Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

[CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

510 views

Published on

This work develops a system of spherical magnetic tangi- bles, GaussMarbles, that exploits the unique affordances of spherical tangibles for interacting with portable physical con- straints. The proposed design of each magnetic sphere in- cludes a magnetic polyhedron in the center. The magnetic polyhedron provides bi-polar magnetic fields, which are ex- panded in equal dihedral angles as robust features for track- ing, allowing an analog Hall-sensor grid to resolve the near- surface 3D position accurately in real-time. Possible inter- actions between the magnetic spheres and portable physical constraints in various levels of embodiment were explored us- ing several example applications.

Published in: Technology
  • Be the first to comment

[CHI2016] GaussMarbles: Spherical Magnetic Tangibles for Interacting with Portable Physical Constraints

  1. 1. GaussMarbles:SphericalMagneticTangiblesfor InteractingwithPortablePhysicalConstraints Han-ChihKuo,Rong-HaoLiang,Long-FeiLin,Bing-YuChen NationalTaiwanUniversity
  2. 2. InteractiveSurface ConstructiveAssembly Token+Constraint Token+Constraint Systems for Tangible Interaction with Digital Information 
 (Ullmer et al. TOCHI ‘05) TangibleUserInterfaces
  3. 3. InteractiveSurface ConstructiveAssembly Token+Constraint MagGetz 
 (Hwang et al. UIST ’13) Tangible Magnetic Appcessories 
 (Bianchi et al. TEI ’13) Tangible Remote Controllers for Wall-size Displays 
 (Jansen et al. CHI ’12) TrackingToken+ConstraintInteractionsonPortablePlatforms Token+StrictConstraint
  4. 4. TrackingBall+ConstraintInteractionsonStationaryPlatforms Ball+LooseConstraint inFORM
 (Follmer et al. UIST ’13)
  5. 5. Ball+ConstraintInteractionsonPortablePlatforms
  6. 6. TrackingBall+ConstraintInteractionsonStationaryDisplays camera camera magnetic-fieldcamera UIST’11, October 16–19, 2011, Santa Barbara, CA, USA BetterFormFactors Vision-basedObjectTrackingTechnologies GaussSense
 (Liang et al. UIST ’12) Portico
 (Avrahami et al. UIST ’11)
  7. 7. ChallengesofMagneticTrackingOneofthebipolarmagneticfield maydisappearwhilerolling
  8. 8. Solution:MagneticRegularPolyhedron Expandingmagneticfieldsinequaldihedralanglestomakethe bipolarmagneticfieldsvisibleatanydirection
  9. 9. Solution:MagneticRegularPolyhedron Expandingmagneticfieldsinequaldihedralanglestomakethe bipolarmagneticfieldsvisibleatanydirection
  10. 10. ExplorativeStudy differentsizesdifferentfaces Formfactorsvs.trackingperformances
  11. 11. Formfactorsvs.trackingperformances ExperimentalApparatus
  12. 12. servo motor stabilizer analog Hall-sensor grid Formfactorsvs.trackingperformances ExperimentalApparatus
  13. 13. servo motor stabilizer analog Hall-sensor grid Formfactorsvs.trackingperformances ExperimentalApparatus singlemagnet 16mm-radius 6-face 13.5,16,18.5,21mm-radius 4,6,8,12-face 16mm-radius
  14. 14. servo motor stabilizer analog Hall-sensor grid Formfactorsvs.trackingperformances ExperimentalApparatus 8(units)×5(positions)×4(hoverheights) ×10(angles)×100(samples)= 160,000 bitmapsofmagneticfields singlemagnet 16mm-radius 6-face 13.5,16,18.5,21mm-radius 4,6,8,12-face 16mm-radius
  15. 15. Formfactorsvs.trackingperformances DataProcessing Bipolar-blobcontours North-blobcontours South-blobcontours 3typesofcontour 8(units)×5(positions)×4(hoverheights) ×10(angles)×100(samples)= 160,000 bitmapsofmagneticfields (maxIntensityMandblobAreaA)
  16. 16. Formfactorsvs.trackingperformances DataProcessing Bipolar-blobcontours North-blobcontours 1. Centroidofcontours 2. Centroidofpixels(inallcontours) 3. Centroidofmass(inallcontours) 3typesofcontour x 8(units)×5(positions)×4(hoverheights) ×10(angles)×100(samples)= 160,000 bitmapsofmagneticfields (maxIntensityMandblobAreaA) 3typesofcentroid South-blobcontours
  17. 17. 9Distributions ofcentroids Formfactorsvs.trackingperformances DataProcessing Bipolar-blobcontours North-blobcontours 1. Centroidofcontours 2. Centroidofpixels(inallcontours) 3. Centroidofmass(inallcontours) 3typesofcontour 3typesofcentroidx d 8(units)×5(positions)×4(hoverheights) ×10(angles)×100(samples)= 160,000 bitmapsofmagneticfields (maxIntensityMandblobAreaA) = South-blobcontours
  18. 18. 9Distributions ofcentroids Formfactorsvs.trackingperformances DataProcessing Bipolar-blobcontours North-blobcontours 1. Centroidofcontours 2. Centroidofpixels(inallcontours) 3. Centroidofmass(inallcontours) d mean(d),std(d): measured dispersion 8(units)×5(positions)×4(hoverheights) ×10(angles)×100(samples)= 160,000 bitmapsofmagneticfields 3typesofcontour 3typesofcentroidx (maxIntensityMandblobAreaA) = South-blobcontours
  19. 19. 0 1 2 3 4 5 6 1M P4 6M 8M 12M IN-OC IN-OP IN-OM IS-OC IS-OP IS-OM IB-OC IB-OP IB-OMOc-IN Op-IN Om-IN Oc-IS Op-IS Om-IS Oc-IB Op-IB Om- IB N/A N/A N/A 0 1 2 3 4 5 6 (mm) distance(d) 1.Bi-polarcentroidofmassisthemoststablefeatureforxy-planetracking. singlemagnet 16mm-radius 4-face 16mm-radius 6-face 16mm-radius 8-face 16mm-radius 12-face 16mm-radius SummaryofFindings
  20. 20. SummaryofFindings 0 1 2 3 4 5 6 1M P4 6M 8M 12M IN-OC IN-OP IN-OM IS-OC IS-OP IS-OM IB-OC IB-OP IB-OMOc-IN Op-IN Om-IN Oc-IS Op-IS Om-IS Oc-IB Op-IB Om- IB N/A N/A N/A 0 1 2 3 4 5 6 (mm) distance(d) 1.Bi-polarcentroidofmassisthemoststablefeatureforxy-planetracking. singlemagnet 16mm-radius 4-face 16mm-radius 6-face 16mm-radius 8-face 16mm-radius 12-face 16mm-radius 2.Polyhedronssupportz-axis trackingbyusingtheproductof south-blobareaandintensity (AS ×MS),andasingle magnetdoesnot. 3 mm 6 mm 9 mm 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000 (gauss) 200 150 100 50 0 150000 100000 50000 0 (gaussxmm2) a b4-face 6-face 8-face 12-face
  21. 21. SummaryofFindings h = 12 mm h = 9 mm h = 6 mm h = 3 mm m Om- IB 2 4 0 2 0 2 0 2 0 (mm) distance(d) a 3.Morefacesyieldgreater accuracy,butaccuracydrops assensingdistanceincreases. (cont’d) 4face 6face 8face 12face
  22. 22. h = 12 mm h = 9 mm h = 6 mm h = 3 mm m Om- IB 2 4 0 2 0 2 0 2 0 (mm) distance(d) a 3.Morefacesyieldgreater accuracy,butaccuracydrops assensingdistanceincreases. SummaryofFindings 4face 6face 8face 12face4.Smallerpolyhedronsyield slightlygreateraccuracy. 0 1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 h = 3 mm h = 12 mmh = 9 mmh = 6 mm 2 4 0 6 8 (mm) distance(d) a b 13.5mm radius 16mm radius 19.5mm radius 21mm radius (cont’d)
  23. 23. DesigningBall+ConstraintInteractionsonPortablePlatforms Applications
  24. 24. InteractingwithConstraintsonaDisplay UsingPhysicalConstrainttoManipulateaBall
  25. 25. InteractingwithConstraintsonaDisplay EmbodiedGestures
  26. 26. InteractingwithConstraintsonaDisplay Ball+ConstraintInteractionsonHandheldDisplays
  27. 27. InteractingwithConstraintsonaDisplay conductiverubber Touchinteractionsonamagneticsphere
  28. 28. InteractingwithConstraintsonaDisplay Clay-madeterritoryasacontinuousconstraint
  29. 29. InteractingwithConstraintsonaDisplay Around-DeviceInteractions
  30. 30. InteractingwithaConstraintNearbyaDisplay UsingPhysicalConstraintstoBridgeDigital-andReal-worldExperiences
  31. 31. InteractingwithaConstraintNearbyaDisplay UsingPhysicalConstraintstoBridgeDigital-andReal-worldExperiences
  32. 32. InteractingwithaConstraintDistantfromaDisplay Velcrostrap High-frictionMaterialsasPhysicalConstraints
  33. 33. InteractingwithaConstraintDistantfromaDisplay Velcrostrap High-frictionMaterialsasPhysicalConstraints
  34. 34. GaussMarbles:SphericalMagneticTangiblesfor InteractingwithPortablePhysicalConstraints Han-ChihKuo,Rong-HaoLiang,Long-FeiLin,Bing-YuChen NationalTaiwanUniversity Thanks!Questions? Theproposedmagneticregularpolyhedron designenables • stable3DtrackingbyananalogHall-sensorgrid withoutprioriknowledge • theexplorationsofball+constraintinteraction onportableplatforms Conclusion

×