SlideShare a Scribd company logo
1 of 101
Download to read offline
La ciencia (la nanociencia) y las
tecnologías energéticas del futuro

Félix Yndurain
Departamento de Física de la Materia Condensada
Universidad Autónoma de Madrid
(e-mail: felix.yndurain@uam.es)

nanoGUNE 30 enero 2014
INDICE
•  Introducción: Consumo de energía. El medio ambiente
•  La investigación Básica en el DOE: 5 “grandes retos” científicos
•  Necesidades y ejemplos de investigación básica en:
  Energía nuclear
  Fotovoltaica
  Iluminación
  Hidrógeno
  Eficiencia
  Almacenamiento
  “Nuevos” combustibles fósiles
•  Conclusiones
IUPAP Energy Report (2003). http://www.iupap.org/
US Department of Energy. http://www.energy.gov/
nanoGUNE 30 enero 2014
CONSUMO DE ENERGEIA

nanoGUNE 30 enero 2014
Consumo mundial de Energía

nanoGUNE 30 enero 2014
Consumo mundial de Energía

Fuente: BP Statistical Review of World Energy June 2013

nanoGUNE 30 enero 2014
Lo arriesgado de hacer predicciones:
El pico de Hubbert (1956)

nanoGUNE 30 enero 2014
Reservas probadas de petróleo en 1992, 2002 y 2012

Fuente: BP Statistical Review of World Energy June 2013

nanoGUNE 30 enero 2014
Reservas probadas de gas en 1992, 2002 y 2012

Fuente: BP Statistical Review of World Energy June 2013

nanoGUNE 30 enero 2014
Consumo de energía primaria en algunos países en el año 2012 (Mtoe)
Petróleo

Gas natural

Carbón

Nuclear

Hidráulica

Renovable

USA

819,9

722,1

437,8

183,2

86,0

China

483,7

143,8

1873,3

22,0

Japón

218,2

116,7

124,4

63,8

31,4

111,5

Francia
Reino Unido

España
Alemania

Brasil

Per
capita
(toe)

PIB(k$)
per
capita

50,7

8,07

43,68

194,8

31,9

0,78

7,78

4,1*

18,3

8,2

3,99

33,07

19,3

13,9

4,6

14,9

3,27

25,47

75,2

79.2

22,5

4,8

26,0

3,99

31,93

80,9

42,5

11,4

96,3

13,2

5,4

4,36

31,16

68,5

78,3

39,1

15,9

1,2

8,4

3,69

31,94

125,6

29,2

13,5

3,6

94,5

11,2

1,03

8,77

Fuente: BP Statistical Review of World Energy June 2013

nanoGUNE 30 enero 2014
Consumo de energía por habitante frente producto
interior bruto para diversos países

Fuente: http://www.nationmaster.com y United Nations Development Programme
y elaboración propia
nanoGUNE 30 enero 2014
Consumo de energía por habitante frente a
“índice de desarrollo humano”

Fuente: http://www.nationmaster.com y United Nations Development
Programme y elaboración propia
nanoGUNE 30 enero 2014
El ejemplo de California
Consumo de electricidad y PIB en Estados Unidos y California

nanoGUNE 30 enero 2014
Modern CO2 Concentrations are Increasing

The current concentration is the highest in 800,000 years, as determined by ice core data

Atmospheric CO2 at Mauna Loa Observatory

Concentration
now ~388 ppm

Concentration
prior to 1800
was ~280 ppm

nanoGUNE 30 enero 2014
Greenland Ice Mass Loss – 2002 to 2009
Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets
revealed by GRACE (Gravity Recovery and Climate Experiment) satellite:

  In Greenland, the
mass loss increased
from 137 Gt/yr in
2002–2003 to 286
Gt/yr in 2007–2009
  In Antarctica, the
mass loss increased
from 104 Gt/yr in
2002–2006 to 246
Gt/yr in 2006–2009
I. Velicogna, GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L19503, 2009

nanoGUNE 30 enero 2014
Efectos de las actividades humanas en el
Medio Ambiente
población

CO2

emisiones

DT

nanoGUNE 30 enero 2014
Problemas relacionados con la energía:

Distribución geográfica no uniforme de los
recursos fósiles (finitos)
Deterioro del medio ambiente

nanoGUNE 30 enero 2014
Necesidad de Nuevas Tecnologías

nanoGUNE 30 enero 2014
Las Tecnologías Energéticas no son Nuevas: están
en evolución gracias al I+D
Máquina de vapor: J. Watt (1769)
Motor eléctrico: W. Siemens (1866)
Plantas de carbón para producir electricidad: H. Stinnes (1898)
Motor de explosión: C. & B. Benz (1888) {H. Ford (1903)}
Pila de combustible: W. R. Grove (1843)
Lámpara incandescente: T. Edison (1879)
Batería eléctrica: A. Volta (1798)
Efecto fotovoltaico: Becquerel (1839)
Turbinas para aviación: 1930-40
Nuclear: 1940 aprox.
Molino de viento ?
nanoGUNE 30 enero 2014
Investigación en Energía:
de la Investigación Básica a la Tecnología
Investigación Aplicada

Investigación Básica
•  Investigación básica para
generar conocimiento
sobre materiales y
sistemas aunque puedan
parecer solo

marginalmente
relacionados con los

problemas actuales de las
tecnologías energéticas.

•  Investigación con el
objetivo de cumplir hitos
tecnológicos y ensayos
con énfasis en el
desarrollo , rendimiento,
reducción de coste,
durabilidad de materiales
y componentes y en
procesos eficientes

Maduración y Penetración
Tecnológica
•  Investigación de escala
•  Plantas de
demostración
•  Reducción de costes
•  Prototipos
•  Soporte a la
comercialización

Evidentemente no es tan simple…

nanoGUNE 30 enero 2014
La investigación promovida por el
Deparment of Energy (DOE) en
Estados Unidos

nanoGUNE 30 enero 2014
Energy Imperatives (DOE)
 

Increase energy efficiency

 

Increase use of renewables

 

Adaptation of Carbon Capture and Sequestration

 

Increase nuclear power

 

Improve climate prediction

nanoGUNE 30 enero 2014
Benefits of BES
(Basic Energy Sciences )
“The Department of Energy BES program also plays a
major role in enabling the nanoscale revolution. The
importance of nanoscience to future energy
technologies is clearly reflected by the fact that all of
the elementary steps of energy conversion (e.g.,
charge transfer, molecular rearrangement, and
chemical reactions) take place on the nanoscale. The
development of new nanoscale materials, as well as
the methods to characterize, manipulate, and
assemble them, create an entirely new paradigm for
developing new and revolutionary energy
technologies.”
nanoGUNE 30 enero 2014
Status of FY 2014 Appropriations (DOE)

nanoGUNE 30 enero 2014
History of BES Request vs. Appropriation

24
nanoGUNE 30 enero 2014
Office of Science Programs
FY 2010 Appropriation

Advanced Scientific
Computing Research
(ASCR)

Science Lab Infrastructure (SLI)
Workforce Development for
Teachers and Scientists (WDTS)

FY 2010 Funding
Total = $4,903,710K
ASCR, $394,000K
BES, $1,636,500K
BER, $604,182K
FES, $426,000K

ASCR

Nuclear Physics (NP)

HEP, $810,483K
NP, $535,000K

NP

WDTS, $20,678K
SLI, $127,600K

High Energy Physics (HEP)

BES

HEP

S&S, $83,000K
SCPD, $189,377K

Basic Energy Sciences (BES)

FES
BER
Fusion Energy Sciences (FES)

Biological and Environmental
Research (BER)
BESAC November 5, 2009

nanoGUNE 30 enero 2014
The Basic Energy Sciences Major Scientific User Facilities
Advanced Photon Source

Intense Pulsed
Neutron Source

Advanced Light Source

National
Synchrotron
Light Source

Stanford Synchrotron
Radiation Laboratory

High-Flux
Isotope Reactor
Combustion Research
Facility

Manuel Lujan Jr. Neutron
nanoGUNE
Scattering Center

30 enero 2014

26
Spallation Neutron Source (SNS)
Oak Ridge National Laboratory

nanoGUNE 30 enero 2014

27
How Synchrotron Radiation (X-rays) can help to
Solve Energy Problems
 

Combustion Studies

 

Catalysts

 

Fuel Cells

 

Batteries

 

Solar Energy Utilization

 

etc.

nanoGUNE 30 enero 2014
Ultrafast Imaging of Fuel and Biofuel Sprays

Towards More Efficient and Cleaner Combustion Engines
• 

• 

• 

Use of ultrafast x-ray imaging, to elucidate this
complex multiphase fluid dynamics problem at a
fundamental level.
The x-ray images of the sprays have revealed, for
the first time, the instantaneous spray structure and
dynamics of optically dense sprays with a combined
unprecedented spatial and temporal resolution.
The spray morphology and dynamics will play an
important role, well beyond the combustion
research, in the emerging fields of microfluidics and
nanofluidics.

The liquid breakup of a highdensity stream from a fuel
injector as imaged with
ultrafast synchrotron x-ray
full-field phase contrast
imaging at the APS.

Fuente:
Yujie Wang et al, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using
structure-tracking velocimetry,” Nature Phys. 4, 305 (2008).
X. Liu, et al., Appl. Phys. Lett. 94, 084101 (2009).

nanoGUNE 30 enero 2014
Pt-Cu Catalysts for Polymer Electrolyte Membrane
Fuel Cells (PEMFC)
PEMFCs
  Pt catalyst in cathode is
inefficient & expensive.

Cu
Pt

  Dealloyed Cu3Pt

nanoparticle catalysts are
more active & use less Pt

X-ray studies show:
  Dealloyed Cu3Pt nanoparticle catalyst forms core-shell structure with Pt rich shell
  The Pt shell is compressively strained & this results in higher catalytic activity
  Dynamics of dealloying and stability studied in-situ with X-rays
  Cu3Pt catalysts are nearly as stable as pure Pt
R.Yang et al., J. of Physical Chemistry C, 115, 9074 (2011)

nanoGUNE 30 enero 2014
Underground Storage of Solid CO2
Nanoscale features of natural rock
surfaces accelerate the nucleation
and growth of carbonate minerals, the
thermodynamically favored form of
carbon dioxide (CO2) in geologic
formations. This research used
advanced experiments and
computational modeling to probe
these nanoscale features and
discover how they control the growth
and distribution of solid carbonates.
DePaolo
Center for Nanoscale Control of Geologic CO2
(NCGC) EFRC
Lawrence Berkeley National Laboratory

Image courtesy of Lawrence
Berkeley National Laboratory
X-ray computer tomography (CT)
image showing solid carbonate
(calcite, green) grown in a
network of glass beads (blue).

nanoGUNE 30 enero 2014
Nanoscience and energy technologies

nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
Nuevos centros de materiales/nanotecnologia

Molecular Foundry
(Lawrence Berkeley National
Laboratory)
Center for Nanoscale Materials
(Argonne National Laboratory)

Center for Nanophase Materials
Sciences
(Oak Ridge National Laboratory)

Center for Integrated Nanotechnologies (Sandia &
Los Alamos National Labs)

nanoGUNE 30 enero 2014
Five grand Challenges for Basic
Energy Sciences. Department of Energy
1.  How do we Control Materials Processes at the Level of Electrons?
2.  How do we Design and Perfect Atom- and Energy-Efficient Syntheses
of Revolutionary New Forms of Matter with Tailored Properties?
3.  How do Remarkable Properties of Matter Emerge from the Complex
Correlations of Atomic or Electronic Constituents and How Can We
Control These Properties?
4.  How can we Master Energy and Information on the Nanoscale to
Create New Technologies with Capabilities Rivaling Those of Living
Things?
5.  How do we Characterize and Control Matter Away—Especially Very
Far Away—from Equilibrium?
nanoGUNE 30 enero 2014
DOE Energy Innovation Hubs
• 
• 
• 
• 
• 

Fuels from Sunlight (Joint Center for Artificial Photosynthesis)
Energy Efficient Building Systems Design
Modeling and Simulation for Nuclear Fuel Cycles and Systems
Batteries and Energy Storage
Critical Materials
Each Hub will comprise a world-class, multi-disciplinary, and
highly collaborative research and development team.
Strong scientific leadership must be located at the primary location of the
Hub. Each hub must have a clear organization and management plan that
“infuses” a culture of empowered central research management throughout
the Hub.
nanoGUNE 30 enero 2014
Energy Innovation Hub: Batteries and Energy Storage
(Joint Center for Energy Storage Research: JCESR)
Fundamental research
JCESR’s core task is basic research—using a
new generation of nanoscience tools that
enable us to observe, characterize, and control
matter down to the atomic and molecular
scales.
This enhanced ability to understand materials
and chemical processes at a fundamental level
will enable us to reinvent electrical storage and
achieve major improvements in battery
performance at reduced cost.
Our industrial partners will help guide our efforts
to ensure that research leads toward practical
solutions that are competitive in the
marketplace.
nanoGUNE 30 enero 2014
New Materials for High-Energy, Long-Life Rechargeable Batteries
Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solidstate lithium-sulfur rechargeable batteries.
The Science
Introduction of nanoscale porosity in a bulk
electrolyte material (lithium thiophosphate)
was found to promote surface conduction of
lithium ions, thereby enhancing the ionic
conductivity in the nanostructured material by
three orders of magnitude over the normal
bulk phase.
The Impact
The high ionic conductivities in these new,
nanoporous electrolytes coupled with sulfurrich, nanostructured cathode materials have
led to the development of a new type of solidstate, rechargeable lithium-sulfur battery that
is potentially safer and more reliable than
today’s commercial Li ion batteries.

Scanning electron micrograph of a new solid
electrolyte material (lithium thiophosphate)
showing its surface morphology and the
nanoscale porosity which are responsible for its
high ionic conductivity; Inset shows its crystal
structure.

Z. Liu, W. Fu, E. Andrew Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J.
Rondinone, and C. Liang, “Anomalous High Ionic Conductivity of Nanoporous b-Li3PS4”, J.
Am. Chem. Soc., 135, 975, (2013).

nanoGUNE 30 enero 2014
Nano-Composite Designs for Energy Storage
Nano-porous metal oxide coatings on carbon fiber dramatically enhance the
electrical storage capacity for supercapacitors.

Researchers have discovered
that controlling the
nanostructured architecture of
metal oxides coated on carbon
fibers can lead to an unusually
high capacity to store electrical
charge in a special type of
supercapacitor known as a
pseudocapacitor.

Scanning electron microscopy of conductive
carbon fibers coated with metal oxide nanowires
(left) and close-ups of the cobalt oxide (Co3O4)
nanowires (top right) and the nanowire surface
(bottom right). These materials are being
developed to improve the storage capacity of a
type of supercapacitor known as a
psuedocapacitor.

nanoGUNE 30 enero 2014
Algunos ejemplos de investigación básica
relacionada con la energía

nanoGUNE 30 enero 2014
Energía Nuclear

•  Secciones eficaces de neutrones
•  Separación de isótopos
•  Físico-química de elementos pesados
•  Daño por Radiación

nanoGUNE 30 enero 2014
Evolución de conceptos de Reactores

nanoGUNE 30 enero 2014
Nuevos Reactores Nucleares:
• 

Reprocesan el combustible: reutilizan el Plutonio producido

• 

Funcionan a temperaturas muy altas: mejor rendimiento
termodinámico. Neutrones rápidos, se refrigeran por He.

• 

Elementos “fértiles”, no fisionables, como el Torio se pueden
convertir en fisionable como el U233

nanoGUNE 30 enero 2014
Necesidad de Medir Secciones Eficaces
Secciones eficaces de captura (línea sólida) y fisión (línea de puntos) para
el isótopo 238U. Las secciones eficaces están en barn y las energías de
los neutrones en eV.

Captura
Fisión

Fuente. Darwin & Charpak en “Megawatts and Megatons”
nanoGUNE 30 enero 2014
Secciones eficaces de captura (línea sólida) y fisión (línea de puntos) para
el isótopo 235U. Las secciones eficaces están en barn y las energías de los
neutrones en eV.

Fisión

Captura

Fuente: Darwin & Charpak en “Megawatts and Megatons”
nanoGUNE 30 enero 2014
REPROCESADO DEL COMBUSTIBLE IRRADIADO
El proceso PUREX actual
(separación de U y Pu)

• 
• 
• 
• 
• 

Disolución del UO2 en ácido nítrico
Separación del U+Pu con TBP ( tri-butil-fosfato)
Separación del U por reducción del Pu
Transformación del U y del Pu en óxidos para nuevo uso
Almacenamiento del resto de los residuos

( incluyen los productos de fisión y los actínidos menores ( Am Np y Cm)

Necesidad de Nuevos métodos de Separación

Probablemente el mayor cuello de botella para el
desarrollo de los nuevos reactores nucleares
nanoGUNE 30 enero 2014
Daño por Radiación
Esencial para:
• Almacenamiento del Combustible Nuclear
• Protección Radiológica

nanoGUNE 30 enero 2014
Quantification of actinide a-radiation damage in minerals and ceramics
Nature 445, 190-193 (2007)
Ian Farnan, Herman Cho & William J. Weber
There are large amounts of heavy a-emitters in nuclear waste and nuclear materials inventories stored in
various sites around the world. These include plutonium and minor actinides such as americium and curium.
In preparation for geological disposal there is consensus that actinides that have been separated from spent
nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their
superior aqueous durability and lower risk of accidental criticality. However, in the long term, the a-decay
taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A
fundamental property in predicting cumulative radiation damage is the number of atoms permanently
displaced per a-decay. At present, this number is estimated to be 1,000–2,000 atoms/ in zircon. Here we
report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/ in
radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly
radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the
same dose.

“On the basis of these measurements, the initially crystalline
structure of a 10 weight per cent 239Pu zircon would be
amorphous after only 1,400 years in a geological repository
(desired immobilization timescales are of the order of
250,000 years)”. These measurements establish a basis for assessing the long-term structural
durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage
event.

nanoGUNE 30 enero 2014
Radiation Damage
α-particle
α-decay process

Recoil

~ 5 MeV
It causes:
• Amorphisation
• Swelling
• Cracks
• Leaching

~ 100 keV
Zircon: model study: old natural samples
nanoGUNE 30 enero 2014
zircon

nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
•  Supercell of insulator’s bulk
•  Periodic boundary conditions
•  Density functional theory
•  Add external charge (potential)

•  Move it and follow electron wave-functions with TimeDependent DFT

nanoGUNE 30 enero 2014
Stopping power vs velocity
Threshold effect yes,
but still too low values
Proton/antiproton right

nanoGUNE 30 enero 2014
Advanced actinide fuels: Develop a fundamental
understanding of actinide-bearing materials properties
Scientific challenges

Mystery of 5f-electron elements
• Overcome limitations in current
experimental/theoretical
approaches to determining/
describing actinide material
properties
• Fundamental understanding of
thermal properties of complex
microstructure/composition
materials
• New approach to modeling phase
stability/compatibility in complex,
multicomponent actinide systems

Summary of research direction
New paradigm for 5f-electron research
•  Develop new quantum chemical/molecular
dynamic approaches that can accommodate the
additional complexity of 5f elements
•  Utilize/develop non-conventional experimental
techniques to measure and model thermal
properties of complex behavior actinide materials
•  Develop innovative defect models for multicomponent actinide fuel/fission product systems

Potential impact on ANES

Beyond cook and look
• Scientific basis for nuclear fuel design
• Optimizing fuel development and testing
• Reducing uncertainty in operational/safety
margins

Fuente: DOE. Advanced Nuclear Energy Systems

nanoGUNE 30 enero 2014
Algunos Proyectos financiados por el DOE
The Development of New Density Functional Theory and Computational Approaches for Strongly
Correlated f-Electron Ststems and Actinide Materials
Investigating the Nature of Extreme Condition Actinide Chemistry
Actinide Chemistry in Oxidative Alkaline Solutions: Synergistic Molecular Chemistry for Advanced
SNF Reprocessing
A First-principles Theory of the Energetics and Materials Properties of Actinides: The 5f-electron
Challenge
Actinide Binding to Dendritic Nanoscale Ligands: Fundamental Investigations and Applications to
Nuclear Separations
Probing f-electron interactions in actinide metal-ligand and metal-metal bonding
f-Electron Physics in α-Uranium, New Tools for an Historic Challenge
Materials for highly specific extraction of Cs and Sr from aqueous nuclear waste solutions
Modeling Spectroscopy and Photochemistry of Actinide Systems in Solution
An Experimental and Computational Study of Actinide and Fission Product Separation and
Sequestration by Engineered Mesoporous Materials
The link between actinide chemistry and core-level spectroscopies
An Ab Initio Full Potential Fully Relativistic Electronic Structure Study of Actinide Nitrides as
Nuclear Fuels

nanoGUNE 30 enero 2014
Energía Fotovoltaica

Shockley-Queisser límite para la eficiencia para el Si: 32%
Gap 1.1 eV, gap inidrecto, perdidas por calor etc.
nanoGUNE 30 enero 2014
Conversion Efficiencies vs. time (NREL)

nanoGUNE 30 enero 2014
Mercado de células fotovoltaicas

Fuente: P. Frankl, NEEDS, 2007
nanoGUNE 30 enero 2014
Células fotoeléctricas tandem

Usadas en el
Espacio

nanoGUNE 30 enero 2014
Otra manera de aumentar la eficiencia:
Introducción de una banda intermedia:

nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
Nuevas ideas para células Fotovoltaicas
Basadas en colorantes
y nanoparticulas

Basadas en “pozos cuánticos”

… y moléculas orgánicas
nanoGUNE 30 enero 2014
HIDRÓGENO COMO VECTOR ENERGÉTICO

nanoGUNE 30 enero 2014
DOE Basic Research Needs for the Hydrogen Economy
  There exists an enormous gap between present state-ofthe-art capabilities and requirements that will allow
hydrogen to be competitive with today’s energy
technologies:
  Production: 9M tons to 40M tons (vehicles)
  Storage: 4.4 MJ/L (10K psi gas) to 9.72 MJ/L
  Fuel cells: $3,000/kW to $35/kW (gasoline engine)
  Major R&D efforts will be required:
  Simple improvements of today’s technologies will
not meet requirements
  Technical barriers can be overcome only with high
risk/high payoff basic research
  Research is highly interdisciplinary, requiring
chemistry, materials science, physics, biology,
engineering, nanoscience, computational science.

Workshop: May 13-15, 2003
Report: Summer 2003

  Basic and applied research should couple seamlessly.

nanoGUNE 30 enero 2014
How to produce H2?

(The Joint Center for Artificial Photosynthesis: JCAP)
“Net primary energy balance of a solar-driven photoelectrochemical
water-splitting device”
Pei Zhai et al. Energy Environ. Sci., 2013,6, 2380-2389
“A fundamental requirement for a renewable energy generation technology
is that it should produce more energy during its lifetime than is required to
manufacture it. In this study we evaluate the primary energy requirements
of a prospective renewable energy technology, solar-driven
photoelectrochemical (PEC) production of hydrogen from water. Using a
life cycle assessment (LCA) methodology, we evaluate the primary energy
requirements for upstream raw material preparation and fabrication under
a range of assumptions of processes and materials. As the technology is
at a very early stage of research and development, the analysis has
considerable uncertainties”.
nanoGUNE 30 enero 2014
How to produce H2?

(The Joint Center for Artificial Photosynthesis: JCAP)
Molecular and Nanoscale Interfaces Project
Research in the Molecular and Nanoscale Interfaces Project is directed
towards the development of strategies and tools for linking individual
components into fully functioning, nanoscale artificial photosynthetic
assemblies. A major obstacle towards the development of a viable
artificial photosynthetic systems for water splitting to hydrogen and oxygen,
or the conversion of carbon dioxide and water to liquid fuel, involves the
inefficient charge transport between light absorbers and catalysts and, in
particular, between the sites of water oxidation and fuel-generating halfreactions. To address these challenges, the Molecular and Nanoscale
Interfaces Project aims to couple light absorbers, catalysts, and halfreactions for optimal control of the rate, yield, and energetics of electron
and proton flow at the nanoscale, so that complete macroscale artificial
photosynthetic systems can achieve maximum conversion of solar photon
energy into the chemical energy of a fuel.

nanoGUNE 30 enero 2014
Hydrogen storage at metal-organic materials

nanoGUNE 30 enero 2014
Hydrogen storage at metal-organic materials

Only H2 2% uptake: not
enough to be usefull!
nanoGUNE 30 enero 2014
Eficiencia energética
Ejemplos de nuevas tecnologías:
• Diodos de Estado Sólido para la iluminación
• Superconductividad

nanoGUNE 30 enero 2014
La Iluminación convencional es muy ineficiente

Eficiencia Energética: La iluminación basada en diodos de Estado Sólido
es potencialmente 10 y 2 veces más eficiente que las lámparas
incandescentes y fluorescentes, respectivamente.
nanoGUNE 30 enero 2014
El Problema es conseguir luz blanca

Tuning the color
of
semiconducting
nanocrystal
quantum dots

Fuente: C.B. Murray et al., J. Am. Chem. Soc. 115,
8706 (1993)

nanoGUNE 30 enero 2014
Conclusiones del estudio del Deparment
of Energy (DOE)
•  Aumentar la eficiencia en un factor 10
•  Las tecnologías antiguas tienen
limites esenciales
•  La extrapolación de las tecnologías
actuales no cubrirán los objetivos
•  Se necesitan “breakthroughs” para
aumentar significativamente las
eficiencias

nanoGUNE 30 enero 2014
Use of Superconducting Materials
Zero resistance
Below Tc (-270 ºC) the
resistance drops (rapidly) to
zero.

Flux expulsion
Below Tc magnetic flux is
expelled from
the sample. This give rise to
phenomenon of magnetic
levitation.
nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
La red eléctrica está bajo estrés, cerca de la saturación

Fiabilidad
“Blackouts”
Lower Manhattan infrastructure
(Courtesy of Con Edison)

Capacidad en Estados Unidos
Crecimiento del 50% para el año 2030
Red urbana: cuello de botella

Eficiencia
El 7-10% se pierde en el transporte.
En Estados Unidos, equivalente a 40
centrales de 1GW
nanoGUNE 30 enero 2014
Los Superconductores podrían transformar la red de
distribución

Albany N.Y.

Japanese Maglev flies with HTS coils,
(courtesy CJR)

nanoGUNE 30 enero 2014
Control of Grain Boundary Currents by Texturing - Key
to Second Generation (2G) YBCO Wire
Grain boundary critical current vs
misorientation angle

AMSC 2G wire architecture:
RABiTSTM process

Dimos, Chaudhari + Mannhart, PR 1990

Texturing within ~50 enables Jc(77 K) ~ 3x106 A/cm2 over 100’s of meters –
An amazing success, though it has taken 18 years to get to this point!
nanoGUNE 30 enero 2014
Science Opportunity: Vortex Physics
Vortex:
nanoscale quantum
of magnetic flux
Pinning vortices – basis for high
critical current density.
Much effort on existing materials (e. g.
YBCO) during last years.
But much still to do to increase Ic
Understanding magnetic pinning.

nanoGUNE 30 enero 2014
No se conoce el mecanismo responsable de
los nuevos superconductores!
Enorme tarea por delante
Nuevos materiales basados en diseño a escala atómica

nanoGUNE 30 enero 2014
“Nuevos” hidrocarburos

nanoGUNE 30 enero 2014
Los hidrocarburos no se acaban,
Ejemplo: Clatratos de Metano
Muy abundantes en el fondo del mar
Metano

Moléculas de
agua

nanoGUNE 30 enero 2014
Like “burning ice”

nanoGUNE 30 enero 2014
Natural Gas Hydrates
They are very abundant in Earth's permafrost and marine
sediments. They are also formed in natural gas extraction
pipes and have been detected in other planetary bodies like
Mars and some Saturn's moons
•  They can be a future hydrocarbons source
•  They are a serious environmental threat due to the
potential melting caused by the temperature increase
associated to the global warming and the further
uncontrolled release of their hydrocarbons
•  Potential use to store hydrogen and sequestration of CO2
nanoGUNE 30 enero 2014
Fundamental principles and applications of natural gas hydrates
E. Dendy Sloan Jr.

Center for Hydrate Research, Colorado School of Mines, Golden, Colorado
NATURE 426,353 (2003)

nanoGUNE 30 enero 2014
Enormes reservas

nanoGUNE 30 enero 2014
Preguntas:
Cómo se forman?
Cuantos hidrocarburos caben?
Son estables sin el hidrocarburo?
Se puede sustituir el Metano por CO2?
Sirven para almacenar H2?
Diagrama de fases P-T?

nanoGUNE 30 enero 2014
Cálculos de Primeros Principios

Reproducen la estructura de los clatratos y predicen cuantas moléculas de
metano y CO2 se pueden alojar en las cavidades (no más de 2 por cavidad).
La sustitución de metano por CO2 es dudosa
No sabemos como se forman. No son estables sin metano

Difusión molecular

nanoGUNE 30 enero 2014
Nanoscience and energy technologies

nanoGUNE 30 enero 2014
Conclusiones:
Como para toda tecnología, la investigación básica es
indispensable para el desarrollo de la tecnología energética
La investigación básica sirve para generar conocimiento sobre
materiales y sistemas aunque puedan parecer solo
marginalmente relacionados con los problemas actuales de
las tecnologías energéticas
La investigación básica servirá al desarrollo tecnológico si se
aprovecha en un entorno adecuado

nanoGUNE 30 enero 2014
MUCHAS GRACIAS!

nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
Phase Diagram

nanoGUNE 30 enero 2014
Reliability: Superconductors Enable
“Resistive” Fault Current Limiters
•  Superconductors -“smart” materials,
switch to resistive state above critical
current
•  Increased resistance limits current flow
•  Many FCLs demonstrated;
commercialization beginning
w/o FCL
w/FCL
Siemens/AMSC 2 MVA FCL

Need a current limiters a major opportunity for grid stabilization grid
Fault solution, or must drastically reconfigure and break up the

nanoGUNE 30 enero 2014
Funcionamiento de un Light Emitting Diode

nanoGUNE 30 enero 2014
Iluminación basada en Dispositivos de Estado Sólido
Investigación Básica Investigación Básica Orientada
  Entender y controlar
la ruta radiativa y no
radiativa en
semiconductores
  Nuevas
funcionalidades por
medio de
nanoestructuras
heterogéneas

  Diseño computacional y
síntesis de materiales
emisores de luz no
convencionales con
propiedades diseñadas
  Manejar y explotar el
desorden en dispositivos
orgánicos emisores de luz

  Entender el origen de la
degradación en
  Manejo innovador de
fotones
dispositivos orgánicos
emisores de luz
  Interacción luz-materia
  Descubrir nuevos
mejorada
conceptos para el control
  Caracterización,
de las características de
síntesis y
la luz emitida
ensamblado a escala
nanométrica
  Integración de
materiales
nanoestructurados en
dispositivos emisores
de luz

Fuente: DOE

Investigación Aplicada
Hitos Tecnológicos:
 Hacia 2025,
desarrollar tecnologías
avanzadas de
iluminación de Estado
Sólido con sistemas de
un 50% de eficiencia
con emisión muy
cercana a la luz solar
  Materiales y
componentes para
diodos emisores de luz
con componentes
inorgánicas y
orgánicas con
eficiencia mejorada y
bajo coste

Madurez Tecnológica y
Diseminación
  Desarrollo de
standards para
productos nuevos
  Aspectos
comerciales
  Asociaciones
industriales
  Aspectos legales,
de mercado, salud,
seguridad…
  Reducción de
costes
  Prototipos

  Fabricación de bajo
coste
  Cuestión de la
degradación y fiabilidad
de los productos

nanoGUNE 30 enero 2014
DOE Energy Innovation Hubs
(like the former Bell Labs.)
Proposed topics for Hubs:
• 
• 
• 
• 
• 
• 
• 
• 

Solar Electricity (EERE)
Fuels from Sunlight (SC)
Batteries and Energy Storage (SC)
Carbon Capture and Storage (FE)
Electrical Grid Systems (OE)
Energy Efficient Building Systems Design (EERE)
Extreme Materials for Nuclear Fuel Cycles and Systems (NE)
Modeling and Simulation for Nuclear Fuel Cycles and Systems (NE)

Each Hub will comprise a world-class, multi-disciplinary and highly
collaborative research and development team working largely under one roof.
This team will focus on solving critical technology challenges that prevent
large scale commercialization and deployment of the energy systems needed
to address our Nation’s greenhouse gas emission, energy security and
workforce creation goals
97
nanoGUNE 30 enero 2014
nanoGUNE 30 enero 2014
Molecular Dynamics based on force fields
•  One simulates the propagation of an energetic particle in a system of
atoms interacting via a model potential, by integrating the Newton
equations of motion.
•  The energetic particle displaces atoms from their equilibrium
positions, which, in turn, displace other atoms, resulting in a
“radiation cascade”.
•  At each moment of time, the simulation provides coordinates and
velocities of all atoms in the structure, giving the full phase trajectory
of damage propagation.
•  At the end of the simulation, the resulting structure contains
structural changes due to radiation damage, which can be analyzed
in detail.
•  DL_POLY 3 MD package. Several Millions of Atoms.
nanoGUNE 30 enero 2014
“Sumar” y “Partir” fotones

nanoGUNE 30 enero 2014
Otra vez los electrones f

nanoGUNE 30 enero 2014

More Related Content

What's hot

What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?glyndwruni
 
Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351e.friismadsen
 
The impact of coloured filters on the performance of polycrystalline photovo...
The impact of coloured filters on the performance  of polycrystalline photovo...The impact of coloured filters on the performance  of polycrystalline photovo...
The impact of coloured filters on the performance of polycrystalline photovo...IJECEIAES
 
원고(12 04-10)-regional greengrowth(iclei-전대욱)
원고(12 04-10)-regional greengrowth(iclei-전대욱)원고(12 04-10)-regional greengrowth(iclei-전대욱)
원고(12 04-10)-regional greengrowth(iclei-전대욱)Dae Uk JEON (全大旭)
 
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...Louis C. Groff II, PhD
 
Submarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationSubmarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationjjsoto00
 

What's hot (6)

What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?
 
Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351
 
The impact of coloured filters on the performance of polycrystalline photovo...
The impact of coloured filters on the performance  of polycrystalline photovo...The impact of coloured filters on the performance  of polycrystalline photovo...
The impact of coloured filters on the performance of polycrystalline photovo...
 
원고(12 04-10)-regional greengrowth(iclei-전대욱)
원고(12 04-10)-regional greengrowth(iclei-전대욱)원고(12 04-10)-regional greengrowth(iclei-전대욱)
원고(12 04-10)-regional greengrowth(iclei-전대욱)
 
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...
Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer N...
 
Submarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationSubmarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generation
 

Similar to La nanociencia y las tecnologías energéticas del futuro

Félix Yndurain: Nanociencia y tecnologías energéticas
Félix Yndurain: Nanociencia y tecnologías energéticasFélix Yndurain: Nanociencia y tecnologías energéticas
Félix Yndurain: Nanociencia y tecnologías energéticasFundacionZCC
 
hydrogen_senator_dorgan_rrrrt18nov04.ppt
hydrogen_senator_dorgan_rrrrt18nov04.ppthydrogen_senator_dorgan_rrrrt18nov04.ppt
hydrogen_senator_dorgan_rrrrt18nov04.pptPapuKumarNaik1
 
CCS as least-cost options for integrating intermittent renewables in low-carb...
CCS as least-cost options for integrating intermittent renewables in low-carb...CCS as least-cost options for integrating intermittent renewables in low-carb...
CCS as least-cost options for integrating intermittent renewables in low-carb...Global CCS Institute
 
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Sabiha Akter Monny
 
SCHO0610BSOT-e-e-FINAL
SCHO0610BSOT-e-e-FINALSCHO0610BSOT-e-e-FINAL
SCHO0610BSOT-e-e-FINALSteve Coates
 
Nanotechnology in Renewable Energy Sources
Nanotechnology in Renewable Energy SourcesNanotechnology in Renewable Energy Sources
Nanotechnology in Renewable Energy SourcesSteevan Sequeira
 
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...Heetae Kim
 
Program web New Trends 2015
Program web New Trends 2015Program web New Trends 2015
Program web New Trends 2015xrqtchemistry
 
Global Carbon Budget 2014
Global Carbon Budget 2014Global Carbon Budget 2014
Global Carbon Budget 2014Glen Peters
 
Potentials of the Atlantic Ocean for Renewable Energy Development in Nigeria
Potentials of the Atlantic Ocean for Renewable Energy Development in NigeriaPotentials of the Atlantic Ocean for Renewable Energy Development in Nigeria
Potentials of the Atlantic Ocean for Renewable Energy Development in NigeriaEmmanuel O.B Ogedengbe
 
Greening_IEW_2007
Greening_IEW_2007Greening_IEW_2007
Greening_IEW_2007LGDoone
 
Noyan Ulusarac Final Year Project
Noyan Ulusarac Final Year ProjectNoyan Ulusarac Final Year Project
Noyan Ulusarac Final Year ProjectNoyan Ulusarac
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfallsphackettualberta
 
Dr Brett Paris – The physical and economic impacts of climate variability
Dr Brett Paris – The physical and economic impacts of climate variability Dr Brett Paris – The physical and economic impacts of climate variability
Dr Brett Paris – The physical and economic impacts of climate variability NEXTDC
 
CarbonSense slides sample
CarbonSense slides sampleCarbonSense slides sample
CarbonSense slides sampleAntony Turner
 

Similar to La nanociencia y las tecnologías energéticas del futuro (20)

Félix Yndurain: Nanociencia y tecnologías energéticas
Félix Yndurain: Nanociencia y tecnologías energéticasFélix Yndurain: Nanociencia y tecnologías energéticas
Félix Yndurain: Nanociencia y tecnologías energéticas
 
hydrogen_senator_dorgan_rrrrt18nov04.ppt
hydrogen_senator_dorgan_rrrrt18nov04.ppthydrogen_senator_dorgan_rrrrt18nov04.ppt
hydrogen_senator_dorgan_rrrrt18nov04.ppt
 
CCS as least-cost options for integrating intermittent renewables in low-carb...
CCS as least-cost options for integrating intermittent renewables in low-carb...CCS as least-cost options for integrating intermittent renewables in low-carb...
CCS as least-cost options for integrating intermittent renewables in low-carb...
 
Sarunac_Publications_R1_2016_7122016
Sarunac_Publications_R1_2016_7122016Sarunac_Publications_R1_2016_7122016
Sarunac_Publications_R1_2016_7122016
 
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
 
MIT - The Future of Fuel Cyle
MIT - The Future of Fuel CyleMIT - The Future of Fuel Cyle
MIT - The Future of Fuel Cyle
 
SCHO0610BSOT-e-e-FINAL
SCHO0610BSOT-e-e-FINALSCHO0610BSOT-e-e-FINAL
SCHO0610BSOT-e-e-FINAL
 
Nanotechnology in Renewable Energy Sources
Nanotechnology in Renewable Energy SourcesNanotechnology in Renewable Energy Sources
Nanotechnology in Renewable Energy Sources
 
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...
Life cycle assessment on Pyroprocess as a nuclear spent fuel management techn...
 
Program web New Trends 2015
Program web New Trends 2015Program web New Trends 2015
Program web New Trends 2015
 
Global Carbon Budget 2014
Global Carbon Budget 2014Global Carbon Budget 2014
Global Carbon Budget 2014
 
Potentials of the Atlantic Ocean for Renewable Energy Development in Nigeria
Potentials of the Atlantic Ocean for Renewable Energy Development in NigeriaPotentials of the Atlantic Ocean for Renewable Energy Development in Nigeria
Potentials of the Atlantic Ocean for Renewable Energy Development in Nigeria
 
Greening_IEW_2007
Greening_IEW_2007Greening_IEW_2007
Greening_IEW_2007
 
Noyan Ulusarac Final Year Project
Noyan Ulusarac Final Year ProjectNoyan Ulusarac Final Year Project
Noyan Ulusarac Final Year Project
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfalls
 
GOMD_2016_mayurtalk
GOMD_2016_mayurtalkGOMD_2016_mayurtalk
GOMD_2016_mayurtalk
 
Dr Brett Paris – The physical and economic impacts of climate variability
Dr Brett Paris – The physical and economic impacts of climate variability Dr Brett Paris – The physical and economic impacts of climate variability
Dr Brett Paris – The physical and economic impacts of climate variability
 
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
 
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
 
CarbonSense slides sample
CarbonSense slides sampleCarbonSense slides sample
CarbonSense slides sample
 

Recently uploaded

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 

Recently uploaded (20)

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 

La nanociencia y las tecnologías energéticas del futuro

  • 1. La ciencia (la nanociencia) y las tecnologías energéticas del futuro Félix Yndurain Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid (e-mail: felix.yndurain@uam.es) nanoGUNE 30 enero 2014
  • 2. INDICE •  Introducción: Consumo de energía. El medio ambiente •  La investigación Básica en el DOE: 5 “grandes retos” científicos •  Necesidades y ejemplos de investigación básica en:   Energía nuclear   Fotovoltaica   Iluminación   Hidrógeno   Eficiencia   Almacenamiento   “Nuevos” combustibles fósiles •  Conclusiones IUPAP Energy Report (2003). http://www.iupap.org/ US Department of Energy. http://www.energy.gov/ nanoGUNE 30 enero 2014
  • 4. Consumo mundial de Energía nanoGUNE 30 enero 2014
  • 5. Consumo mundial de Energía Fuente: BP Statistical Review of World Energy June 2013 nanoGUNE 30 enero 2014
  • 6. Lo arriesgado de hacer predicciones: El pico de Hubbert (1956) nanoGUNE 30 enero 2014
  • 7. Reservas probadas de petróleo en 1992, 2002 y 2012 Fuente: BP Statistical Review of World Energy June 2013 nanoGUNE 30 enero 2014
  • 8. Reservas probadas de gas en 1992, 2002 y 2012 Fuente: BP Statistical Review of World Energy June 2013 nanoGUNE 30 enero 2014
  • 9. Consumo de energía primaria en algunos países en el año 2012 (Mtoe) Petróleo Gas natural Carbón Nuclear Hidráulica Renovable USA 819,9 722,1 437,8 183,2 86,0 China 483,7 143,8 1873,3 22,0 Japón 218,2 116,7 124,4 63,8 31,4 111,5 Francia Reino Unido España Alemania Brasil Per capita (toe) PIB(k$) per capita 50,7 8,07 43,68 194,8 31,9 0,78 7,78 4,1* 18,3 8,2 3,99 33,07 19,3 13,9 4,6 14,9 3,27 25,47 75,2 79.2 22,5 4,8 26,0 3,99 31,93 80,9 42,5 11,4 96,3 13,2 5,4 4,36 31,16 68,5 78,3 39,1 15,9 1,2 8,4 3,69 31,94 125,6 29,2 13,5 3,6 94,5 11,2 1,03 8,77 Fuente: BP Statistical Review of World Energy June 2013 nanoGUNE 30 enero 2014
  • 10. Consumo de energía por habitante frente producto interior bruto para diversos países Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia nanoGUNE 30 enero 2014
  • 11. Consumo de energía por habitante frente a “índice de desarrollo humano” Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia nanoGUNE 30 enero 2014
  • 12. El ejemplo de California Consumo de electricidad y PIB en Estados Unidos y California nanoGUNE 30 enero 2014
  • 13. Modern CO2 Concentrations are Increasing The current concentration is the highest in 800,000 years, as determined by ice core data Atmospheric CO2 at Mauna Loa Observatory Concentration now ~388 ppm Concentration prior to 1800 was ~280 ppm nanoGUNE 30 enero 2014
  • 14. Greenland Ice Mass Loss – 2002 to 2009 Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE (Gravity Recovery and Climate Experiment) satellite:   In Greenland, the mass loss increased from 137 Gt/yr in 2002–2003 to 286 Gt/yr in 2007–2009   In Antarctica, the mass loss increased from 104 Gt/yr in 2002–2006 to 246 Gt/yr in 2006–2009 I. Velicogna, GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L19503, 2009 nanoGUNE 30 enero 2014
  • 15. Efectos de las actividades humanas en el Medio Ambiente población CO2 emisiones DT nanoGUNE 30 enero 2014
  • 16. Problemas relacionados con la energía: Distribución geográfica no uniforme de los recursos fósiles (finitos) Deterioro del medio ambiente nanoGUNE 30 enero 2014
  • 17. Necesidad de Nuevas Tecnologías nanoGUNE 30 enero 2014
  • 18. Las Tecnologías Energéticas no son Nuevas: están en evolución gracias al I+D Máquina de vapor: J. Watt (1769) Motor eléctrico: W. Siemens (1866) Plantas de carbón para producir electricidad: H. Stinnes (1898) Motor de explosión: C. & B. Benz (1888) {H. Ford (1903)} Pila de combustible: W. R. Grove (1843) Lámpara incandescente: T. Edison (1879) Batería eléctrica: A. Volta (1798) Efecto fotovoltaico: Becquerel (1839) Turbinas para aviación: 1930-40 Nuclear: 1940 aprox. Molino de viento ? nanoGUNE 30 enero 2014
  • 19. Investigación en Energía: de la Investigación Básica a la Tecnología Investigación Aplicada Investigación Básica •  Investigación básica para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo marginalmente relacionados con los problemas actuales de las tecnologías energéticas. •  Investigación con el objetivo de cumplir hitos tecnológicos y ensayos con énfasis en el desarrollo , rendimiento, reducción de coste, durabilidad de materiales y componentes y en procesos eficientes Maduración y Penetración Tecnológica •  Investigación de escala •  Plantas de demostración •  Reducción de costes •  Prototipos •  Soporte a la comercialización Evidentemente no es tan simple… nanoGUNE 30 enero 2014
  • 20. La investigación promovida por el Deparment of Energy (DOE) en Estados Unidos nanoGUNE 30 enero 2014
  • 21. Energy Imperatives (DOE)   Increase energy efficiency   Increase use of renewables   Adaptation of Carbon Capture and Sequestration   Increase nuclear power   Improve climate prediction nanoGUNE 30 enero 2014
  • 22. Benefits of BES (Basic Energy Sciences ) “The Department of Energy BES program also plays a major role in enabling the nanoscale revolution. The importance of nanoscience to future energy technologies is clearly reflected by the fact that all of the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for developing new and revolutionary energy technologies.” nanoGUNE 30 enero 2014
  • 23. Status of FY 2014 Appropriations (DOE) nanoGUNE 30 enero 2014
  • 24. History of BES Request vs. Appropriation 24 nanoGUNE 30 enero 2014
  • 25. Office of Science Programs FY 2010 Appropriation Advanced Scientific Computing Research (ASCR) Science Lab Infrastructure (SLI) Workforce Development for Teachers and Scientists (WDTS) FY 2010 Funding Total = $4,903,710K ASCR, $394,000K BES, $1,636,500K BER, $604,182K FES, $426,000K ASCR Nuclear Physics (NP) HEP, $810,483K NP, $535,000K NP WDTS, $20,678K SLI, $127,600K High Energy Physics (HEP) BES HEP S&S, $83,000K SCPD, $189,377K Basic Energy Sciences (BES) FES BER Fusion Energy Sciences (FES) Biological and Environmental Research (BER) BESAC November 5, 2009 nanoGUNE 30 enero 2014
  • 26. The Basic Energy Sciences Major Scientific User Facilities Advanced Photon Source Intense Pulsed Neutron Source Advanced Light Source National Synchrotron Light Source Stanford Synchrotron Radiation Laboratory High-Flux Isotope Reactor Combustion Research Facility Manuel Lujan Jr. Neutron nanoGUNE Scattering Center 30 enero 2014 26
  • 27. Spallation Neutron Source (SNS) Oak Ridge National Laboratory nanoGUNE 30 enero 2014 27
  • 28. How Synchrotron Radiation (X-rays) can help to Solve Energy Problems   Combustion Studies   Catalysts   Fuel Cells   Batteries   Solar Energy Utilization   etc. nanoGUNE 30 enero 2014
  • 29. Ultrafast Imaging of Fuel and Biofuel Sprays Towards More Efficient and Cleaner Combustion Engines •  •  •  Use of ultrafast x-ray imaging, to elucidate this complex multiphase fluid dynamics problem at a fundamental level. The x-ray images of the sprays have revealed, for the first time, the instantaneous spray structure and dynamics of optically dense sprays with a combined unprecedented spatial and temporal resolution. The spray morphology and dynamics will play an important role, well beyond the combustion research, in the emerging fields of microfluidics and nanofluidics. The liquid breakup of a highdensity stream from a fuel injector as imaged with ultrafast synchrotron x-ray full-field phase contrast imaging at the APS. Fuente: Yujie Wang et al, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nature Phys. 4, 305 (2008). X. Liu, et al., Appl. Phys. Lett. 94, 084101 (2009). nanoGUNE 30 enero 2014
  • 30. Pt-Cu Catalysts for Polymer Electrolyte Membrane Fuel Cells (PEMFC) PEMFCs   Pt catalyst in cathode is inefficient & expensive. Cu Pt   Dealloyed Cu3Pt nanoparticle catalysts are more active & use less Pt X-ray studies show:   Dealloyed Cu3Pt nanoparticle catalyst forms core-shell structure with Pt rich shell   The Pt shell is compressively strained & this results in higher catalytic activity   Dynamics of dealloying and stability studied in-situ with X-rays   Cu3Pt catalysts are nearly as stable as pure Pt R.Yang et al., J. of Physical Chemistry C, 115, 9074 (2011) nanoGUNE 30 enero 2014
  • 31. Underground Storage of Solid CO2 Nanoscale features of natural rock surfaces accelerate the nucleation and growth of carbonate minerals, the thermodynamically favored form of carbon dioxide (CO2) in geologic formations. This research used advanced experiments and computational modeling to probe these nanoscale features and discover how they control the growth and distribution of solid carbonates. DePaolo Center for Nanoscale Control of Geologic CO2 (NCGC) EFRC Lawrence Berkeley National Laboratory Image courtesy of Lawrence Berkeley National Laboratory X-ray computer tomography (CT) image showing solid carbonate (calcite, green) grown in a network of glass beads (blue). nanoGUNE 30 enero 2014
  • 32. Nanoscience and energy technologies nanoGUNE 30 enero 2014
  • 34. Nuevos centros de materiales/nanotecnologia Molecular Foundry (Lawrence Berkeley National Laboratory) Center for Nanoscale Materials (Argonne National Laboratory) Center for Nanophase Materials Sciences (Oak Ridge National Laboratory) Center for Integrated Nanotechnologies (Sandia & Los Alamos National Labs) nanoGUNE 30 enero 2014
  • 35. Five grand Challenges for Basic Energy Sciences. Department of Energy 1.  How do we Control Materials Processes at the Level of Electrons? 2.  How do we Design and Perfect Atom- and Energy-Efficient Syntheses of Revolutionary New Forms of Matter with Tailored Properties? 3.  How do Remarkable Properties of Matter Emerge from the Complex Correlations of Atomic or Electronic Constituents and How Can We Control These Properties? 4.  How can we Master Energy and Information on the Nanoscale to Create New Technologies with Capabilities Rivaling Those of Living Things? 5.  How do we Characterize and Control Matter Away—Especially Very Far Away—from Equilibrium? nanoGUNE 30 enero 2014
  • 36. DOE Energy Innovation Hubs •  •  •  •  •  Fuels from Sunlight (Joint Center for Artificial Photosynthesis) Energy Efficient Building Systems Design Modeling and Simulation for Nuclear Fuel Cycles and Systems Batteries and Energy Storage Critical Materials Each Hub will comprise a world-class, multi-disciplinary, and highly collaborative research and development team. Strong scientific leadership must be located at the primary location of the Hub. Each hub must have a clear organization and management plan that “infuses” a culture of empowered central research management throughout the Hub. nanoGUNE 30 enero 2014
  • 37. Energy Innovation Hub: Batteries and Energy Storage (Joint Center for Energy Storage Research: JCESR) Fundamental research JCESR’s core task is basic research—using a new generation of nanoscience tools that enable us to observe, characterize, and control matter down to the atomic and molecular scales. This enhanced ability to understand materials and chemical processes at a fundamental level will enable us to reinvent electrical storage and achieve major improvements in battery performance at reduced cost. Our industrial partners will help guide our efforts to ensure that research leads toward practical solutions that are competitive in the marketplace. nanoGUNE 30 enero 2014
  • 38. New Materials for High-Energy, Long-Life Rechargeable Batteries Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solidstate lithium-sulfur rechargeable batteries. The Science Introduction of nanoscale porosity in a bulk electrolyte material (lithium thiophosphate) was found to promote surface conduction of lithium ions, thereby enhancing the ionic conductivity in the nanostructured material by three orders of magnitude over the normal bulk phase. The Impact The high ionic conductivities in these new, nanoporous electrolytes coupled with sulfurrich, nanostructured cathode materials have led to the development of a new type of solidstate, rechargeable lithium-sulfur battery that is potentially safer and more reliable than today’s commercial Li ion batteries. Scanning electron micrograph of a new solid electrolyte material (lithium thiophosphate) showing its surface morphology and the nanoscale porosity which are responsible for its high ionic conductivity; Inset shows its crystal structure. Z. Liu, W. Fu, E. Andrew Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, “Anomalous High Ionic Conductivity of Nanoporous b-Li3PS4”, J. Am. Chem. Soc., 135, 975, (2013). nanoGUNE 30 enero 2014
  • 39. Nano-Composite Designs for Energy Storage Nano-porous metal oxide coatings on carbon fiber dramatically enhance the electrical storage capacity for supercapacitors. Researchers have discovered that controlling the nanostructured architecture of metal oxides coated on carbon fibers can lead to an unusually high capacity to store electrical charge in a special type of supercapacitor known as a pseudocapacitor. Scanning electron microscopy of conductive carbon fibers coated with metal oxide nanowires (left) and close-ups of the cobalt oxide (Co3O4) nanowires (top right) and the nanowire surface (bottom right). These materials are being developed to improve the storage capacity of a type of supercapacitor known as a psuedocapacitor. nanoGUNE 30 enero 2014
  • 40. Algunos ejemplos de investigación básica relacionada con la energía nanoGUNE 30 enero 2014
  • 41. Energía Nuclear •  Secciones eficaces de neutrones •  Separación de isótopos •  Físico-química de elementos pesados •  Daño por Radiación nanoGUNE 30 enero 2014
  • 42. Evolución de conceptos de Reactores nanoGUNE 30 enero 2014
  • 43. Nuevos Reactores Nucleares: •  Reprocesan el combustible: reutilizan el Plutonio producido •  Funcionan a temperaturas muy altas: mejor rendimiento termodinámico. Neutrones rápidos, se refrigeran por He. •  Elementos “fértiles”, no fisionables, como el Torio se pueden convertir en fisionable como el U233 nanoGUNE 30 enero 2014
  • 44. Necesidad de Medir Secciones Eficaces Secciones eficaces de captura (línea sólida) y fisión (línea de puntos) para el isótopo 238U. Las secciones eficaces están en barn y las energías de los neutrones en eV. Captura Fisión Fuente. Darwin & Charpak en “Megawatts and Megatons” nanoGUNE 30 enero 2014
  • 45. Secciones eficaces de captura (línea sólida) y fisión (línea de puntos) para el isótopo 235U. Las secciones eficaces están en barn y las energías de los neutrones en eV. Fisión Captura Fuente: Darwin & Charpak en “Megawatts and Megatons” nanoGUNE 30 enero 2014
  • 46. REPROCESADO DEL COMBUSTIBLE IRRADIADO El proceso PUREX actual (separación de U y Pu) •  •  •  •  •  Disolución del UO2 en ácido nítrico Separación del U+Pu con TBP ( tri-butil-fosfato) Separación del U por reducción del Pu Transformación del U y del Pu en óxidos para nuevo uso Almacenamiento del resto de los residuos ( incluyen los productos de fisión y los actínidos menores ( Am Np y Cm) Necesidad de Nuevos métodos de Separación Probablemente el mayor cuello de botella para el desarrollo de los nuevos reactores nucleares nanoGUNE 30 enero 2014
  • 47. Daño por Radiación Esencial para: • Almacenamiento del Combustible Nuclear • Protección Radiológica nanoGUNE 30 enero 2014
  • 48. Quantification of actinide a-radiation damage in minerals and ceramics Nature 445, 190-193 (2007) Ian Farnan, Herman Cho & William J. Weber There are large amounts of heavy a-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the a-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per a-decay. At present, this number is estimated to be 1,000–2,000 atoms/ in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/ in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose. “On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years)”. These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event. nanoGUNE 30 enero 2014
  • 49. Radiation Damage α-particle α-decay process Recoil ~ 5 MeV It causes: • Amorphisation • Swelling • Cracks • Leaching ~ 100 keV Zircon: model study: old natural samples nanoGUNE 30 enero 2014
  • 52. •  Supercell of insulator’s bulk •  Periodic boundary conditions •  Density functional theory •  Add external charge (potential) •  Move it and follow electron wave-functions with TimeDependent DFT nanoGUNE 30 enero 2014
  • 53. Stopping power vs velocity Threshold effect yes, but still too low values Proton/antiproton right nanoGUNE 30 enero 2014
  • 54. Advanced actinide fuels: Develop a fundamental understanding of actinide-bearing materials properties Scientific challenges Mystery of 5f-electron elements • Overcome limitations in current experimental/theoretical approaches to determining/ describing actinide material properties • Fundamental understanding of thermal properties of complex microstructure/composition materials • New approach to modeling phase stability/compatibility in complex, multicomponent actinide systems Summary of research direction New paradigm for 5f-electron research •  Develop new quantum chemical/molecular dynamic approaches that can accommodate the additional complexity of 5f elements •  Utilize/develop non-conventional experimental techniques to measure and model thermal properties of complex behavior actinide materials •  Develop innovative defect models for multicomponent actinide fuel/fission product systems Potential impact on ANES Beyond cook and look • Scientific basis for nuclear fuel design • Optimizing fuel development and testing • Reducing uncertainty in operational/safety margins Fuente: DOE. Advanced Nuclear Energy Systems nanoGUNE 30 enero 2014
  • 55. Algunos Proyectos financiados por el DOE The Development of New Density Functional Theory and Computational Approaches for Strongly Correlated f-Electron Ststems and Actinide Materials Investigating the Nature of Extreme Condition Actinide Chemistry Actinide Chemistry in Oxidative Alkaline Solutions: Synergistic Molecular Chemistry for Advanced SNF Reprocessing A First-principles Theory of the Energetics and Materials Properties of Actinides: The 5f-electron Challenge Actinide Binding to Dendritic Nanoscale Ligands: Fundamental Investigations and Applications to Nuclear Separations Probing f-electron interactions in actinide metal-ligand and metal-metal bonding f-Electron Physics in α-Uranium, New Tools for an Historic Challenge Materials for highly specific extraction of Cs and Sr from aqueous nuclear waste solutions Modeling Spectroscopy and Photochemistry of Actinide Systems in Solution An Experimental and Computational Study of Actinide and Fission Product Separation and Sequestration by Engineered Mesoporous Materials The link between actinide chemistry and core-level spectroscopies An Ab Initio Full Potential Fully Relativistic Electronic Structure Study of Actinide Nitrides as Nuclear Fuels nanoGUNE 30 enero 2014
  • 56. Energía Fotovoltaica Shockley-Queisser límite para la eficiencia para el Si: 32% Gap 1.1 eV, gap inidrecto, perdidas por calor etc. nanoGUNE 30 enero 2014
  • 57. Conversion Efficiencies vs. time (NREL) nanoGUNE 30 enero 2014
  • 58. Mercado de células fotovoltaicas Fuente: P. Frankl, NEEDS, 2007 nanoGUNE 30 enero 2014
  • 59. Células fotoeléctricas tandem Usadas en el Espacio nanoGUNE 30 enero 2014
  • 60. Otra manera de aumentar la eficiencia: Introducción de una banda intermedia: nanoGUNE 30 enero 2014
  • 63. Nuevas ideas para células Fotovoltaicas Basadas en colorantes y nanoparticulas Basadas en “pozos cuánticos” … y moléculas orgánicas nanoGUNE 30 enero 2014
  • 64. HIDRÓGENO COMO VECTOR ENERGÉTICO nanoGUNE 30 enero 2014
  • 65. DOE Basic Research Needs for the Hydrogen Economy   There exists an enormous gap between present state-ofthe-art capabilities and requirements that will allow hydrogen to be competitive with today’s energy technologies:   Production: 9M tons to 40M tons (vehicles)   Storage: 4.4 MJ/L (10K psi gas) to 9.72 MJ/L   Fuel cells: $3,000/kW to $35/kW (gasoline engine)   Major R&D efforts will be required:   Simple improvements of today’s technologies will not meet requirements   Technical barriers can be overcome only with high risk/high payoff basic research   Research is highly interdisciplinary, requiring chemistry, materials science, physics, biology, engineering, nanoscience, computational science. Workshop: May 13-15, 2003 Report: Summer 2003   Basic and applied research should couple seamlessly. nanoGUNE 30 enero 2014
  • 66. How to produce H2? (The Joint Center for Artificial Photosynthesis: JCAP) “Net primary energy balance of a solar-driven photoelectrochemical water-splitting device” Pei Zhai et al. Energy Environ. Sci., 2013,6, 2380-2389 “A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties”. nanoGUNE 30 enero 2014
  • 67. How to produce H2? (The Joint Center for Artificial Photosynthesis: JCAP) Molecular and Nanoscale Interfaces Project Research in the Molecular and Nanoscale Interfaces Project is directed towards the development of strategies and tools for linking individual components into fully functioning, nanoscale artificial photosynthetic assemblies. A major obstacle towards the development of a viable artificial photosynthetic systems for water splitting to hydrogen and oxygen, or the conversion of carbon dioxide and water to liquid fuel, involves the inefficient charge transport between light absorbers and catalysts and, in particular, between the sites of water oxidation and fuel-generating halfreactions. To address these challenges, the Molecular and Nanoscale Interfaces Project aims to couple light absorbers, catalysts, and halfreactions for optimal control of the rate, yield, and energetics of electron and proton flow at the nanoscale, so that complete macroscale artificial photosynthetic systems can achieve maximum conversion of solar photon energy into the chemical energy of a fuel. nanoGUNE 30 enero 2014
  • 68. Hydrogen storage at metal-organic materials nanoGUNE 30 enero 2014
  • 69. Hydrogen storage at metal-organic materials Only H2 2% uptake: not enough to be usefull! nanoGUNE 30 enero 2014
  • 70. Eficiencia energética Ejemplos de nuevas tecnologías: • Diodos de Estado Sólido para la iluminación • Superconductividad nanoGUNE 30 enero 2014
  • 71. La Iluminación convencional es muy ineficiente Eficiencia Energética: La iluminación basada en diodos de Estado Sólido es potencialmente 10 y 2 veces más eficiente que las lámparas incandescentes y fluorescentes, respectivamente. nanoGUNE 30 enero 2014
  • 72. El Problema es conseguir luz blanca Tuning the color of semiconducting nanocrystal quantum dots Fuente: C.B. Murray et al., J. Am. Chem. Soc. 115, 8706 (1993) nanoGUNE 30 enero 2014
  • 73. Conclusiones del estudio del Deparment of Energy (DOE) •  Aumentar la eficiencia en un factor 10 •  Las tecnologías antiguas tienen limites esenciales •  La extrapolación de las tecnologías actuales no cubrirán los objetivos •  Se necesitan “breakthroughs” para aumentar significativamente las eficiencias nanoGUNE 30 enero 2014
  • 74. Use of Superconducting Materials Zero resistance Below Tc (-270 ºC) the resistance drops (rapidly) to zero. Flux expulsion Below Tc magnetic flux is expelled from the sample. This give rise to phenomenon of magnetic levitation. nanoGUNE 30 enero 2014
  • 76. La red eléctrica está bajo estrés, cerca de la saturación Fiabilidad “Blackouts” Lower Manhattan infrastructure (Courtesy of Con Edison) Capacidad en Estados Unidos Crecimiento del 50% para el año 2030 Red urbana: cuello de botella Eficiencia El 7-10% se pierde en el transporte. En Estados Unidos, equivalente a 40 centrales de 1GW nanoGUNE 30 enero 2014
  • 77. Los Superconductores podrían transformar la red de distribución Albany N.Y. Japanese Maglev flies with HTS coils, (courtesy CJR) nanoGUNE 30 enero 2014
  • 78. Control of Grain Boundary Currents by Texturing - Key to Second Generation (2G) YBCO Wire Grain boundary critical current vs misorientation angle AMSC 2G wire architecture: RABiTSTM process Dimos, Chaudhari + Mannhart, PR 1990 Texturing within ~50 enables Jc(77 K) ~ 3x106 A/cm2 over 100’s of meters – An amazing success, though it has taken 18 years to get to this point! nanoGUNE 30 enero 2014
  • 79. Science Opportunity: Vortex Physics Vortex: nanoscale quantum of magnetic flux Pinning vortices – basis for high critical current density. Much effort on existing materials (e. g. YBCO) during last years. But much still to do to increase Ic Understanding magnetic pinning. nanoGUNE 30 enero 2014
  • 80. No se conoce el mecanismo responsable de los nuevos superconductores! Enorme tarea por delante Nuevos materiales basados en diseño a escala atómica nanoGUNE 30 enero 2014
  • 82. Los hidrocarburos no se acaban, Ejemplo: Clatratos de Metano Muy abundantes en el fondo del mar Metano Moléculas de agua nanoGUNE 30 enero 2014
  • 84. Natural Gas Hydrates They are very abundant in Earth's permafrost and marine sediments. They are also formed in natural gas extraction pipes and have been detected in other planetary bodies like Mars and some Saturn's moons •  They can be a future hydrocarbons source •  They are a serious environmental threat due to the potential melting caused by the temperature increase associated to the global warming and the further uncontrolled release of their hydrocarbons •  Potential use to store hydrogen and sequestration of CO2 nanoGUNE 30 enero 2014
  • 85. Fundamental principles and applications of natural gas hydrates E. Dendy Sloan Jr. Center for Hydrate Research, Colorado School of Mines, Golden, Colorado NATURE 426,353 (2003) nanoGUNE 30 enero 2014
  • 87. Preguntas: Cómo se forman? Cuantos hidrocarburos caben? Son estables sin el hidrocarburo? Se puede sustituir el Metano por CO2? Sirven para almacenar H2? Diagrama de fases P-T? nanoGUNE 30 enero 2014
  • 88. Cálculos de Primeros Principios Reproducen la estructura de los clatratos y predicen cuantas moléculas de metano y CO2 se pueden alojar en las cavidades (no más de 2 por cavidad). La sustitución de metano por CO2 es dudosa No sabemos como se forman. No son estables sin metano Difusión molecular nanoGUNE 30 enero 2014
  • 89. Nanoscience and energy technologies nanoGUNE 30 enero 2014
  • 90. Conclusiones: Como para toda tecnología, la investigación básica es indispensable para el desarrollo de la tecnología energética La investigación básica sirve para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo marginalmente relacionados con los problemas actuales de las tecnologías energéticas La investigación básica servirá al desarrollo tecnológico si se aprovecha en un entorno adecuado nanoGUNE 30 enero 2014
  • 94. Reliability: Superconductors Enable “Resistive” Fault Current Limiters •  Superconductors -“smart” materials, switch to resistive state above critical current •  Increased resistance limits current flow •  Many FCLs demonstrated; commercialization beginning w/o FCL w/FCL Siemens/AMSC 2 MVA FCL Need a current limiters a major opportunity for grid stabilization grid Fault solution, or must drastically reconfigure and break up the nanoGUNE 30 enero 2014
  • 95. Funcionamiento de un Light Emitting Diode nanoGUNE 30 enero 2014
  • 96. Iluminación basada en Dispositivos de Estado Sólido Investigación Básica Investigación Básica Orientada   Entender y controlar la ruta radiativa y no radiativa en semiconductores   Nuevas funcionalidades por medio de nanoestructuras heterogéneas   Diseño computacional y síntesis de materiales emisores de luz no convencionales con propiedades diseñadas   Manejar y explotar el desorden en dispositivos orgánicos emisores de luz   Entender el origen de la degradación en   Manejo innovador de fotones dispositivos orgánicos emisores de luz   Interacción luz-materia   Descubrir nuevos mejorada conceptos para el control   Caracterización, de las características de síntesis y la luz emitida ensamblado a escala nanométrica   Integración de materiales nanoestructurados en dispositivos emisores de luz Fuente: DOE Investigación Aplicada Hitos Tecnológicos:  Hacia 2025, desarrollar tecnologías avanzadas de iluminación de Estado Sólido con sistemas de un 50% de eficiencia con emisión muy cercana a la luz solar   Materiales y componentes para diodos emisores de luz con componentes inorgánicas y orgánicas con eficiencia mejorada y bajo coste Madurez Tecnológica y Diseminación   Desarrollo de standards para productos nuevos   Aspectos comerciales   Asociaciones industriales   Aspectos legales, de mercado, salud, seguridad…   Reducción de costes   Prototipos   Fabricación de bajo coste   Cuestión de la degradación y fiabilidad de los productos nanoGUNE 30 enero 2014
  • 97. DOE Energy Innovation Hubs (like the former Bell Labs.) Proposed topics for Hubs: •  •  •  •  •  •  •  •  Solar Electricity (EERE) Fuels from Sunlight (SC) Batteries and Energy Storage (SC) Carbon Capture and Storage (FE) Electrical Grid Systems (OE) Energy Efficient Building Systems Design (EERE) Extreme Materials for Nuclear Fuel Cycles and Systems (NE) Modeling and Simulation for Nuclear Fuel Cycles and Systems (NE) Each Hub will comprise a world-class, multi-disciplinary and highly collaborative research and development team working largely under one roof. This team will focus on solving critical technology challenges that prevent large scale commercialization and deployment of the energy systems needed to address our Nation’s greenhouse gas emission, energy security and workforce creation goals 97 nanoGUNE 30 enero 2014
  • 99. Molecular Dynamics based on force fields •  One simulates the propagation of an energetic particle in a system of atoms interacting via a model potential, by integrating the Newton equations of motion. •  The energetic particle displaces atoms from their equilibrium positions, which, in turn, displace other atoms, resulting in a “radiation cascade”. •  At each moment of time, the simulation provides coordinates and velocities of all atoms in the structure, giving the full phase trajectory of damage propagation. •  At the end of the simulation, the resulting structure contains structural changes due to radiation damage, which can be analyzed in detail. •  DL_POLY 3 MD package. Several Millions of Atoms. nanoGUNE 30 enero 2014
  • 100. “Sumar” y “Partir” fotones nanoGUNE 30 enero 2014
  • 101. Otra vez los electrones f nanoGUNE 30 enero 2014