level
23.25 in
EGP4 (µɛ) level 9.5
in
EGP5 (µɛ) level -4.5
in
Load applied versus strain for drilled shaft DS_LT 2
Results
Mayagüez, Puerto Rico – Thursday June 7, 2012 25
250.56
12.85
-12
0
12
24
36
48
60
0 100 200 300
Depth(in) Load (kips)
Q= 15 kips
Q= 25 kips
Q= 40 kips
Q= 45 kips
Q= 65 kips
Q= 100 kips
Q= 165 kips
Q= 215 kips
Q= 250 kips
Qs max
Qs min
Load distributions for drilled shaft DS_LT 1
272.20
5.46
-12
0
12
24
36
48
60
0 100 200 300
Depth(in)
Load (kips)
Q= 10 kips
Q= 25 kips
Q= 35 kips
Q= 45 kips
Q= 65 kips
Q= 100 kips
Q= 150 kips
Q= 200 kips
Q= 230 kips
Q= 250 kips
Q= 270 kips
Q max
Q min
Load distributions for drilled shaft DS_LT 2
Results
Mayagüez, Puerto Rico – Thursday June 7, 2012 26
Maximum skin friction mobilized for drilled shaft DS_LT 1 Maximum skin friction mobilized for drilled shaft DS_LT 2
0
10
20
30
40
50
0 200 400 600
Depth(in)
Unit side shear resistance mobilized (psi)
Q=20 kips
Q=25 kips
Q=45 kips
Q= 67 kips
Q= 100 kips
Q= 165 kips
Q= 215 kips
Q= 250 kips
0
10
20
30
40
50
0 200 400 600
Depth(in)
Unit side shear resistance mobilized (psi)
Q= 272 kips
Q= 200 kips
Q= 150 kips
Q= 100 kips
Q= 75 kips
Q= 50 kips
Q= 25 kips
Q= 10 kips
Comparative prediction - measured
Mayagüez, Puerto Rico – Thursday June 7, 2012 27
275
250
333.21
49.01
0
100
200
300
400
500
600
700
800
150 350 550 750 950 1150 1350
Drilledshaftloadcapacity-Qu(psi)
Unconfined compressive strength - qu (psi)
Carter and Kulhawy (1988)
Pells et al. (1980) R4
Limestone
DS_LT 2 (Q measured)
DS_LT 1 (Q measured)
Qu DS_LT 2 est
Qu DS_LT 1 est
Qtu e
Conclusions
Mayagüez, Puerto Rico – Thursday June 7, 2012 28
• Shafts roughness index factor
• Shaft geometry - diameter and length
• Rate of load method
• Classification of limestone from the Aymamón formation in La
Montana farm
• Pells et al. (1980). – other correlations
• The behavior of the drilled shafts tested
• Future work – La Montana farm
Acknowledgments
• Family
• Geo-Cim Inc, Dywidag-Systems International, MS Drills, Structural Steel
Manufacturing, Inc.
• Mr. Añeses and all the people which work in the La Montaña farm
• Augusto Ortiz, Manuel Collazo
• Dr. Ricardo Ramos, Dr. Daniel Wendichansky, and Dr. Miguel Pando
• Friends
• PRSN – Christa and Victor
• Finally, thanks Ana, André & Mateo
Puerto Rico Seismic Network (PRSN) – January 17th, 2012
29
Puerto Rico Seismic Network (PRSN) – January 17th, 2012
30

More Related Content

Similar to Thesis_Jun7_2012

Final year project presentation 2015
Final year project presentation 2015Final year project presentation 2015
Final year project presentation 2015norman adriko
 
Unit 2 - Rock Mass Classification.ppt
Unit 2 - Rock Mass Classification.pptUnit 2 - Rock Mass Classification.ppt
Unit 2 - Rock Mass Classification.pptAnshul Yadav
 
Milne et al-rock mass characterization
Milne et al-rock mass characterizationMilne et al-rock mass characterization
Milne et al-rock mass characterizationMartin Balvín
 
Rock quality determination, rock structure rating
Rock quality determination, rock structure ratingRock quality determination, rock structure rating
Rock quality determination, rock structure ratingPrashant Katti
 
Rock mechanics for engineering geology part 1
Rock mechanics for engineering geology part 1Rock mechanics for engineering geology part 1
Rock mechanics for engineering geology part 1Jyoti Khatiwada
 
Mechanical Specific Energy (MSE) in Coring
Mechanical Specific Energy (MSE) in CoringMechanical Specific Energy (MSE) in Coring
Mechanical Specific Energy (MSE) in CoringAlanJurez11
 
mine dump on seismic load and introduction of geogrid preview
mine dump on seismic load and introduction of geogrid preview mine dump on seismic load and introduction of geogrid preview
mine dump on seismic load and introduction of geogrid preview Joydeep Atta
 
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILS
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILSULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILS
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILSVipin Joshi
 
Nduese Cv 21
Nduese Cv 21Nduese Cv 21
Nduese Cv 21ntiendy
 
Evaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineEvaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineSafdar Ali
 
Somnath soni (iit ism) dhanbad presentation vphep
Somnath soni (iit ism) dhanbad presentation vphepSomnath soni (iit ism) dhanbad presentation vphep
Somnath soni (iit ism) dhanbad presentation vphepSomnath Soni
 
Electrofacies a guided machine learning for practice of geomodelling
Electrofacies a guided machine learning for practice of geomodellingElectrofacies a guided machine learning for practice of geomodelling
Electrofacies a guided machine learning for practice of geomodellingPetro Teach
 
Robust 3D Geological Models: Hard Data is Key
Robust 3D Geological Models: Hard Data is KeyRobust 3D Geological Models: Hard Data is Key
Robust 3D Geological Models: Hard Data is KeyFF Explore 3D
 
Classification of Discontinuities.ppt
Classification of Discontinuities.pptClassification of Discontinuities.ppt
Classification of Discontinuities.pptthokomelomoloi
 
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdfSuryonuradyoTejoning
 
Numerical Study of Star Anchor Plate Embedded in Cohesive Soil
Numerical Study of Star Anchor Plate Embedded in Cohesive SoilNumerical Study of Star Anchor Plate Embedded in Cohesive Soil
Numerical Study of Star Anchor Plate Embedded in Cohesive SoilIJERA Editor
 
Seismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESSeismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESIJMER
 

Similar to Thesis_Jun7_2012 (20)

Final year project presentation 2015
Final year project presentation 2015Final year project presentation 2015
Final year project presentation 2015
 
Unit 2 - Rock Mass Classification.ppt
Unit 2 - Rock Mass Classification.pptUnit 2 - Rock Mass Classification.ppt
Unit 2 - Rock Mass Classification.ppt
 
Cgj 2016-0012
Cgj 2016-0012Cgj 2016-0012
Cgj 2016-0012
 
Milne et al-rock mass characterization
Milne et al-rock mass characterizationMilne et al-rock mass characterization
Milne et al-rock mass characterization
 
Rock Mass Classification
Rock Mass ClassificationRock Mass Classification
Rock Mass Classification
 
Rock quality determination, rock structure rating
Rock quality determination, rock structure ratingRock quality determination, rock structure rating
Rock quality determination, rock structure rating
 
Rock mechanics for engineering geology part 1
Rock mechanics for engineering geology part 1Rock mechanics for engineering geology part 1
Rock mechanics for engineering geology part 1
 
Mechanical Specific Energy (MSE) in Coring
Mechanical Specific Energy (MSE) in CoringMechanical Specific Energy (MSE) in Coring
Mechanical Specific Energy (MSE) in Coring
 
mine dump on seismic load and introduction of geogrid preview
mine dump on seismic load and introduction of geogrid preview mine dump on seismic load and introduction of geogrid preview
mine dump on seismic load and introduction of geogrid preview
 
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILS
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILSULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILS
ULTIMATE BEARING CAPACITY OF CIRCULAR FOOTING ON LAYERED SOILS
 
Nduese Cv 21
Nduese Cv 21Nduese Cv 21
Nduese Cv 21
 
Evaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mineEvaluation of slope stability for waste rock dumps in a mine
Evaluation of slope stability for waste rock dumps in a mine
 
Somnath soni (iit ism) dhanbad presentation vphep
Somnath soni (iit ism) dhanbad presentation vphepSomnath soni (iit ism) dhanbad presentation vphep
Somnath soni (iit ism) dhanbad presentation vphep
 
Electrofacies a guided machine learning for practice of geomodelling
Electrofacies a guided machine learning for practice of geomodellingElectrofacies a guided machine learning for practice of geomodelling
Electrofacies a guided machine learning for practice of geomodelling
 
Impact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge PerformanceImpact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge Performance
 
Robust 3D Geological Models: Hard Data is Key
Robust 3D Geological Models: Hard Data is KeyRobust 3D Geological Models: Hard Data is Key
Robust 3D Geological Models: Hard Data is Key
 
Classification of Discontinuities.ppt
Classification of Discontinuities.pptClassification of Discontinuities.ppt
Classification of Discontinuities.ppt
 
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf
2023 Wellbore Stability-A Challenge in Drilling Operations - Ilugas.pdf
 
Numerical Study of Star Anchor Plate Embedded in Cohesive Soil
Numerical Study of Star Anchor Plate Embedded in Cohesive SoilNumerical Study of Star Anchor Plate Embedded in Cohesive Soil
Numerical Study of Star Anchor Plate Embedded in Cohesive Soil
 
Seismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESSeismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEES
 

Thesis_Jun7_2012

  • 1. AXIAL COMPRESSION LOAD TRANSFER MECHANISMS OF DRILLED SHAFTS IN WEAK POROUS LIMESTONE Presentation of thesis in partial fulfill of the requirements for the degree of Master of Science in Civil Engineering José Roberto Ramírez Hernández University of Puerto Rico at Mayaguez Advisor: Dr. Miguel A. Pando López Mayagüez, Puerto Rico – Thursday June 7, 2012
  • 2. Index• Goals and specific aims • Introduction • Site Characterization • Field test program • Load test results • Conclusions • Acknowledgments Mayagüez, Puerto Rico – Thursday June 7, 2012 2
  • 3. Goals and specific aims Provide a basis for a load transfer criterion and evaluate experimentally the characteristics of the ultimate unit side resistance of drilled shafts in weak porous rock of Puerto Rico • Design an experimental study of load test of drilled shafts based on high precision instrumentation • Analyze data from the field tests and compare the prediction based on empirical relationships • Classify and establish a geotechnical and geological characterization of the limestone rock from La Montaña farm in Aguadilla, PR Mayagüez, Puerto Rico – Thursday June 7, 2012 3
  • 4. Compressive axial bearing capacity Mayagüez, Puerto Rico – Thursday June 7, 2012 4
  • 5. Compressive axial bearing capacity Mayagüez, Puerto Rico – Thursday June 7, 2012 5 Idealized load-displacement behavior (after Carter & Kulhawy, 1988)
  • 6. Drilled shaft axial capacity Mayagüez, Puerto Rico – Thursday June 7, 2012 6 Load transfer mechanism for socketed shaft (adapted from Zhang, 1998)
  • 7. Unit side shear resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 7 Factors affecting the τmax for drilled shafts in rock Factors related to the construction Technique • Interface roughness • Length of time borehole remains open prior to concreting • Destroyed or intact base resistance Factors related to drilled shaft geometry • Length • Diameter Factors related to the load test method • Rate of load applied
  • 8. Unit side shear resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 8 Interface roughness Wall roughness classification from Pells et al. (1980) Roughness Classification Description R1 Straight, smooth-side shaft, grooves or indentation less than 1.00 mm deep R2 Grooves of depth 1-4 mm, width greater than 2 mm, at spacing 50 to 200 mm. R3 Grooves of depth 4-10 mm, width > 5 mm, at spacing 50 to 200 mm. R4 Grooves or undulations of depth greater than 10, width > 10mm, at spacing 50 to 200 mm. Parameters for defining shaft wall roughness (after Horvath et al., 1980 and Kodikara et al., 1992) Upper and lower bound guidelines for effective roughness adapted from (Seidel and Collingwood, 2001)
  • 9. Unit side shear resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 9 Factors related to drilled shaft geometry Unit side shear versus displacement for drilled shafts socket in rock with qu = 3 MPa (after Baycan, 1996)
  • 10. Unit side shear resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 10 Factors related to the load test method Comparison of typical Load-Displacement behavior four test procedures (adapted from Fellenius, 1975) 0 20 40 60 80 100 120 140 160 180 0 1 2 3 4 5 6 7 8 Load Displacement CRP Quick ML Cyclic
  • 11. Unit side shear resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 11 Reference α β C 1 Rosenberg and Jouneaux (1976) 0.34 0.51 1.05 2 Horvath (1978) 0.33 0.50 1.04 3 Horvath and Kenney (1979) lower bound 0.21 0.50 0.65 Horvath and Kenney (1979) upper bound 0.25 0.50 0.78 4 Meigh and Wolski (1979) 0.22 0.60 0.55 5 Reynolds and Kaderabek (1980) 0.30 1.00 0.30 6 Pells et al. (1980) R1, R2 & R3 0.40 0.50 1.26 Pells et al. (1980) R4 0.80 0.50 2.52 7 Williams et al. (1980) 0.44 0.37 1.85 8 Horvath (1982) smooth 0.20 0.50 0.63 9 Horvath (1982) roughness 0.30 0.50 0.95 10 Gupton and Logan (1984) 0.20 1.00 0.20 Reference α β C 11 Rowe and Armitage (1984) smooth 0.45 0.50 1.42 Rowe and Armitage (1984) roughness 0.60 0.50 1.89 12 Reese and O'Neill (1987) 0.15 1.00 0.15 13 Carter and Kulhawy (1988) 0.2 0.50 0.63 14 Toh et al. (1989) 0.25 1.00 0.25 15 Kulhawy and Phoon (1993) 0.35 0.50 1.10 16 O'Neill and Reese (1999) 0.21 0.50 0.66 17 Zhang and Einstein (1998) lower bound 0.20 0.50 0.63 Zhang and Einstein (1999) upper bound 0.40 0.50 1.26 18 Prakoso (2002) lower bound 0.20 0.50 0.63 Prakoso (2002) upper bound 0.32 0.50 1.00 19 Kulhawy et al. (2005) 0.32 0.50 1.00 20 Turner (2006) 0.32 0.50 1.00 Summary of relations between t and qu (expanded version from O’Neill et al., 1996)
  • 12. Unit end bearing resistance Mayagüez, Puerto Rico – Thursday June 7, 2012 12 Design Method 𝜶 𝒃 𝜷 𝒃 Teng (1962) [5-8] 1 Coates (1967) 3 1 Rowe and Armitage (1987) 2.7 1 Zhang and Einstein (1998) 4.5 1 ARGEMA (1992) [3-6.6] 0.5 Empirical relationships between 𝑞 𝑢 and 𝑞 𝑚𝑎𝑥(expanded version from Zhang & Einstein, 1998) • Between 10% - 20% (Williams et al., 1980; Carter & Kulhawy, 1988) • A significant relative movement between concrete and rock is necessary to achieve the total end bearing resistance (Qb) • Some methods proposed for predict (Qb) are based on elastic solutions and depend on the embedment ratio (L/B) and the rate of stiffness (Ec/Er) Theoretical base load transfer (adapted from Rowe and Armitage, 1987b) 𝑞 𝑚𝑎𝑥 = 𝛼 𝑏 𝑞 𝑢 𝛽 𝑏
  • 13. Weak rock / IGM’s definition Mayagüez, Puerto Rico – Thursday June 7, 2012 13 Weak rock Weathered and broken rock (BS, 8004) Indurated soil (Oliveira, 1993) Soft rock (Johnston, 1989) Intermediate geo-material IGM (FHWA, 1995) IGM strength classification based on qu versus 𝝉 𝒎𝒂𝒙 (adapted from Kulhawy and Phoon, 1993)
  • 14. Summary Mayagüez, Puerto Rico – Thursday June 7, 2012 14 • Demand of loads of great magnitude • 1976 – 2006 • Range of estimation to predict Qs 86% – 93% • The 27.5% geomorphology area of Puerto Rico is conformed fro three karst zones (North, South and disperse) • $ versus capacity 0 5 10 15 20 25 30 10 30 50 70 90 110 130 150 τmax/Pa qu/Pa Rosenberg and Jouneaux (1976) Horvath (1978) Horvath and Kenney (1979) lower bound Horvath and Kenney (1979) upper bound Meigh and Wolski (1979) Reynolds and Kaderabek (1980) Pells et al. (1980) R1, R2 & R3 Pells et al. (1980) R4 Williams et al. (1980) Horvath (1982) smooth Horvath (1982) roughness Gupton and Logan (1984) Rowe and Armitage (1984) smooth Rowe and Armitage (1984) roughness Reese and O'Neill (1987) Carter and Kulhawy (1988) Toh et al. (1989) Kulhawy and Phoon (1993) O'Neill and Reese (1999) Zhang and Einstein (1998) lower bound Zhang and Einstein (1999) upper bound Prakoso (2002) lower bound Kulhawy et al. (2005) Turner (2006)
  • 15. Site Characterization Mayagüez, Puerto Rico – Thursday June 7, 2012 15 • Location General location map of test site not to scale (adapted from www.mapsof.net © 2012) Aerial image showing location of experimental farm La Montaña (from Google Earth ©2012) Aerial images showing general location of test site (from Google Earth © 2012)
  • 16. Site Characterization Mayagüez, Puerto Rico – Thursday June 7, 2012 16 Geology Geological map of Puerto Rico (adapted from Renken et al., 2002) Elevation view of the North Coast Belt of Puerto Rico (adapted from Renken et al., 2002) Ta
  • 17. Site Characterization Mayagüez, Puerto Rico – Thursday June 7, 2012 17 Engineering properties Drilled shafts load test and site investigation layout (not to scale) Thermo-gravimetric analyses (TGA) of Aymamón limestone
  • 18. Site Characterization Mayagüez, Puerto Rico – Thursday June 7, 2012 18 Boring log DS_A2 Drilled shafts load test and site investigation layout (not to scale) Stress-Strain diagram for Aymamón limestone (UCS) test
  • 19. Field test program Mayagüez, Puerto Rico – Thursday June 7, 2012 19 General test layout Layout of load test arrangement Setup and arrangement of axial compressive load test
  • 20. Field test program Mayagüez, Puerto Rico – Thursday June 7, 2012 20 Field test program Layout of load test arrangement 1 2 0 10 20 30 40 50 60 70 0 50 100 150 200 250 300 time(min) Load (kips) Duration of Load Test 0 5 10 15 20 25 30 0 50 100 150 200 250 300 time(sec) Load (kips) Duration of Load Test
  • 21. Field test program Mayagüez, Puerto Rico – Thursday June 7, 2012 21 Construction of drilled shafts Layout of load test arrangement 1 2 DS_LT 1 DS_LT 2 0 5 10 15 20 0.1 1 10 100 1000 Effectiveheightofroughness-Δr(mm) qu (Mpa) Upper Border Bottom Border DS_LT 1 DS_LT 2 DS_LT 1 Parameter Values Reference Roughness Classification R3 Pells et al (1980) Medium to high RF 0.20 Horvath et al (1980) Low to medium hm 4.67 mm Kodikara et al (1992) Medium isd 5.51 Δre 4.67 Seidel y Collingwood (2001) See Figure DS_LT 2 Parameter Values Reference Roughness Classification R3 Pells et al (1980) Medium to high RF 0.21 Horvath et al (1980) Low to medium hm 4.78 mm Kodikara et al (1992) Medium isd 5.20 Δre 4.78 Seidel y Collingwood (2001) See Figure Effective height roughness versus qu for drilled shafts DS_LT1 and DS_LT2 (after Seidel and Collingwood, 2001) Summary of roughness parameters for drilled shafts DS_LT 1 and DS_LT 2Summary of roughness parameters for drilled shafts DS_LT 1 and DS_LT 2
  • 22. Field test program Mayagüez, Puerto Rico – Thursday June 7, 2012 22 Construction of drilled shafts
  • 23. Results Mayagüez, Puerto Rico – Thursday June 7, 2012 23 DS_LT1 0.974 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 50 100 150 200 250 300 Displacementoftoppile(in) Load (kips) 1 sequence 2 sequence 3 sequence Load versus displacement for the drilled shaft DS_LT 1 0 200 400 600 800 1,000 1,200 0 50 100 150 200 250 300 µstrain Load (kips) EGP1 (µɛ) level 46.25 in EGP2 (µɛ) level 34.35 in EGP3 (µɛ) level 21.75 in EGP4 (µɛ) level 9.75 in EGP5 (µɛ) level - 4.25 in Load applied versus strains for drilled shaft DS_LT 1
  • 24. Results Mayagüez, Puerto Rico – Thursday June 7, 2012 24 DS_LT2 Load versus displacement for the drilled shaft DS_LT 2 0.773 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 50 100 150 200 250 300 Displacementoftoppile(in) Load (kips) 0 200 400 600 800 1,000 1,200 0 50 100 150 200 250 300 µstrain Load (kips) EGP1 (µɛ) level 49.5 in EGP2 (µɛ) level 36.5 in EGP3 (µɛ) level 23.25 in EGP4 (µɛ) level 9.5 in EGP5 (µɛ) level -4.5 in Load applied versus strain for drilled shaft DS_LT 2
  • 25. Results Mayagüez, Puerto Rico – Thursday June 7, 2012 25 250.56 12.85 -12 0 12 24 36 48 60 0 100 200 300 Depth(in) Load (kips) Q= 15 kips Q= 25 kips Q= 40 kips Q= 45 kips Q= 65 kips Q= 100 kips Q= 165 kips Q= 215 kips Q= 250 kips Qs max Qs min Load distributions for drilled shaft DS_LT 1 272.20 5.46 -12 0 12 24 36 48 60 0 100 200 300 Depth(in) Load (kips) Q= 10 kips Q= 25 kips Q= 35 kips Q= 45 kips Q= 65 kips Q= 100 kips Q= 150 kips Q= 200 kips Q= 230 kips Q= 250 kips Q= 270 kips Q max Q min Load distributions for drilled shaft DS_LT 2
  • 26. Results Mayagüez, Puerto Rico – Thursday June 7, 2012 26 Maximum skin friction mobilized for drilled shaft DS_LT 1 Maximum skin friction mobilized for drilled shaft DS_LT 2 0 10 20 30 40 50 0 200 400 600 Depth(in) Unit side shear resistance mobilized (psi) Q=20 kips Q=25 kips Q=45 kips Q= 67 kips Q= 100 kips Q= 165 kips Q= 215 kips Q= 250 kips 0 10 20 30 40 50 0 200 400 600 Depth(in) Unit side shear resistance mobilized (psi) Q= 272 kips Q= 200 kips Q= 150 kips Q= 100 kips Q= 75 kips Q= 50 kips Q= 25 kips Q= 10 kips
  • 27. Comparative prediction - measured Mayagüez, Puerto Rico – Thursday June 7, 2012 27 275 250 333.21 49.01 0 100 200 300 400 500 600 700 800 150 350 550 750 950 1150 1350 Drilledshaftloadcapacity-Qu(psi) Unconfined compressive strength - qu (psi) Carter and Kulhawy (1988) Pells et al. (1980) R4 Limestone DS_LT 2 (Q measured) DS_LT 1 (Q measured) Qu DS_LT 2 est Qu DS_LT 1 est Qtu e
  • 28. Conclusions Mayagüez, Puerto Rico – Thursday June 7, 2012 28 • Shafts roughness index factor • Shaft geometry - diameter and length • Rate of load method • Classification of limestone from the Aymamón formation in La Montana farm • Pells et al. (1980). – other correlations • The behavior of the drilled shafts tested • Future work – La Montana farm
  • 29. Acknowledgments • Family • Geo-Cim Inc, Dywidag-Systems International, MS Drills, Structural Steel Manufacturing, Inc. • Mr. Añeses and all the people which work in the La Montaña farm • Augusto Ortiz, Manuel Collazo • Dr. Ricardo Ramos, Dr. Daniel Wendichansky, and Dr. Miguel Pando • Friends • PRSN – Christa and Victor • Finally, thanks Ana, André & Mateo Puerto Rico Seismic Network (PRSN) – January 17th, 2012 29
  • 30. Puerto Rico Seismic Network (PRSN) – January 17th, 2012 30

Editor's Notes

  1. Mecanismos de transferencia de carga axial a compresion de fustes barrenados en roca caliza y porosa
  2. a) Carga total aplicada menor a la resistencia unitaria al corte, b) Carga aplicada aumenta pero aun menora a la resitencia ultima unitaria al corte, c) carga aplicada mayor, se alcanza la resistencia unitaria al corte ultima y se genera la reaccion de la punta del pilote. d) carga ultima del pilote es la suma de la resistencia ultima al corte y la resistencia ultima de la punta o base del pilote.
  3. En la medida en que se va aumentando la carga a compresion, la curva carga desplazamiento mostrara un comportamiento lineal al momento de alcanzar la resistencia unitaria al corte ultima, la curva ya no mostrara un comportamiento lineal y entrara en una zona de transision. Provocando un mayor desplazamiento con incrementos de carga menores hasta que ocurre un deslizamiento pleno donde la resistencia unitaria al corte ultima se ha sobre pasado.
  4. DS_LT1 carga mas lenta, menor carga para un desplazamiento igual que para una carga rapida DS_LT2 que requiere una carga mayor. Desplazamientos mayores para cargas mas lentas – Desplazamientos menores para cargas mas rapidas.
  5. BS 8004 – Roca fracturada o meteorizada Johnston 1989 – roca blanda Oliveira 1993 – suelo endurecido IGM 1995 Rango en psi [ ] Mpa [ ]
  6. Costo de drilled shafts por pie de profundidad vrs diametro Hormigon ($105/yrd3).
  7. Roca sedimentaria 23.5 millones de anos, era cenozoica terciaria (Ta), edad del mioceno temprano. 88% Ca,
  8. Porosidad 41.17%, relacion de vanos de .7, peso especifico seco 102 pcf,
  9. Carga maxima por pie de profundidad comparar con velocidad de aplicacion de carga.