SlideShare a Scribd company logo
1 of 10
Forecasting Spatiotemporal Impact of
Traffic Incidents on Road Networks
Presenter: Hyunwook Lee
ICDM 2013
Pan, Bei & Demiryurek, Ugur & Shahabi, Cyrus & Gupta, Chetan
Overview of the Paper
• Motivation
 교통 사고 영향력 예측은 path planning에 매우 중요한 요소
 기존 알고리즘은 사고의 영향력을 qualitative하게 분석/예측하지 못함
 기존의 논문은 가상의 데이터를 이용해 실험하기 때문에 현실적이지 못
함
• Contribution of the paper
 사고가 도로에 미치는 영향력을 quantitative하게 분석/예측
 실험에 실제 데이터를 사용함(4,230 sensors, 6,811 incidents)
 기존 논문과 달리 예측 시에 traffic density등을 추가적으로 이용
Model description
• Speed change ratio
2
Model description
• Speed change ratio를 특정
threshold로 잘라서 backlog
생성
 Backlog: b = {b0, b1, b2, …, bt},
bt : t 시점에서의 사고의 영향
이 도달한 거리
• Sensor data를 이용 
interpolation 필요
• 여러 threshold를 사용해 여
러 개의 backlog 생성, 용도에
따라 사용가능
3
Impact prediction – Problem definition
• 예측을 위해 clustering 사용
• 사용하는 feature에 따라 PAD, PADI, PAI의 3종류 approach 존재
4
Impact prediction – Cluster
• 사고 분류시 1) 기존에 있던 방법으로 분류 2) 그 시간대의 traffic densit로 분류 3)
backlog의 모양으로 분류를 순차적으로 사용
• 분류시에는 average silhouette coefficient를 기준으로 최대한 많은 cluster로 분류
5
Impact prediction – approach
• clustering 및 prediction에 사용
하는 features에 따라서 3가지
approach 존재
• PAD: clustering에 density 이용
• PADI: clustering에 density 이용,
예측시 initial behavior 이용
• PAI: 예측시 initial behavior 이용
6
Experiment results
7
Criticism
• Traffic density 정보가 보통 교통 데이터에서는 정확하지 않거나 존재
하지 않아 사용하기가 힘듬(PAD, PADI)
• 모델이 이미 존재하는 backlog에 의존함
• 정확한 Clustering을 위해서 대량의 데이터가 필요(e.g. 1~3년)
• 영향을 미치는 범위/시간은 예측 가능하지만 언제 정상 속도로 돌아
오는 지를 예측하지는 않음
• Threshold 설정에 따라서 예측 정확도가 달라지고, 보통 speed data는
노이즈가 많아 사용시에 어려움이 있을 가능성이 높음
8
Thank you
Any questions?

More Related Content

More from ivaderivader

Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
ivaderivader
 
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
ivaderivader
 

More from ivaderivader (20)

DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
DDGK: Learning Graph Representations for Deep Divergence Graph KernelsDDGK: Learning Graph Representations for Deep Divergence Graph Kernels
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
 
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
 
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
 
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
 
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
 
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial NetworksA Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
 
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
 
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for VisualizationPerception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
 
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
 
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-PoolingNeural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
 
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
 
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTubeBad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
 
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise RemovalInvertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
 
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural NetworkTraffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
 
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training  MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
 
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI ComponentsScreen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
 
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
 
Natural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine TranslationNatural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine Translation
 
Recommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking SystemRecommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking System
 
Video Background Music Generation with Controllable Music Transformer
Video Background Music Generation with Controllable Music TransformerVideo Background Music Generation with Controllable Music Transformer
Video Background Music Generation with Controllable Music Transformer
 

[0305] hyunwook

  • 1. Forecasting Spatiotemporal Impact of Traffic Incidents on Road Networks Presenter: Hyunwook Lee ICDM 2013 Pan, Bei & Demiryurek, Ugur & Shahabi, Cyrus & Gupta, Chetan
  • 2. Overview of the Paper • Motivation  교통 사고 영향력 예측은 path planning에 매우 중요한 요소  기존 알고리즘은 사고의 영향력을 qualitative하게 분석/예측하지 못함  기존의 논문은 가상의 데이터를 이용해 실험하기 때문에 현실적이지 못 함 • Contribution of the paper  사고가 도로에 미치는 영향력을 quantitative하게 분석/예측  실험에 실제 데이터를 사용함(4,230 sensors, 6,811 incidents)  기존 논문과 달리 예측 시에 traffic density등을 추가적으로 이용
  • 4. Model description • Speed change ratio를 특정 threshold로 잘라서 backlog 생성  Backlog: b = {b0, b1, b2, …, bt}, bt : t 시점에서의 사고의 영향 이 도달한 거리 • Sensor data를 이용  interpolation 필요 • 여러 threshold를 사용해 여 러 개의 backlog 생성, 용도에 따라 사용가능 3
  • 5. Impact prediction – Problem definition • 예측을 위해 clustering 사용 • 사용하는 feature에 따라 PAD, PADI, PAI의 3종류 approach 존재 4
  • 6. Impact prediction – Cluster • 사고 분류시 1) 기존에 있던 방법으로 분류 2) 그 시간대의 traffic densit로 분류 3) backlog의 모양으로 분류를 순차적으로 사용 • 분류시에는 average silhouette coefficient를 기준으로 최대한 많은 cluster로 분류 5
  • 7. Impact prediction – approach • clustering 및 prediction에 사용 하는 features에 따라서 3가지 approach 존재 • PAD: clustering에 density 이용 • PADI: clustering에 density 이용, 예측시 initial behavior 이용 • PAI: 예측시 initial behavior 이용 6
  • 9. Criticism • Traffic density 정보가 보통 교통 데이터에서는 정확하지 않거나 존재 하지 않아 사용하기가 힘듬(PAD, PADI) • 모델이 이미 존재하는 backlog에 의존함 • 정확한 Clustering을 위해서 대량의 데이터가 필요(e.g. 1~3년) • 영향을 미치는 범위/시간은 예측 가능하지만 언제 정상 속도로 돌아 오는 지를 예측하지는 않음 • Threshold 설정에 따라서 예측 정확도가 달라지고, 보통 speed data는 노이즈가 많아 사용시에 어려움이 있을 가능성이 높음 8

Editor's Notes

  1. Reference speed는 이전 데이터의 mean값
  2. PAD: density 추가 PADI: density+incident initial behavior PAI: initial behavior
  3. 순차적으로 clsutering을 한 이유는 한꺼번에 다쓰면 clustering에 어려움이 있어서 – e.g. 너무 많은 features등
  4. 예측 – 기존 분류에 따라 cluster 판별 -> 판별된 cluster내의 backlog 평균/std으로 예측