SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org ||Volume 4 Issue 4 || April 2015 || PP.68-74
www.ijesi.org 68 | Page
Research on the Trajectory of Oil Spill in Near-shore Area
Liang-jun GAO
(School of Petrochemistry and Energy Engineering, Zhejiang Ocean University, Zhoushan Zhejiang 316022,
China)
Abstract: The diffusion trajectory of three common oil-spills was numerical simulated in the dock area and
open water in this paper. Vortexes appeared in simulated diffusion trajectory of oil-spills in the dock area, which
was attributed to the effect of water flow and shoreline. Whereas a ribbon diffusion trajectory was observed
when the diffusion trajectory was simulated in open water, and the diffusion direction of oil-spill is along the
direction of water flow.
Keywords: Oil Spill; Nearshore; Proliferation; Trajectory
I. INTRODUCTION
For exploring oil spill trajectory, theoretical researches and numerical simulation has been studied by
scientists, and the most of theoretical basis is Fay's "Three Equilibrium Equations"[1, 2]
. Many oil spill simulation
systems are using oil particle model [3, 4]
, by integrating numerical simulation and GIS technology, a range of
marine oil spill simulation systems have been developed, such as the OILMAP system that can be simulated oil
spill fate and behavior and traceable back to the push, which was developed by ASA
(Applied Science Associates, Inc.) in the 1980s; The company also launched the SIMAP (Spill impact model
analysis package) system consists of a biological effects module. Norwegian Industrial Technology Research
Institute has developed the OSCAR (oil spill contingency and response) system that can simulate the degree of
pollution of the coastline caused. Australia OSTM system based on OILMAP completed, and includes a
hydrodynamic model HYDROMAP. The simulation results this system obtained show that the effects of the
geostrophic flow in oil spill trajectory simulation are very important. As can be seen from the above description,
the international oil spill simulation systems developed earlier and more mature, with higher forecast accuracy
of oil spill trajectories. But they are mainly used in large-scale simulation of oil spills at sea, and a large range of
the analog waters, but the accuracy of these systems used in a small amount of oil spill and near-shore oil spill
simulations needs to be verified. The domestic use of oil spill simulation systems are generally based on the
post-secondary development of OILMAP [5-7]
. These systems are widely used in fixed open waters. Some
researchers have studied the oil spill trajectory in rivers and lakes [8, 9]
. But research on the oil spill trajectories
above does not consider the impact of shoreline adsorption and bottom friction [10]
on the oil spill trajectory.
Through the analysis of the relevant literature, the current oil spill trajectory simulation systems used widely in
open waters, while they are used in large marine oil spill trajectory simulations, they have a high degree of
accuracy and extremely reliable. However, the oil spill occurred in the near-shore terminals generally have a
small amount, complex factors and other characteristics. Therefore, the study of the oil spill trajectory
simulation in marina area becomes necessary.
1 The oil spill dispersion model under the near-shore hydrological conditions
The main content of oil spill dispersion modeling under the near-shore hydrological conditions is simulated
oil spill occurred in the dock area. By establishing a simplified near-shore (extended from the shore to 50m)
model of environmental conditions to simulate and analyze the diffusion of oil spill trajectory.
Research on the Trajectory of…
www.ijesi.org 69 | Page
1.1 Modeling
Taking a depot located in Zhoushan Port as the background to create a simplified model of near-shore
environmental conditions. Crude oil, fuel oil and diesel were used as the diffusion to build the model. The nature
of the oil required for the experiment shown in Table 1.
Tab1 the main properties of the test oil [11]
Parameter
Oil species
Density [kg/m³] Dynamic viscosity [Pa·s]
Crude Oil 810 0.08
10#Diesel Oil 850 0.003825
180# Fuel Oil 985 0.1773
Establish a simplified model based on the following principles:
1) Ignoring the local variations of the quay and considered it is approximately flat. In the marina there has a
2000t’s berth; its length is 125m, so only take the spilled oil near the shoreline as research subjects;
2) The model area is mainly controlled waters surrounded booms within the near-shore hydrological
conditions (the sea water flowing is onshore flow, the tide is irregular semidiurnal, the water temperature is 15
℃, constant wind field model), ignoring the effects of wave residual current;
3) Assuming the leak width of 1m, oil leakage rate of 1m / s, steady oil leak;
4) Embankment perpendicular to the sea. Influence on the movement of the spilled oil caused by the
adsorption of shoreline is considered;
5) The material used in the construction of the dock is cement. There is no shear stress and the roughness
height is 1.5mm, roughness constant is 0.5.
1.2 Numerical simulation
The theoretical analysis and the establishment of computational models are included in this section.
Theoretical analysis based primarily on near-shore tidal wave nonlinear equations, combined with the impact of
spilled oil caused by wind field transformation matrix. Numerical simulation with a depot located in Zhoushan
Port as the background, using software for modeling and post-processing.
1.2.1 Theoretical model
Stratification of Seawater density in the coastal region was not significant, Two-dimensional flow
mathematical model can be used for simulating the flow field. The continuity and momentum equations are as
follows:
The continuity equation: 0
x H u H v
t x y
  
  
  
(1)
The momentum equations: ( ) ( )
xw xb
t t
H u H u H u z u u
u v f vH gH H v H v
t x y x x x y x
 
 
       
       
       
(2)
( ) ( )
yw yb
t t
H v H v H v z v v
u v f vH gH H v H v
t x y y x x y x
 
 
       
       
       
(3)
Considering the impact of wind field on the sea surface, then:
The wind stress equation:
co s sin
sin co s
U W
 

 
  
   
  
(4)
In the equations: u , v - The average flow velocity along the perpendicular direction of the x and y,m/s;
Research on the Trajectory of…
www.ijesi.org 70 | Page
xw
, yw
- Wind stress in the x direction and the y direction;
xb
, yb
- The bottom floor stress in the x and y directions of the seabed;
tv
- Turbulent viscosity coefficient;
f - Coriolis force coefficient;
U - The oil film drifts velocity under the action of wind, m / s;
W- Wind speed of 10m on the sea, m / s;
 - Wind factor, generally take 3% -4%;
cos sin
sin cos
 
 
  
  
  
- Wind field transformation matrix;
The initial conditions: 0( , , 0) ( , )h x y h x y ; (5)
( , , 0) ( , , 0) 0U x y V x y  . (6)
The boundary conditions: The fixed boundary normal vector 0nU  , 0nV  ; (7)
Open borders
( , , ) ( , , )
( , , ) ( , , )
A
A
u x y t u x y t
v x y t v x y t



. (8)
1.2.2 Calculation model
Using Gambit to modeling and meshing, and set the boundary conditions. Where the boundary condition of
water boundary (water-inlet) and spill boundary (oil-inlet) types are velocity-inlet, 50m from the shoreline will
be set at the distal (far), outputting a two-dimensional model (Export 2-D (XY) Mesh). The simplified model
used is shown in Fig1.
1-a 1-b
Fig1 a partial simplified schematic diagram of calculation model
(a- the schematic diagram of initial flow field; b- the partial schematic diagram of the grid)
1.3 Analysis
Adopt ANSYS for the post-processing of the model. Select k-epsilon model and the VOF method to
simulate the running track after the oil spill.
Research on the Trajectory of…
www.ijesi.org 71 | Page
2-a
2-b
Research on the Trajectory of…
www.ijesi.org 72 | Page
2-c
2-d
Fig 2 the range of the spill schematic
Research on the Trajectory of…
www.ijesi.org 73 | Page
(a- the schematic of the range after 1s; b- the schematic of the range after 20s;c- the schematic of the range
after 40s; d- the schematic of the range after 1min. From left to right: crude oil, 10# diesel oil, 180#fuel oil)
For the same oil, spill oil is mainly concentrated in the vicinity of the exit as a group throughout the process
of spill. In the beginning 20s, the scope of the spill is rapidly expanding according to this shape.
For different kinds of oil,the basic shape of the oil spill centralized area is similar, but there still exists
differences. During diffusion process, two symmetrical vortexes are forming near the axis of the outlet. The
formation of vortex is mainly due to the impact of water flow to the oil and the wall, in which the affect of the
water flow plays a major role. With the proliferation continues, Center of the vortex moves along the
exponential curve. The density of fuel oil is greater than crude oil and diesel oil, the shape of the vortex is
clearer, the same as diffusion range.
II. COMPARISONS
The main content is to compare the simulation results and which under the open water environmental
conditions, including two aspects such as the diffusion region and the trajectories of oil particles (As shown in
Figure 3, 4).
2.1 The differences in diffusion areas of spill
Fig 3 the oil spill extended area under two environmental conditions
As can be seen in Fig 2-d and Fig 3, oil spill occurred in open water, distributed like tape along the flow
direction, only small amount of the oil accumulate in the front of the export. With the increase of oil spills time,
the regional of oil distributed increases gradually and began to disperse. But the oil spill occurred near the
marina waters is relatively concentrated. This is mainly affected by shoreward flow and the wall. Thus, the
recycling method will be different.
2.2The differences in oil particles trace
4-a 4-b
Fig 4 the traces of oil particles under two environmental conditions
(a- the traces of oil particles under the near-shore hydrological conditions,
b- the traces of oil particles under the open water environmental conditions)
Research on the Trajectory of…
www.ijesi.org 74 | Page
Through the analysis of Fig 4 can be known, the oil spill occurred in the area near the pier affected by the
vortex. The existence of vortex makes the oil spill was reunited and limits the proliferation of regional of oil.
Center of the vortex changing as time increases. But for oil spills occurred in open waters, by the impact of
water, the trajectory of spill is changed, its direction tends to follow the movement of water, and gradually
spread radically.
III. CONCLUSIONS
1) Compared with the oil spill occurred in open sea, the diffusion range of the oil spill occurred in the dock
area is relatively small, mainly concentrated in the vicinity of the oil spill exit. The oil spill occurred in the open
water has farther distance, which is determined by the speed of the water flow and oil spill. The reason for this
phenomenon is the different movement state of oil spills.
2) On the motion state of oil spills, for the oil spill occurred in the dock area, vortexes will form in the
diffusion process, which makes the oil to be diffused like groups. But for the oil spill occurred in the open water,
it spread like ribbon along the flow direction, the range of its influence is larger. This also makes the recovery
process in two cases is different.
3) In selecting recovery methods, large recycling equipments can be used in open water, such as oil spill
recovery vessels. During recovery, it is possible to achieve better results recovered against the direction of flow.
When recycling the oil spill occurred in the dock areas, as the complex topography, it is not appropriate to use
large-scale recycling equipments. Using oil fence to control the area of the accident and recycling flexibility by
a small recovery unit will be more appropriate.
4) When simulated the trajectories of spilled oil in near-shore, the bottom friction is not taken into account.
Therefore, bottom friction effects on the oil spill trajectory needs further study.
Acknowledgements : The study was supported by the Welfare Technology Research Project of Zhejiang
Province (No. 2011C31009), the Science and Technology Project of Zhoushan (special) (No. 2013C41012) and
the Science and Technology Project of Zhoushan (No. 2012C21025).
REFERENCES
[1]. Fay.J.A., Physical processes in the spreading of oil on a water surface, in: Proceedings of the Joint Conference on Prevention and
Control of Oil Spills, Washington. DC, 1971, pp. 463–467.
[2]. ZHAO W Q, WU Z H, Determination of the Dimension of an Oil Film by Instantaneous Oil Slick On the Sea Surface, Journal of
Chengdu University of Science and Technology. 41 (1988) 63-72.
[3]. Johansen O, The Halten Bank experiment-observations and model studies of drift and fate of oil in the marine environment, in:
Proceeding of the 11th
Arctic Marine Oil Spill Program (AMOP) Technical Seminar, Environment, Canada, 1984, pp. 18-36.
[4]. Elliot A J, Oceanic processes and NW European shelf databases, Marine Pollution Bulletin, 22(1991) 548-553.
[5]. LIU Y C, YIN P H, LIN J G, et al, Prediction of Oil Spill Spreading and Transport over the sea, Journal of Dalian Maritime
University, 28 (2002) 41-44.
[6]. XIONG D Q, DU C, ZHAO D X, et al, Oil Spill Modeling Information System for Dalian Sea and Its Application,
Environmental Protection In Transportation, 23 (2002) 63-66.
[7]. SUN J, YU Q J, HUANG L W, Oil Spilled Information Management System of Zhoushan Harbor Based on OILMAP, Computer
Simulation, 19 (2002) 76-78.
[8]. JIANG W X, Study on the Simulation of Accidental Oil Spill in the Huangpu River, Shanghai, Tongji University (2007).
[9]. ZHOU X H, Study on Numerical Simulation of Oil Spill Movement in the Lake, Nanjing, HoHai University (2005).
[10]. FENG S Z, LI F Q, LI S J. An Introduction to Marine Science, first ed, Higher Education Press, Beijing, 1999.
[11]. XIONG Y, XU S H, LIU X, Application and Management of Oil, second ed, China Petrochemical Press, Beijing, 2010.

More Related Content

What's hot

Q921 de2 lec4 v1
Q921 de2 lec4 v1Q921 de2 lec4 v1
Q921 de2 lec4 v1AFATous
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12AFATous
 
Q921 re1 lec9 v1
Q921 re1 lec9 v1Q921 re1 lec9 v1
Q921 re1 lec9 v1AFATous
 
Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1AFATous
 
economic channel section
economic channel sectioneconomic channel section
economic channel sectionVaibhav Pathak
 
Q921 re1 lec6 v1
Q921 re1 lec6 v1Q921 re1 lec6 v1
Q921 re1 lec6 v1AFATous
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1AFATous
 
Q922+re2+l08 v1
Q922+re2+l08 v1Q922+re2+l08 v1
Q922+re2+l08 v1AFATous
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1AFATous
 
Q913 re1 w3 lec 10
Q913 re1 w3 lec 10Q913 re1 w3 lec 10
Q913 re1 w3 lec 10AFATous
 
Q913 re1 w2 lec 7
Q913 re1 w2 lec 7Q913 re1 w2 lec 7
Q913 re1 w2 lec 7AFATous
 
Q913 re1 w5 lec 20
Q913 re1 w5 lec 20Q913 re1 w5 lec 20
Q913 re1 w5 lec 20AFATous
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave modelIOSR Journals
 
Chapter 3 channel design
Chapter 3  channel designChapter 3  channel design
Chapter 3 channel designMohsin Siddique
 
Q922+de1+l05 v1
Q922+de1+l05 v1Q922+de1+l05 v1
Q922+de1+l05 v1AFATous
 

What's hot (20)

Hydraulic jump
Hydraulic jumpHydraulic jump
Hydraulic jump
 
Q921 de2 lec4 v1
Q921 de2 lec4 v1Q921 de2 lec4 v1
Q921 de2 lec4 v1
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12
 
Q921 re1 lec9 v1
Q921 re1 lec9 v1Q921 re1 lec9 v1
Q921 re1 lec9 v1
 
Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1
 
Open channels
Open channelsOpen channels
Open channels
 
economic channel section
economic channel sectioneconomic channel section
economic channel section
 
Q921 re1 lec6 v1
Q921 re1 lec6 v1Q921 re1 lec6 v1
Q921 re1 lec6 v1
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1
 
Open channelhydraulics2
Open channelhydraulics2Open channelhydraulics2
Open channelhydraulics2
 
Q922+re2+l08 v1
Q922+re2+l08 v1Q922+re2+l08 v1
Q922+re2+l08 v1
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
 
Q913 re1 w3 lec 10
Q913 re1 w3 lec 10Q913 re1 w3 lec 10
Q913 re1 w3 lec 10
 
Q913 re1 w2 lec 7
Q913 re1 w2 lec 7Q913 re1 w2 lec 7
Q913 re1 w2 lec 7
 
Open Channel Flow
Open Channel FlowOpen Channel Flow
Open Channel Flow
 
Q913 re1 w5 lec 20
Q913 re1 w5 lec 20Q913 re1 w5 lec 20
Q913 re1 w5 lec 20
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave model
 
Hydroelectric power plants (chapter 5)
Hydroelectric power plants   (chapter 5)Hydroelectric power plants   (chapter 5)
Hydroelectric power plants (chapter 5)
 
Chapter 3 channel design
Chapter 3  channel designChapter 3  channel design
Chapter 3 channel design
 
Q922+de1+l05 v1
Q922+de1+l05 v1Q922+de1+l05 v1
Q922+de1+l05 v1
 

Viewers also liked

Near miss
Near missNear miss
Near misskitenam
 
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...An Investigation Into the Root Cause of a Spill From Procuring and Handling o...
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...Turlough Guerin GAICD FGIA
 
Defining kpi in terms of unsafe acts/conditions and near miss
Defining kpi in terms of unsafe acts/conditions and near miss  Defining kpi in terms of unsafe acts/conditions and near miss
Defining kpi in terms of unsafe acts/conditions and near miss Faiz Khan
 
Safety awareness on near miss
Safety awareness on near missSafety awareness on near miss
Safety awareness on near missAshok Singh
 
How to Increase Near Miss Reporting
How to Increase Near Miss ReportingHow to Increase Near Miss Reporting
How to Increase Near Miss ReportingSteve Wise
 

Viewers also liked (6)

Near miss
Near missNear miss
Near miss
 
Layers of Protection
Layers of ProtectionLayers of Protection
Layers of Protection
 
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...An Investigation Into the Root Cause of a Spill From Procuring and Handling o...
An Investigation Into the Root Cause of a Spill From Procuring and Handling o...
 
Defining kpi in terms of unsafe acts/conditions and near miss
Defining kpi in terms of unsafe acts/conditions and near miss  Defining kpi in terms of unsafe acts/conditions and near miss
Defining kpi in terms of unsafe acts/conditions and near miss
 
Safety awareness on near miss
Safety awareness on near missSafety awareness on near miss
Safety awareness on near miss
 
How to Increase Near Miss Reporting
How to Increase Near Miss ReportingHow to Increase Near Miss Reporting
How to Increase Near Miss Reporting
 

Similar to Research on the Trajectory of Oil Spill in Near-shore Area

A model for predicting rate and volume of oil spill in horizontal and vertica...
A model for predicting rate and volume of oil spill in horizontal and vertica...A model for predicting rate and volume of oil spill in horizontal and vertica...
A model for predicting rate and volume of oil spill in horizontal and vertica...Alexander Decker
 
Erosion Rate Prediction in Single and Multiphase Flow using CFD
Erosion Rate Prediction in Single and Multiphase Flow using CFDErosion Rate Prediction in Single and Multiphase Flow using CFD
Erosion Rate Prediction in Single and Multiphase Flow using CFDIRJET Journal
 
Presentation of the OLF/NSA Davit-Launched Lifeboats Project
Presentation of the OLF/NSA Davit-Launched Lifeboats ProjectPresentation of the OLF/NSA Davit-Launched Lifeboats Project
Presentation of the OLF/NSA Davit-Launched Lifeboats ProjectOle Gabrielsen
 
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...theijes
 
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...IRJET Journal
 
A brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationA brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationIOSR Journals
 
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...Salman Sadeg Deumah
 
On-the-simulation-of-three-phase-slug-flow
On-the-simulation-of-three-phase-slug-flowOn-the-simulation-of-three-phase-slug-flow
On-the-simulation-of-three-phase-slug-flowMarco Bonizzi
 
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...IRJET Journal
 
Implementation of a Finite Element Model to Generate Synthetic data for Open ...
Implementation of a Finite Element Model to Generate Synthetic data for Open ...Implementation of a Finite Element Model to Generate Synthetic data for Open ...
Implementation of a Finite Element Model to Generate Synthetic data for Open ...IRJET Journal
 
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...IOSR Journals
 
FSI-based Overflow Assessment of Liquid Storage Tanks
FSI-based Overflow Assessment of Liquid Storage TanksFSI-based Overflow Assessment of Liquid Storage Tanks
FSI-based Overflow Assessment of Liquid Storage TanksIRJET Journal
 
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdf
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdfCoupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdf
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdfAbassyacoubou
 
Experimental Research on Primary Wave Height Generated by Integral Landslide ...
Experimental Research on Primary Wave Height Generated by Integral Landslide ...Experimental Research on Primary Wave Height Generated by Integral Landslide ...
Experimental Research on Primary Wave Height Generated by Integral Landslide ...Agriculture Journal IJOEAR
 
Head Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip BucketsHead Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip Bucketstheijes
 
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDERCFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDERAM Publications
 

Similar to Research on the Trajectory of Oil Spill in Near-shore Area (20)

G04702074087
G04702074087G04702074087
G04702074087
 
A model for predicting rate and volume of oil spill in horizontal and vertica...
A model for predicting rate and volume of oil spill in horizontal and vertica...A model for predicting rate and volume of oil spill in horizontal and vertica...
A model for predicting rate and volume of oil spill in horizontal and vertica...
 
IPTC_12_2015
IPTC_12_2015IPTC_12_2015
IPTC_12_2015
 
Erosion Rate Prediction in Single and Multiphase Flow using CFD
Erosion Rate Prediction in Single and Multiphase Flow using CFDErosion Rate Prediction in Single and Multiphase Flow using CFD
Erosion Rate Prediction in Single and Multiphase Flow using CFD
 
Presentation of the OLF/NSA Davit-Launched Lifeboats Project
Presentation of the OLF/NSA Davit-Launched Lifeboats ProjectPresentation of the OLF/NSA Davit-Launched Lifeboats Project
Presentation of the OLF/NSA Davit-Launched Lifeboats Project
 
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...
Application of Foamy Mineral Oil Flow under Solution Gas Drive toa Field Crud...
 
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...
Comparison of Multiphase Flow Model and Single-Phase Flow Model of Steam Jet ...
 
A brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationA brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilization
 
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
 
DA 2 NDMM.pptx
DA 2 NDMM.pptxDA 2 NDMM.pptx
DA 2 NDMM.pptx
 
On-the-simulation-of-three-phase-slug-flow
On-the-simulation-of-three-phase-slug-flowOn-the-simulation-of-three-phase-slug-flow
On-the-simulation-of-three-phase-slug-flow
 
Flow assurance
Flow assuranceFlow assurance
Flow assurance
 
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...
IRJET- Parameters Affecting the Clogging of Recharge Wells in Different Soil ...
 
Implementation of a Finite Element Model to Generate Synthetic data for Open ...
Implementation of a Finite Element Model to Generate Synthetic data for Open ...Implementation of a Finite Element Model to Generate Synthetic data for Open ...
Implementation of a Finite Element Model to Generate Synthetic data for Open ...
 
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...
Review on Design Optimization of Liquid Carrier Tanker for Reduction of Slosh...
 
FSI-based Overflow Assessment of Liquid Storage Tanks
FSI-based Overflow Assessment of Liquid Storage TanksFSI-based Overflow Assessment of Liquid Storage Tanks
FSI-based Overflow Assessment of Liquid Storage Tanks
 
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdf
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdfCoupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdf
Coupling_Basin_and_Reservoir_Simulators_for_an_Imp.pdf
 
Experimental Research on Primary Wave Height Generated by Integral Landslide ...
Experimental Research on Primary Wave Height Generated by Integral Landslide ...Experimental Research on Primary Wave Height Generated by Integral Landslide ...
Experimental Research on Primary Wave Height Generated by Integral Landslide ...
 
Head Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip BucketsHead Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip Buckets
 
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDERCFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
 

Recently uploaded

[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 

Recently uploaded (20)

[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 

Research on the Trajectory of Oil Spill in Near-shore Area

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 4 Issue 4 || April 2015 || PP.68-74 www.ijesi.org 68 | Page Research on the Trajectory of Oil Spill in Near-shore Area Liang-jun GAO (School of Petrochemistry and Energy Engineering, Zhejiang Ocean University, Zhoushan Zhejiang 316022, China) Abstract: The diffusion trajectory of three common oil-spills was numerical simulated in the dock area and open water in this paper. Vortexes appeared in simulated diffusion trajectory of oil-spills in the dock area, which was attributed to the effect of water flow and shoreline. Whereas a ribbon diffusion trajectory was observed when the diffusion trajectory was simulated in open water, and the diffusion direction of oil-spill is along the direction of water flow. Keywords: Oil Spill; Nearshore; Proliferation; Trajectory I. INTRODUCTION For exploring oil spill trajectory, theoretical researches and numerical simulation has been studied by scientists, and the most of theoretical basis is Fay's "Three Equilibrium Equations"[1, 2] . Many oil spill simulation systems are using oil particle model [3, 4] , by integrating numerical simulation and GIS technology, a range of marine oil spill simulation systems have been developed, such as the OILMAP system that can be simulated oil spill fate and behavior and traceable back to the push, which was developed by ASA (Applied Science Associates, Inc.) in the 1980s; The company also launched the SIMAP (Spill impact model analysis package) system consists of a biological effects module. Norwegian Industrial Technology Research Institute has developed the OSCAR (oil spill contingency and response) system that can simulate the degree of pollution of the coastline caused. Australia OSTM system based on OILMAP completed, and includes a hydrodynamic model HYDROMAP. The simulation results this system obtained show that the effects of the geostrophic flow in oil spill trajectory simulation are very important. As can be seen from the above description, the international oil spill simulation systems developed earlier and more mature, with higher forecast accuracy of oil spill trajectories. But they are mainly used in large-scale simulation of oil spills at sea, and a large range of the analog waters, but the accuracy of these systems used in a small amount of oil spill and near-shore oil spill simulations needs to be verified. The domestic use of oil spill simulation systems are generally based on the post-secondary development of OILMAP [5-7] . These systems are widely used in fixed open waters. Some researchers have studied the oil spill trajectory in rivers and lakes [8, 9] . But research on the oil spill trajectories above does not consider the impact of shoreline adsorption and bottom friction [10] on the oil spill trajectory. Through the analysis of the relevant literature, the current oil spill trajectory simulation systems used widely in open waters, while they are used in large marine oil spill trajectory simulations, they have a high degree of accuracy and extremely reliable. However, the oil spill occurred in the near-shore terminals generally have a small amount, complex factors and other characteristics. Therefore, the study of the oil spill trajectory simulation in marina area becomes necessary. 1 The oil spill dispersion model under the near-shore hydrological conditions The main content of oil spill dispersion modeling under the near-shore hydrological conditions is simulated oil spill occurred in the dock area. By establishing a simplified near-shore (extended from the shore to 50m) model of environmental conditions to simulate and analyze the diffusion of oil spill trajectory.
  • 2. Research on the Trajectory of… www.ijesi.org 69 | Page 1.1 Modeling Taking a depot located in Zhoushan Port as the background to create a simplified model of near-shore environmental conditions. Crude oil, fuel oil and diesel were used as the diffusion to build the model. The nature of the oil required for the experiment shown in Table 1. Tab1 the main properties of the test oil [11] Parameter Oil species Density [kg/m³] Dynamic viscosity [Pa·s] Crude Oil 810 0.08 10#Diesel Oil 850 0.003825 180# Fuel Oil 985 0.1773 Establish a simplified model based on the following principles: 1) Ignoring the local variations of the quay and considered it is approximately flat. In the marina there has a 2000t’s berth; its length is 125m, so only take the spilled oil near the shoreline as research subjects; 2) The model area is mainly controlled waters surrounded booms within the near-shore hydrological conditions (the sea water flowing is onshore flow, the tide is irregular semidiurnal, the water temperature is 15 ℃, constant wind field model), ignoring the effects of wave residual current; 3) Assuming the leak width of 1m, oil leakage rate of 1m / s, steady oil leak; 4) Embankment perpendicular to the sea. Influence on the movement of the spilled oil caused by the adsorption of shoreline is considered; 5) The material used in the construction of the dock is cement. There is no shear stress and the roughness height is 1.5mm, roughness constant is 0.5. 1.2 Numerical simulation The theoretical analysis and the establishment of computational models are included in this section. Theoretical analysis based primarily on near-shore tidal wave nonlinear equations, combined with the impact of spilled oil caused by wind field transformation matrix. Numerical simulation with a depot located in Zhoushan Port as the background, using software for modeling and post-processing. 1.2.1 Theoretical model Stratification of Seawater density in the coastal region was not significant, Two-dimensional flow mathematical model can be used for simulating the flow field. The continuity and momentum equations are as follows: The continuity equation: 0 x H u H v t x y          (1) The momentum equations: ( ) ( ) xw xb t t H u H u H u z u u u v f vH gH H v H v t x y x x x y x                             (2) ( ) ( ) yw yb t t H v H v H v z v v u v f vH gH H v H v t x y y x x y x                             (3) Considering the impact of wind field on the sea surface, then: The wind stress equation: co s sin sin co s U W                (4) In the equations: u , v - The average flow velocity along the perpendicular direction of the x and y,m/s;
  • 3. Research on the Trajectory of… www.ijesi.org 70 | Page xw , yw - Wind stress in the x direction and the y direction; xb , yb - The bottom floor stress in the x and y directions of the seabed; tv - Turbulent viscosity coefficient; f - Coriolis force coefficient; U - The oil film drifts velocity under the action of wind, m / s; W- Wind speed of 10m on the sea, m / s;  - Wind factor, generally take 3% -4%; cos sin sin cos              - Wind field transformation matrix; The initial conditions: 0( , , 0) ( , )h x y h x y ; (5) ( , , 0) ( , , 0) 0U x y V x y  . (6) The boundary conditions: The fixed boundary normal vector 0nU  , 0nV  ; (7) Open borders ( , , ) ( , , ) ( , , ) ( , , ) A A u x y t u x y t v x y t v x y t    . (8) 1.2.2 Calculation model Using Gambit to modeling and meshing, and set the boundary conditions. Where the boundary condition of water boundary (water-inlet) and spill boundary (oil-inlet) types are velocity-inlet, 50m from the shoreline will be set at the distal (far), outputting a two-dimensional model (Export 2-D (XY) Mesh). The simplified model used is shown in Fig1. 1-a 1-b Fig1 a partial simplified schematic diagram of calculation model (a- the schematic diagram of initial flow field; b- the partial schematic diagram of the grid) 1.3 Analysis Adopt ANSYS for the post-processing of the model. Select k-epsilon model and the VOF method to simulate the running track after the oil spill.
  • 4. Research on the Trajectory of… www.ijesi.org 71 | Page 2-a 2-b
  • 5. Research on the Trajectory of… www.ijesi.org 72 | Page 2-c 2-d Fig 2 the range of the spill schematic
  • 6. Research on the Trajectory of… www.ijesi.org 73 | Page (a- the schematic of the range after 1s; b- the schematic of the range after 20s;c- the schematic of the range after 40s; d- the schematic of the range after 1min. From left to right: crude oil, 10# diesel oil, 180#fuel oil) For the same oil, spill oil is mainly concentrated in the vicinity of the exit as a group throughout the process of spill. In the beginning 20s, the scope of the spill is rapidly expanding according to this shape. For different kinds of oil,the basic shape of the oil spill centralized area is similar, but there still exists differences. During diffusion process, two symmetrical vortexes are forming near the axis of the outlet. The formation of vortex is mainly due to the impact of water flow to the oil and the wall, in which the affect of the water flow plays a major role. With the proliferation continues, Center of the vortex moves along the exponential curve. The density of fuel oil is greater than crude oil and diesel oil, the shape of the vortex is clearer, the same as diffusion range. II. COMPARISONS The main content is to compare the simulation results and which under the open water environmental conditions, including two aspects such as the diffusion region and the trajectories of oil particles (As shown in Figure 3, 4). 2.1 The differences in diffusion areas of spill Fig 3 the oil spill extended area under two environmental conditions As can be seen in Fig 2-d and Fig 3, oil spill occurred in open water, distributed like tape along the flow direction, only small amount of the oil accumulate in the front of the export. With the increase of oil spills time, the regional of oil distributed increases gradually and began to disperse. But the oil spill occurred near the marina waters is relatively concentrated. This is mainly affected by shoreward flow and the wall. Thus, the recycling method will be different. 2.2The differences in oil particles trace 4-a 4-b Fig 4 the traces of oil particles under two environmental conditions (a- the traces of oil particles under the near-shore hydrological conditions, b- the traces of oil particles under the open water environmental conditions)
  • 7. Research on the Trajectory of… www.ijesi.org 74 | Page Through the analysis of Fig 4 can be known, the oil spill occurred in the area near the pier affected by the vortex. The existence of vortex makes the oil spill was reunited and limits the proliferation of regional of oil. Center of the vortex changing as time increases. But for oil spills occurred in open waters, by the impact of water, the trajectory of spill is changed, its direction tends to follow the movement of water, and gradually spread radically. III. CONCLUSIONS 1) Compared with the oil spill occurred in open sea, the diffusion range of the oil spill occurred in the dock area is relatively small, mainly concentrated in the vicinity of the oil spill exit. The oil spill occurred in the open water has farther distance, which is determined by the speed of the water flow and oil spill. The reason for this phenomenon is the different movement state of oil spills. 2) On the motion state of oil spills, for the oil spill occurred in the dock area, vortexes will form in the diffusion process, which makes the oil to be diffused like groups. But for the oil spill occurred in the open water, it spread like ribbon along the flow direction, the range of its influence is larger. This also makes the recovery process in two cases is different. 3) In selecting recovery methods, large recycling equipments can be used in open water, such as oil spill recovery vessels. During recovery, it is possible to achieve better results recovered against the direction of flow. When recycling the oil spill occurred in the dock areas, as the complex topography, it is not appropriate to use large-scale recycling equipments. Using oil fence to control the area of the accident and recycling flexibility by a small recovery unit will be more appropriate. 4) When simulated the trajectories of spilled oil in near-shore, the bottom friction is not taken into account. Therefore, bottom friction effects on the oil spill trajectory needs further study. Acknowledgements : The study was supported by the Welfare Technology Research Project of Zhejiang Province (No. 2011C31009), the Science and Technology Project of Zhoushan (special) (No. 2013C41012) and the Science and Technology Project of Zhoushan (No. 2012C21025). REFERENCES [1]. Fay.J.A., Physical processes in the spreading of oil on a water surface, in: Proceedings of the Joint Conference on Prevention and Control of Oil Spills, Washington. DC, 1971, pp. 463–467. [2]. ZHAO W Q, WU Z H, Determination of the Dimension of an Oil Film by Instantaneous Oil Slick On the Sea Surface, Journal of Chengdu University of Science and Technology. 41 (1988) 63-72. [3]. Johansen O, The Halten Bank experiment-observations and model studies of drift and fate of oil in the marine environment, in: Proceeding of the 11th Arctic Marine Oil Spill Program (AMOP) Technical Seminar, Environment, Canada, 1984, pp. 18-36. [4]. Elliot A J, Oceanic processes and NW European shelf databases, Marine Pollution Bulletin, 22(1991) 548-553. [5]. LIU Y C, YIN P H, LIN J G, et al, Prediction of Oil Spill Spreading and Transport over the sea, Journal of Dalian Maritime University, 28 (2002) 41-44. [6]. XIONG D Q, DU C, ZHAO D X, et al, Oil Spill Modeling Information System for Dalian Sea and Its Application, Environmental Protection In Transportation, 23 (2002) 63-66. [7]. SUN J, YU Q J, HUANG L W, Oil Spilled Information Management System of Zhoushan Harbor Based on OILMAP, Computer Simulation, 19 (2002) 76-78. [8]. JIANG W X, Study on the Simulation of Accidental Oil Spill in the Huangpu River, Shanghai, Tongji University (2007). [9]. ZHOU X H, Study on Numerical Simulation of Oil Spill Movement in the Lake, Nanjing, HoHai University (2005). [10]. FENG S Z, LI F Q, LI S J. An Introduction to Marine Science, first ed, Higher Education Press, Beijing, 1999. [11]. XIONG Y, XU S H, LIU X, Application and Management of Oil, second ed, China Petrochemical Press, Beijing, 2010.