SlideShare a Scribd company logo
1 of 106
Download to read offline
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Actuariat de lā€™Assurance Non-Vie # 10
A. Charpentier (UniversitƩ de Rennes 1)
ENSAE ParisTech, Octobre / DĆ©cembre 2016.
http://freakonometrics.hypotheses.org
@freakonometrics 1
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
GƩnƩralitƩs sur les Provisions pour Sinistres Ơ Payer
RĆ©fĆ©rences: de Jong & Heller (2008), section 1.5 et 8.1, and WĆ¼thrich & Merz
(2015), chapitres 1 Ć  3, et Pigeon (2015).
ā€œ Les provisions techniques sont les provisions destinĆ©es Ć  permettre le rĆ©glement
intĆ©gral des engagements pris envers les assurĆ©s et bĆ©nĆ©ļ¬caires de contrats. Elles
sont liĆ©es Ć  la technique mĆŖme de lā€™assurance, et imposĆ©es par la rĆ©glementation.ā€
ā€œIt is hoped that more casualty actuaries will involve themselves in this important
area. IBNR reserves deserve more than just a clerical or cursory treatment and
we believe, as did Mr. Tarbell Chat ā€˜the problem of incurred but not reported
claim reserves is essentially actuarial or statisticalā€™. Perhaps in todayā€™s
environment the quotation would be even more relevant if it stated that the
problem ā€˜...is more actuarial than statisticalā€™.ā€ Bornhuetter & Ferguson (1972)
@freakonometrics 2
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La vie des sinistres
ā€¢ date t1 : survenance du sinistre
ā€¢ pĆ©riode [t1, t2] : IBNR Incureed But Not Reported
ā€¢ date t2 : dĆ©claration du sinistre Ć  lā€™assureur
ā€¢ pĆ©riode [t2, t3] : IBNP Incureed But Not Paid
ā€¢ pĆ©riode [t2, t6] : IBNS Incureed But Not Settled
ā€¢ dates t3, t4, t5 : paiements
ā€¢ date t6 : clĆ“ture du sinistre
@freakonometrics 3
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La vie des sinistres
ƀ la survenance, un montant estimĆ© est indiquĆ© par les gestionnaires de sinistres
(charge dossier/dossier). Ensuite deux opƩrations sont possibles :
ā€¢ eļ¬€ectuer un paiement
ā€¢ rĆ©viser le montant du sinistre
@freakonometrics 4
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La vie des sinistres: ProblƩmatique des PSAP
La Provision pour Sinistres Ć  Payer est la diļ¬€Ć©rence entre le montant du sinistre
et le paiement dĆ©jĆ  eļ¬€ectuĆ©.
@freakonometrics 5
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : du micro au macro
Analyse micro
Sinistres i = 1, Ā· Ā· Ā· , n
survenances, date Ti,0
dƩclaration, date Ti,0 + Qi
paiements, dates
Ti,j = Ti,0 + Qi +
j
k=1
Zi,k
et montants (Ti,j, Yi,j)
Montant de i Ć  la date t, Ci(t) =
j:Ti,j ā‰¤t
Yi,j
Provision (idĆ©ale) Ć  la date t, Ri(t) = Ci(āˆž) āˆ’ Ci(t)
@freakonometrics 6
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : du micro au macro
Analyse macro
On agrƩge les sinistres par
annƩe de survenance :
Si = {k : Tk,0 āˆˆ [i, i + 1)}
On regarde les paiements
eļ¬€ectuĆ©s aprĆØs j annĆ©es
Yi,j =
kāˆˆSi Tk, āˆˆ[j,j+1)
Zk,
Ici Ynāˆ’1,0
@freakonometrics 7
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : du micro au macro
Analyse macro
On agrƩge les sinistres par
annƩe de survenance :
Si = {k : Tk,0 āˆˆ [i, i + 1)}
On regarde les paiements
eļ¬€ectuĆ©s aprĆØs j annĆ©es
Yi,j =
kāˆˆSi Tk, āˆˆ[j,j+1)
Zk,
Ici Ynāˆ’1,1 et Yn,0
@freakonometrics 8
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : du micro au macro
Analyse macro
On agrƩge les sinistres par
annƩe de survenance :
Si = {k : Tk,0 āˆˆ [i, i + 1)}
On regarde les paiements
eļ¬€ectuĆ©s aprĆØs j annĆ©es
Yi,j =
kāˆˆSi Tk, āˆˆ[j,j+1)
Zk,
Ici Ynāˆ’1,2, Yn,1 et Yn+1,0
@freakonometrics 9
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : du micro au macro
ā€¢ les provisions techniques peuvent reprĆ©senter 75% du bilan,
ā€¢ le ratio de couverture (provision / chiļ¬€re dā€™aļ¬€aire) peut dĆ©passer 2,
ā€¢ certaines branches sont Ć  dĆ©veloppement long, en montant
n n + 1 n + 2 n + 3 n + 4
habitation 55% 90% 94% 95% 96%
automobile 55% 80% 85% 88% 90%
dont corporels 15% 40% 50% 65% 70%
R.C. 10% 25% 35% 40% 45%
@freakonometrics 10
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : complƩment sur les donnƩes micro
On note Fn
t lā€™information accessible Ć  la date t,
Fn
t = Ļƒ {(Ti,0, Ti,j, Xi,j), i = 1, Ā· Ā· Ā· , n, Ti,j ā‰¤ t}
et C(āˆž) =
n
i=1
Ci(āˆž).
Notons que Mt = E [C(āˆž)|F ] est une martingale, i.e.
E[Mt+h|Ft] = Mt
alors que Vt = Var [C(āˆž)|F ] est une sur-martingale, i.e.
E[Vt+h|Ft] ā‰¤ Vt.
@freakonometrics 11
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : les mƩthodes usuelles
Source : http://www.actuaries.org.uk
@freakonometrics 12
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : les mƩthodes usuelles
Source : http://www.actuaries.org.uk
@freakonometrics 13
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : les mƩthodes usuelles
Source : http://www.actuaries.org.uk
@freakonometrics 14
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles de Paiements : les mƩthodes usuelles
Source : http://www.actuaries.org.uk
@freakonometrics 15
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: multirisques habitation
@freakonometrics 16
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: risque incendies entreprises
@freakonometrics 17
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: automobile (total)
@freakonometrics 18
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: automobile matƩriel
@freakonometrics 19
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: automobile corporel
@freakonometrics 20
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: responsabilitƩ civile entreprise
@freakonometrics 21
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: responabilitƩ civile mƩdicale
@freakonometrics 22
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Exemples de cadence de paiement: assurance construction
@freakonometrics 23
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Les triangles: incrƩments de paiements
NotĆ©s Yi,j, pour lā€™annĆ©e de survenance i, et lā€™annĆ©e de dĆ©veloppement j,
0 1 2 3 4 5
0 3209 1163 39 17 7 21
1 3367 1292 37 24 10
2 3871 1474 53 22
3 4239 1678 103
4 4929 1865
5 5217
@freakonometrics 24
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Les triangles: paiements cumulƩs
NotĆ©s Ci,j = Yi,0 + Yi,1 + Ā· Ā· Ā· + Yi,j, pour lā€™annĆ©e de survenance i, et lā€™annĆ©e de
dƩveloppement j,
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730
2 3871 5345 5398 5420
3 4239 5917 6020
4 4929 6794
5 5217
@freakonometrics 25
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Les triangles: nombres de sinistres
NotĆ©s Ni,j sinistres survenus lā€™annĆ©e i connus (dĆ©clarĆ©s) au bout de j annĆ©es,
0 1 2 3 4 5
0 1043.4 1045.5 1047.5 1047.7 1047.7 1047.7
1 1043.0 1027.1 1028.7 1028.9 1028.7
2 965.1 967.9 967.8 970.1
3 977.0 984.7 986.8
4 1099.0 1118.5
5 1076.3
@freakonometrics 26
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La prime acquise
NotĆ©e Ļ€i, prime acquise pour lā€™annĆ©e i
annƩe i 0 1 2 3 4 5
Pi 4591 4672 4863 5175 5673 6431
@freakonometrics 27
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles
1 > rm(list=ls())
2 > source("http:// freakonometrics .free.fr/bases.R")
3 > ls()
4 [1] "INCURRED" "NUMBER" "PAID" "PREMIUM"
5 > PAID
6 [,1] [,2] [,3] [,4] [,5] [,6]
7 [1,] 3209 4372 4411 4428 4435 4456
8 [2,] 3367 4659 4696 4720 4730 NA
9 [3,] 3871 5345 5398 5420 NA NA
10 [4,] 4239 5917 6020 NA NA NA
11 [5,] 4929 6794 NA NA NA NA
12 [6,] 5217 NA NA NA NA NA
@freakonometrics 28
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles ?
Actually, there might be two diļ¬€erent cases in practice, the ļ¬rst one being when
initial data are missing
0 1 2 3 4 5
0 ā—¦ ā—¦ ā—¦ ā€¢ ā€¢ ā€¢
1 ā—¦ ā—¦ ā€¢ ā€¢ ā€¢
2 ā—¦ ā€¢ ā€¢ ā€¢
3 ā€¢ ā€¢ ā€¢
4 ā€¢ ā€¢
5 ā€¢
In that case it is mainly an index-issue in calculation.
@freakonometrics 29
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Triangles ?
Actually, there might be two diļ¬€erent cases in practice, the ļ¬rst one being when
ļ¬nal data are missing, i.e. some tail factor should be included
0 1 2 3 4 5
0 ā€¢ ā€¢ ā€¢ ā€¢ ā—¦ ā—¦
1 ā€¢ ā€¢ ā€¢ ā—¦ ā—¦ ā—¦
2 ā€¢ ā€¢ ā—¦ ā—¦ ā—¦ ā—¦
3 ā€¢ ā—¦ ā—¦ ā—¦ ā—¦ ā—¦
In that case it is necessary to extrapolate (with past information) the ļ¬nal loss
(tail factor).
@freakonometrics 30
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
The Chain Ladder estimate
We assume here that
Ci,j+1 = Ī»j Ā· Ci,j for all i, j = 0, 1, Ā· Ā· Ā· , n.
A natural estimator for Ī»j based on past history is
Ī»j =
nāˆ’j
i=0
Ci,j+1
nāˆ’j
i=0
Ci,j
for all j = 0, 1, Ā· Ā· Ā· , n āˆ’ 1.
Hence, it becomes possible to estimate future payments using
Ci,j = Ī»n+1āˆ’i Ā· Ā· Ā· Ī»jāˆ’1 Ci,n+1āˆ’i.
@freakonometrics 31
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»0 =
4372 + Ā· Ā· Ā· + 6794
3209 + Ā· Ā· Ā· + 4929
āˆ¼ 1.38093
@freakonometrics 32
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»0 =
4372 + Ā· Ā· Ā· + 6794
3209 + Ā· Ā· Ā· + 4929
āˆ¼ 1.38093
@freakonometrics 33
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»0 =
4372 + Ā· Ā· Ā· + 6794
3209 + Ā· Ā· Ā· + 4929
āˆ¼ 1.38093
@freakonometrics 34
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»1 =
4411 + Ā· Ā· Ā· + 6020
4372 + Ā· Ā· Ā· + 5917
āˆ¼ 1.01143
@freakonometrics 35
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»1 =
4411 + Ā· Ā· Ā· + 6020
4372 + Ā· Ā· Ā· + 5917
āˆ¼ 1.01143
@freakonometrics 36
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»2 =
4428 + Ā· Ā· Ā· + 5420
4411 + Ā· Ā· Ā· + 5398
āˆ¼ 1.00434
@freakonometrics 37
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»2 =
4428 + Ā· Ā· Ā· + 5420
4411 + Ā· Ā· Ā· + 5398
āˆ¼ 1.00434
@freakonometrics 38
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»3 =
4435 + 4730
4428 + 4720
āˆ¼ 1.00186
@freakonometrics 39
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
Ī»4 =
4456
4435
āˆ¼ 1.00474
@freakonometrics 40
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
La mƩthode Chain Ladder, en pratique
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.15 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
One the triangle has been completed, we obtain the amount of reserves, with
respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.
@freakonometrics 41
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Computational Issues
1 > library( ChainLadder )
2 > MackChainLadder (PAID)
3 MackChainLadder (Triangle = PAID)
4
5 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
6 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN
7 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285
8 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699
9 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764
10 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047
11 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318
12
13 Totals
14 Latest: 32 ,637.00
15 Dev: 0.93
16 Ultimate: 35 ,063.99
17 IBNR: 2 ,426.99
@freakonometrics 42
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
18 Mack.S.E 79.30
19 CV(IBNR): 0.03
@freakonometrics 43
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Three ways to look at triangles
There are basically three kind of approaches to model development
ā€¢ developments as percentages of total incured, i.e. consider
Ļ• = (Ļ•0, Ļ•1, Ā· Ā· Ā· , Ļ•n), with Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•n = 1, such that
E(Yi,j) = Ļ•jE(Ci,n), where j = 0, 1, Ā· Ā· Ā· , n.
ā€¢ developments as rates of total incured, i.e. consider Ī³ = (Ī³0, Ī³1, Ā· Ā· Ā· , Ī³n), such
that
E(Ci,j) = Ī³jE(Ci,n), where j = 0, 1, Ā· Ā· Ā· , n.
ā€¢ developments as factors of previous estimation, i.e. consider
Ī» = (Ī»0, Ī»1, Ā· Ā· Ā· , Ī»n), such that
E(Ci,j+1) = Ī»jE(Ci,j), where j = 0, 1, Ā· Ā· Ā· , n.
@freakonometrics 44
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Three ways to look at triangles
From a mathematical point of view, it is strictly equivalent to study one of those.
Hence,
Ī³j = Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j =
1
Ī»j
1
Ī»j+1
Ā· Ā· Ā·
1
Ī»nāˆ’1
,
Ī»j =
Ī³j+1
Ī³j
=
Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j + Ļ•j+1
Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j
Ļ•j =
ļ£±
ļ£²
ļ£³
Ī³0 if j = 0
Ī³j āˆ’ Ī³jāˆ’1 if j ā‰„ 1
=
ļ£±
ļ£“ļ£²
ļ£“ļ£³
1
Ī»0
1
Ī»1
Ā· Ā· Ā·
1
Ī»nāˆ’1
, if j = 0
1
Ī»j+1
1
Ī»j+2
Ā· Ā· Ā·
1
Ī»nāˆ’1
āˆ’
1
Ī»j
1
Ī»j+1
Ā· Ā· Ā·
1
Ī»nāˆ’1
, if j ā‰„ 1
@freakonometrics 45
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Three ways to look at triangles
On the previous triangle,
0 1 2 3 4 n
Ī»j 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000
Ī³j 70,819% 97,796% 98,914% 99,344% 99,529% 100,000%
Ļ•j 70,819% 26,977% 1,118% 0,430% 0,185% 0,000%
@freakonometrics 46
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
d-triangles
It is possible to deļ¬ne the d-triangles, with empirical Ī»ā€™s, i.e. Ī»i,j
0 1 2 3 4 5
0 1.362 1.009 1.004 1.002 1.005
1 1.384 1.008 1.005 1.002
2 1.381 1.010 1.001
3 1.396 1.017
4 1.378
5
@freakonometrics 47
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
The Chain-Ladder estimate
The Chain-Ladder estimate is probably the most popular technique to estimate
claim reserves. Let Ft denote the information avalable at time t, or more formally
the ļ¬ltration generated by {Ci,j, i + j ā‰¤ t} - or equivalently {Xi,j, i + j ā‰¤ t}
Assume that incremental payments are independent by occurence years, i.e.
Ci1,Ā· and Ci2,Ā· are independent for any i1 and i2 [H1]
.
Further, assume that (Ci,j)jā‰„0 is Markov, and more precisely, there exist Ī»jā€™s
and Ļƒ2
j ā€™s such that
ļ£±
ļ£²
ļ£³
E(Ci,j+1|Fi+j) = E(Ci,j+1|Ci,j) = Ī»j Ā· Ci,j [H2]
Var(Ci,j+1|Fi+j) = Var(Ci,j+1|Ci,j) = Ļƒ2
j Ā· Ci,j [H3]
Under those assumption (see Mack (1993)), one gets
E(Ci,j+k|Fi+j) = (Ci,j+k|Ci,j) = Ī»j Ā· Ī»j+1 Ā· Ā· Ā· Ī»j+kāˆ’1Ci,j
@freakonometrics 48
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Testing assumptions
Assumption H2 can be interpreted as a linear regression model, i.e.
Yi = Ī²0 + Xi Ā· Ī²1 + Īµi, i = 1, Ā· Ā· Ā· , n, where Īµ is some error term, such that
E(Īµ) = 0, where Ī²0 = 0, Yi = Ci,j+1 for some j, Xi = Ci,j, and Ī²1 = Ī»j.
Weighted least squares can be considered, i.e. min
nāˆ’j
i=1
Ļ‰i (Yi āˆ’ Ī²0 āˆ’ Ī²1Xi)
2
where the Ļ‰iā€™s are proportional to Var(Yi)āˆ’1
. This leads to
min
nāˆ’j
i=1
1
Ci,j
(Ci,j+1 āˆ’ Ī»jCi,j)
2
.
As in any linear regression model, it is possible to test assumptions H1 and H2,
the following graphs can be considered, given j
ā€¢ plot Ci,j+1ā€™s versus Ci,jā€™s. Points should be on the straight line with slope Ī»j.
ā€¢ plot (standardized) residuals Īµi,j =
Ci,j+1 āˆ’ Ī»jCi,j
Ci,j
versus Ci,jā€™s.
@freakonometrics 49
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Testing assumptions
H1 is the accident year independent assumption. More precisely, we assume there
is no calendar eļ¬€ect.
Deļ¬ne the diagonal Bk = {Ck,0, Ckāˆ’1,1, Ckāˆ’2,2 Ā· Ā· Ā· , C2,kāˆ’2, C1,kāˆ’1, C0,k}. If there
is a calendar eļ¬€ect, it should aļ¬€ect adjacent factor lines,
Ak =
Ck,1
Ck,0
,
Ckāˆ’1,2
Ckāˆ’1,1
,
Ckāˆ’2,3
Ckāˆ’2,2
, Ā· Ā· Ā· ,
C1,k
C1,kāˆ’1
,
C0,k+1
C0,k
= ā€
Ī“k+1
Ī“k
ā€,
and
Akāˆ’1 =
Ckāˆ’1,1
Ckāˆ’1,0
,
Ckāˆ’2,2
Ckāˆ’2,1
,
Ckāˆ’3,3
Ckāˆ’3,2
, Ā· Ā· Ā· ,
C1,kāˆ’1
C1,kāˆ’2
,
C0,k
C0,kāˆ’1
= ā€
Ī“k
Ī“kāˆ’1
ā€.
For each k, let N+
k denote the number of elements exceeding the median, and
Nāˆ’
k the number of elements lower than the mean. The two years are
independent, N+
k and Nāˆ’
k should be ā€œclosedā€, i.e. Nk = min N+
k , Nāˆ’
k should be
ā€œclosedā€ to N+
k + Nāˆ’
k /2.
@freakonometrics 50
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Testing assumptions
Since Nāˆ’
k and N+
k are two binomial distributions B p = 1/2, n = Nāˆ’
k + N+
k ,
then
E (Nk) =
nk
2
āˆ’
ļ£«
ļ£­
nk āˆ’ 1
mk
ļ£¶
ļ£ø nk
2nk
where nk = N+
k + Nāˆ’
k and mk =
nk āˆ’ 1
2
and
V (Nk) =
nk (nk āˆ’ 1)
2
āˆ’
ļ£«
ļ£­
nk āˆ’ 1
mk
ļ£¶
ļ£ø nk (nk āˆ’ 1)
2nk
+ E (Nk) āˆ’ E (Nk)
2
.
Under some normality assumption on N, a 95% conļ¬dence interval can be
derived, i.e. E (Z) Ā± 1.96 V (Z).
@freakonometrics 51
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
0 1 2 3 4 5
0 0.734 .0991 0.996 0.998 0.995
1 0.723 0.992 0.995 0.998
2 0.724 0.990 0.996
3 0.716 0.983
4 0.725
5
6 0.724 0.991 0.996 0.998 0.995
et
0 1 2 3 4 5
0 + + + + Ā·
1 āˆ’ + āˆ’ āˆ’
2 Ā· āˆ’ Ā·
3 āˆ’ āˆ’
4 +
5
@freakonometrics 52
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain-Ladder to Grossing-Up
The idea of the Chain-Ladder technique was to estimate the Ī»jā€™s, so that we can
derive estimates for Ci,n, since
Ci,n = Ci,nāˆ’i Ā·
n
k=nāˆ’i+1
Ī»k
Based on the Chain-Ladder link ratios, Ī», it is possible to deļ¬ne grossing-up
coeļ¬ƒcients
Ī³j =
n
k=j
1
Ī»k
and thus, the total loss incured for accident year i is then
Ci,n = Ci,nāˆ’i Ā·
Ī³n
Ī³nāˆ’i
@freakonometrics 53
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Variant of the Chain-Ladder Method (1)
Historically (see e.g.), the natural idea was to consider a (standard) average of
individual link ratios.
Several techniques have been introduces to study individual link-ratios.
A ļ¬rst idea is to consider a simple linear model, Ī»i,j = aji + bj. Using OLS
techniques, it is possible to estimate those coeļ¬ƒcients simply. Then, we project
those ratios using predicted one, Ī»i,j = aji + bj.
@freakonometrics 54
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Variant of the Chain-Ladder Method (2)
A second idea is to assume that Ī»j is the weighted sum of Ī»Ā·Ā·Ā· ,jā€™s,
Ī»j =
jāˆ’1
i=0
Ļ‰i,jĪ»i,j
jāˆ’1
i=0
Ļ‰i,j
If Ļ‰i,j = Ci,j we obtain the chain ladder estimate. An alternative is to assume
that Ļ‰i,j = i + j + 1 (in order to give more weight to recent years).
@freakonometrics 55
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Variant of the Chain-Ladder Method (3)
Here, we assume that cumulated run-oļ¬€ triangles have an exponential trend, i.e.
Ci,j = Ī±j exp(i Ā· Ī²j).
In order to estimate the Ī±jā€™s and Ī²jā€™s is to consider a linear model on log Ci,j,
log Ci,j = aj
log(Ī±j )
+Ī²j Ā· i + Īµi,j.
Once the Ī²jā€™s have been estimated, set Ī³j = exp(Ī²j), and deļ¬ne
Ī“i,j = Ī³nāˆ’iāˆ’j
j Ā· Ci,j.
@freakonometrics 56
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
The extended link ratio family of estimators
For convenience, link ratios are factors that give relation between cumulative
payments of one development year (say j) and the next development year (j + 1).
They are simply the ratios yi/xi, where xiā€™s are cumulative payments year j (i.e.
xi = Ci,j) and yiā€™s are cumulative payments year j + 1 (i.e. yi = Ci,j+1).
For example, the Chain Ladder estimate is obtained as
Ī»j =
nāˆ’j
i=0 yi
nāˆ’j
k=0 xk
=
nāˆ’j
i=0
xi
nāˆ’j
k=1 xk
Ā·
yi
xi
.
But several other link ratio techniques can be considered, e.g.
Ī»j =
1
n āˆ’ j + 1
nāˆ’j
i=0
yi
xi
, i.e. the simple arithmetic mean,
Ī»j =
nāˆ’j
i=0
yi
xi
nāˆ’j+1
, i.e. the geometric mean,
@freakonometrics 57
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Ī»j =
nāˆ’j
i=0
x2
i
nāˆ’j
k=1 x2
k
Ā·
yi
xi
, i.e. the weighted average ā€œby volume squaredā€,
Hence, these techniques can be related to weighted least squares, i.e.
yi = Ī²xi + Īµi, where Īµi āˆ¼ N(0, Ļƒ2
xĪ“
i ), for some Ī“ > 0.
E.g. if Ī“ = 0, we obtain the arithmetic mean, if Ī“ = 1, we obtain the Chain
Ladder estimate, and if Ī“ = 2, the weighted average ā€œby volume squaredā€.
The interest of this regression approach, is that standard error for predictions
can be derived, under standard (and testable) assumptions. Hence
ā€¢ standardized residuals (Ļƒx
Ī“/2
i )āˆ’1
Īµi are N(0, 1), i.e. QQ plot
ā€¢ E(yi|xi) = Ī²xi, i.e. graph of xi versus yi.
@freakonometrics 58
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Properties of the Chain-Ladder estimate
Further
Ī»j =
nāˆ’jāˆ’1
i=0 Ci,j+1
nāˆ’jāˆ’1
i=0 Ci,j
is an unbiased estimator for Ī»j, given Fj, and Ī»j and Ī»j+h are non-correlated,
given Fj. Hence, an unbiased estimator for E(Ci,j|Fn) is
Ci,j = Ī»nāˆ’i Ā· Ī»nāˆ’i+1 Ā· Ā· Ā· Ī»jāˆ’2 Ī»jāˆ’1 āˆ’ 1 Ā· Ci,nāˆ’i.
Recall that Ī»j is the estimator with minimal variance among all linear estimators
obtained from Ī»i,j = Ci,j+1/Ci,jā€™s. Finally, recall that
Ļƒ2
j =
1
n āˆ’ j āˆ’ 1
nāˆ’jāˆ’1
i=0
Ci,j+1
Ci,j
āˆ’ Ī»j
2
Ā· Ci,j
is an unbiased estimator of Ļƒ2
j , given Fj (see Mack (1993) or Denuit & Charpentier
(2005)).
@freakonometrics 59
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Prediction error of the Chain-Ladder estimate
We stress here that estimating reserves is a prediction process: based on past
observations, we predict future amounts. Recall that prediction error can be
explained as follows,
E[(Y āˆ’ Y )2
]
prediction variance
= E[ (Y āˆ’ EY ) + (E(Y ) āˆ’ Y )
2
]
ā‰ˆ E[(Y āˆ’ EY )2
]
process variance
+ E[(EY āˆ’ Y )2
]
estimation variance
.
ā€¢ the process variance reļ¬‚ects randomness of the random variable
ā€¢ the estimation variance reļ¬‚ects uncertainty of statistical estimation
@freakonometrics 60
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Process variance of reserves per occurrence year
The amount of reserves for accident year i is simply
Ri = Ī»nāˆ’i Ā· Ī»nāˆ’i+1 Ā· Ā· Ā· Ī»nāˆ’2Ī»nāˆ’1 āˆ’ 1 Ā· Ci,nāˆ’i.
Note that E(Ri|Fn) = Ri Since
Var(Ri|Fn) = Var(Ci,n|Fn) = Var(Ci,n|Ci,nāˆ’i)
=
n
k=i+1
n
l=k+1
Ī»2
l Ļƒ2
kE[Ci,k|Ci,nāˆ’i]
and a natural estimator for this variance is then
Var(Ri|Fn) =
n
k=i+1
n
l=k+1
Ī»2
l Ļƒ2
kCi,k
= Ci,n
n
k=i+1
Ļƒ2
k
Ī»2
kCi,k
.
@freakonometrics 61
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Note that it is possible to get not only the variance of the ultimate cumulate
payments, but also the variance of any increment. Hence
Var(Yi,j|Fn) = Var(Yi,j|Ci,nāˆ’i)
= E[Var(Yi,j|Ci,jāˆ’1)|Ci,nāˆ’i] + Var[E(Yi,j|Ci,jāˆ’1)|Ci,nāˆ’i]
= E[Ļƒ2
i Ci,jāˆ’1|Ci,nāˆ’i] + Var[(Ī»jāˆ’1 āˆ’ 1)Ci,jāˆ’1|Ci,nāˆ’i]
and a natural estimator for this variance is then
Var(Yi,j|Fn) = Var(Ci,j|Fn) + (1 āˆ’ 2Ī»jāˆ’1)Var(Ci,jāˆ’1|Fn)
where, from the expressions given above,
Var(Ci,j|Fn) = Ci,nāˆ’i
jāˆ’1
k=i+1
Ļƒ2
k
Ī»2
kCi,k
.
@freakonometrics 62
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Parameter variance when estimating reserves per occurrence year
So far, we have obtained an estimate for the process error of technical risks
(increments or cumulated payments). But since parameters Ī»jā€™s and Ļƒ2
j are
estimated from past information, there is an additional potential error, also
called parameter error (or estimation error). Hence, we have to quantify
E [Ri āˆ’ Ri]2
. In order to quantify that error, Murphy (1994) assume the
following underlying model,
Ci,j = Ī»jāˆ’1 Ā· Ci,jāˆ’1 + Ī·i,j
with independent variables Ī·i,j. From the structure of the conditional variance,
Var(Ci,j+1|Fi+j) = Var(Ci,j+1|Ci,j) = Ļƒ2
j Ā· Ci,j,
@freakonometrics 63
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Parameter variance when estimating reserves per occurrence year
it is natural to write the equation above
Ci,j = Ī»jāˆ’1Ci,jāˆ’1 + Ļƒjāˆ’1 Ci,jāˆ’1Īµi,j,
with independent and centered variables with unit variance Īµi,j. Then
E [Ri āˆ’ Ri]2
|Fn = R2
i
nāˆ’iāˆ’1
k=0
Ļƒ2
i+k
Ī»2
i+k CĀ·,i+k
+
Ļƒ2
nāˆ’1
[Ī»nāˆ’1 āˆ’ 1]2 CĀ·,i+k
Based on that estimator, it is possible to derive the following estimator for the
Conditional Mean Square Error of reserve prediction for occurrence year i,
CMSEi = Var(Ri|Fn) + E [Ri āˆ’ Ri]2
|Fn .
@freakonometrics 64
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Variance of global reserves (for all occurrence years)
The estimate total amount of reserves is Var(R) = Var(R1) + Ā· Ā· Ā· + Var(Rn).
In order to derive the conditional mean square error of reserve prediction, deļ¬ne
the covariance term, for i < j, as
CMSEi,j = RiRj
n
k=i
Ļƒ2
i+k
Ī»2
i+k CĀ·,k
+
Ļƒ2
j
[Ī»jāˆ’1 āˆ’ 1]Ī»jāˆ’1 CĀ·,j+k
,
then the conditional mean square error of overall reserves
CMSE =
n
i=1
CMSEi + 2
j>i
CMSEi,j.
@freakonometrics 65
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Application on our triangle
1 > MackChainLadder (PAID)
2
3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
4 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN
5 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285
6 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699
7 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764
8 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047
9 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318
10
11 Totals
12 Latest: 32 ,637.00
13 Dev: 0.93
14 Ultimate: 35 ,063.99
15 IBNR: 2 ,426.99
16 Mack.S.E 79.30
17 CV(IBNR): 0.03
@freakonometrics 66
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Application on our triangle
1 > MackChainLadder (PAID)$f
2 [1] 1.380933 1.011433 1.004343 1.001858 1.004735 1.000000
3 > MackChainLadder (PAID)$f.se
4 [1] 5.175575e-03 2.248904e-03 3.808886e -04 2.687604e-04 9.710323e-05
5 > MackChainLadder (PAID)$sigma
6 [1] 0.724857769 0.320364221 0.045872973 0.025705640 0.006466667
7 > MackChainLadder (PAID)$sigma ^2
8 [1] 5.254188e-01 1.026332e-01 2.104330e-03 6.607799e-04 4.181778e-05
@freakonometrics 67
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
A short word on Munich Chain Ladder
Munich chain ladder is an extension of Mackā€™s technique based on paid (P) and
incurred (I) losses.
Here we adjust the chain-ladder link-ratios Ī»jā€™s depending if the momentary
(P/I) ratio is above or below average. It integrated correlation of residuals
between P vs. I/P and I vs. P/I chain-ladder link-ratio to estimate the
correction factor.
Use standard Chain Ladder technique on the two triangles.
@freakonometrics 68
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
A short word on Munich Chain Ladder
The (standard) payment triangle, P
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.15 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7
@freakonometrics 69
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Computational Issues
1 > MackChainLadder (PAID)
2
3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
4 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN
5 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285
6 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699
7 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764
8 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047
9 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318
10
11 Totals
12 Latest: 32 ,637.00
13 Dev: 0.93
14 Ultimate: 35 ,063.99
15 IBNR: 2 ,426.99
16 Mack.S.E 79.30
17 CV(IBNR): 0.03
@freakonometrics 70
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
A short word on Munich Chain Ladder
The Incurred Triangle (I) with estimated losses,
0 1 2 3 4 5
0 4795 4629 4497 4470 4456 4456
1 5135 4949 4783 4760 4750 4750.0
2 5681 5631 5492 5470 5455.8 5455.8
3 6272 6198 6131 6101.1 6085.3 6085.3
4 7326 7087 6920.1 6886.4 6868.5 6868.5
5 7353 7129.1 6991.2 6927.3 6909.3 6909.3
@freakonometrics 71
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Computational Issues
1 > MackChainLadder (INCURRED)
2
3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
4 1 4 ,456 1.00 4 ,456 0.0 0.000 NaN
5 2 4 ,750 1.00 4 ,750 0.0 0.975 Inf
6 3 5 ,470 1.00 5 ,456 -14.2 4.747 -0.334
7 4 6 ,131 1.01 6 ,085 -45.7 8.305 -0.182
8 5 7 ,087 1.03 6 ,869 -218.5 71.443 -0.327
9 6 7 ,353 1.06 6 ,909 -443.7 180.166 -0.406
10
11 Totals
12 Latest: 35 ,247.00
13 Dev: 1.02
14 Ultimate: 34 ,524.83
15 IBNR: -722.17
16 Mack.S.E 201.00
(keep only here Cn = 34, 524, to be compared with the previous 35, 067.
@freakonometrics 72
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Computational Issues
1 > MunichChainLadder (PAID ,INCURRED)
2
3 Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult.
Incurred Ult. P/I Ratio
4 1 4 ,456 4 ,456 1.000 4 ,456
4 ,456 1
5 2 4 ,730 4 ,750 0.996 4 ,753
4 ,750 1
6 3 5 ,420 5 ,470 0.991 5 ,455
5 ,454 1
7 4 6 ,020 6 ,131 0.982 6 ,086
6 ,085 1
8 5 6 ,794 7 ,087 0.959 6 ,983
6 ,980 1
9 6 5 ,217 7 ,353 0.710 7 ,538
7 ,533 1
10
@freakonometrics 73
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
11 Totals
12 Paid Incurred P/I Ratio
13 Latest: 32 ,637 35 ,247 0.93
14 Ultimate: 35 ,271 35 ,259 1.00
It is possible to get a model mixing the two approaches together...
@freakonometrics 74
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Bornhuetter Ferguson
One of the diļ¬ƒculties with using the chain ladder method is that reserve
forecasts can be quite unstable. The Bornhuetter & Ferguson (1972) method
provides a procedure for stabilizing such estimates.
Recall that in the standard chain ladder model,
Ci,n = Fn Ā· Ci,nāˆ’i, where Fn =
nāˆ’1
k=nāˆ’i
Ī»k
If Ri denotes the estimated outstanding reserves,
Ri = Ci,n āˆ’ Ci,nāˆ’i = Ci,n Ā·
Fn āˆ’ 1
Fn
.
@freakonometrics 75
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Bornhuetter Ferguson
For a bayesian interpretation of the Bornhutter-Ferguson model, England &
Verrall (2002) considered the case where incremental paiments Yi,j are i.i.d.
overdispersed Poisson variables. Here
E(Yi,j) = aibj and Var(Yi,j) = Ļ• Ā· aibj,
where we assume that b1 + Ā· Ā· Ā· + bn = 1. Parameter ai is assumed to be a drawing
of a random variable Ai āˆ¼ G(Ī±i, Ī²i), so that E(Ai) = Ī±i/Ī²i, so that
E(Ci,n) =
Ī±i
Ī²i
= Ci ,
which is simply a prior expectation of the ļ¬nal loss amount.
@freakonometrics 76
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Bornhuetter Ferguson
The posterior distribution of Xi,j+1 is then
E(Xi,j+1|Fi+j) = Zi,j+1Ci,j + [1 āˆ’ Zi,j+1]
Ci
Fj
Ā· (Ī»j āˆ’ 1)
where Zi,j+1 =
Fāˆ’1
j
Ī²Ļ• + Fj
, where Fj = Ī»j+1 Ā· Ā· Ā· Ī»n.
Hence, Bornhutter-Ferguson technique can be interpreted as a Bayesian method,
and a a credibility estimator (since bayesian with conjugated distributed leads to
credibility).
@freakonometrics 77
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Bornhuetter Ferguson
The underlying assumptions are here
ā€¢ assume that accident years are independent
ā€¢ assume that there exist parameters Āµ = (Āµ0, Ā· Ā· Ā· , Āµn) and a pattern
Ī² = (Ī²0, Ī²1, Ā· Ā· Ā· , Ī²n) with Ī²n = 1 such that
E(Ci,0) = Ī²0Āµi
E(Ci,j+k|Fi+j) = Ci,j + [Ī²j+k āˆ’ Ī²j] Ā· Āµi
Hence, one gets that E(Ci,j) = Ī²jĀµi.
The sequence (Ī²j) denotes the claims development pattern. The
Bornhuetter-Ferguson estimator for E(Ci,n|Ci, 1, Ā· Ā· Ā· , Ci,j) is
Ci,n = Ci,j + [1 āˆ’ Ī²jāˆ’i]Āµi
@freakonometrics 78
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
where Āµi is an estimator for E(Ci,n).
If we want to relate that model to the classical Chain Ladder one,
Ī²j is
n
k=j+1
1
Ī»k
Consider the classical triangle. Assume that the estimator Āµi is a plan value
(obtain from some business plan). For instance, consider a 105% loss ratio per
accident year.
@freakonometrics 79
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Bornhuetter Ferguson
i 0 1 2 3 4 5
premium 4591 4692 4863 5175 5673 6431
Āµi 4821 4927 5106 5434 5957 6753
Ī»i 1, 380 1, 011 1, 004 1, 002 1, 005
Ī²i 0, 708 0, 978 0, 989 0, 993 0, 995
Ci,n 4456 4753 5453 6079 6925 7187
Ri 0 23 33 59 131 1970
@freakonometrics 80
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali
As point out earlier, the (conditional) mean square error of prediction (MSE) is
mset(X) = E [X āˆ’ X]2
|Ft
= Var(X|Ft)
process variance
+ E E (X|Ft) āˆ’ X
2
parameter estimation error
i.e X is
ļ£±
ļ£²
ļ£³
a predictor for X
an estimator for E(X|Ft).
But this is only a a long-term view, since we focus on the uncertainty over the
whole runoļ¬€ period. It is not a one-year solvency view, where we focus on
changes over the next accounting year.
@freakonometrics 81
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali
From time t = n and time t = n + 1,
Ī»j
(n)
=
nāˆ’jāˆ’1
i=0 Ci,j+1
nāˆ’jāˆ’1
i=0 Ci,j
and Ī»j
(n+1)
=
nāˆ’j
i=0 Ci,j+1
nāˆ’j
i=0 Ci,j
and the ultimate loss predictions are then
C
(n)
i = Ci,nāˆ’i Ā·
n
j=nāˆ’i
Ī»j
(n)
and C
(n+1)
i = Ci,nāˆ’i+1 Ā·
n
j=nāˆ’i+1
Ī»j
(n+1)
@freakonometrics 82
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali and the one-year-uncertainty
@freakonometrics 83
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali and the one-year-uncertainty
@freakonometrics 84
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali and the one-year-uncertainty
@freakonometrics 85
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali
In order to study the one-year claims development, we have to focus on
R
(n)
i and Yi,nāˆ’i+1 + R
(n+1)
i
The boni-mali for accident year i, from year n to year n + 1 is then
BM
(n,n+1)
i = R
(n)
i āˆ’ Yi,nāˆ’i+1 + R
(n+1)
i = C
(n)
i āˆ’ C
(n+1)
i .
Thus, the conditional one-year runoļ¬€ uncertainty is
mse(BM
(n,n+1)
i ) = E C
(n)
i āˆ’ C
(n+1)
i
2
|Fn
@freakonometrics 86
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali
Hence,
mse(BM
(n,n+1)
i ) = [C
(n)
i ]2 Ļƒ2
nāˆ’i/[Ī»
(n)
nāˆ’i]2
Ci,nāˆ’i
+
Ļƒ2
nāˆ’i/[Ī»
(n)
nāˆ’i]2
iāˆ’1
k=0 Ck,nāˆ’i
+
nāˆ’1
j=nāˆ’i+1
Cnāˆ’j,j
nāˆ’j
k=0 Ck,j
Ā·
Ļƒ2
j /[Ī»
(n)
j ]2
nāˆ’jāˆ’1
k=0 Ck,j
ļ£¹
ļ£»
Further, it is possible to derive the MSEP for aggregated accident years (see Merz
& WĆ¼thrich (2008)).
@freakonometrics 87
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Boni-Mali, Computational Issues
1 > CDR( MackChainLadder (PAID))
2 IBNR CDR (1)S.E. Mack.S.E.
3 1 0.00000 0.0000000 0.0000000
4 2 22.39684 0.6393379 0.6393379
5 3 35.78388 2.4291919 2.5025153
6 4 66.06466 4.3969805 5.0459004
7 5 153.08358 30.9004962 31.3319292
8 6 2149.65640 60.8243560 68.4489667
9 Total 2426.98536 72.4127862 79.2954414
@freakonometrics 88
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Ultimate Loss and Tail Factor
The idea - introduced by Mack (1999) - is to compute
Ī»āˆž =
kā‰„n
Ī»k
and then to compute
Ci,āˆž = Ci,n Ɨ Ī»āˆž.
Assume here that Ī»i are exponentially decaying to 1, i.e. log(Ī»k āˆ’ 1)ā€™s are
linearly decaying
1 > Lambda= MackChainLadder (PAID)$f[1:( ncol(PAID) -1)]
2 > logL <- log(Lambda -1)
3 > tps <- 1:( ncol(PAID) -1)
4 > modele <- lm(logL~tps)
5 > logP <- predict(modele ,newdata=data.frame(tps=seq (6 ,1000)))
6 > (facteur <- prod(exp(logP)+1))
7 [1] 1.000707
@freakonometrics 89
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Ultimate Loss and Tail Factor
1 > DIAG <- diag(PAID [ ,6:1])
2 > PRODUIT <- c(1,rev(Lambda))
3 > sum(( cumprod(PRODUIT) -1)*DIAG)
4 [1] 2426.985
5 > sum(( cumprod(PRODUIT)*facteur -1)*DIAG)
6 [1] 2451.764
The ultimate loss is here 0.07% larger, and the reserves are 1% larger.
@freakonometrics 90
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Ultimate Loss and Tail Factor
1 > MackChainLadder (Triangle = PAID , tail = TRUE)
2
3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
4 0 4 ,456 0.999 4 ,459 3.15 0.299 0.0948
5 12 4 ,730 0.995 4 ,756 25.76 0.712 0.0277
6 24 5 ,420 0.993 5 ,460 39.64 2.528 0.0638
7 36 6 ,020 0.988 6 ,090 70.37 5.064 0.0720
8 48 6 ,794 0.977 6 ,952 157.99 31.357 0.1985
9 60 5 ,217 0.708 7 ,372 2 ,154.86 68.499 0.0318
10
11 Totals
12 Latest: 32 ,637.00
13 Dev: 0.93
14 Ultimate: 35 ,088.76
15 IBNR: 2 ,451.76
16 Mack.S.E 79.37
17 CV(IBNR): 0.03
@freakonometrics 91
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
La mƩthode dite London Chain a ƩtƩ introduite par Benjamin & Eagles (1986).
On suppose ici que la dynamique des (Cij)j=1,..,n est donnĆ©e par un modĆØle de
type AR (1) avec constante, de la forme
Ci,k+1 = Ī»k Ā· Cik + Ī±k pour tout i, k = 1, .., n
De faƧon pratique, on peut noter que la mƩthode standard de Chain Ladder,
reposant sur un modĆØle de la forme Ci,k+1 = Ī»kCik, ne pouvait ĆŖtre appliquĆ© que
lorsque les points (Ci,k, Ci,k+1) sont sensiblement alignĆ©s (Ć  k ļ¬xĆ©) sur une droite
passant par lā€™origine. La mĆ©thode London Chain suppose elle aussi que les points
soient alignĆ©s sur une mĆŖme droite, mais on ne suppose plus quā€™elle passe par 0.
Example:On obtient la droite passant au mieux par le nuage de points et par 0,
et la droite passant au mieux par le nuage de points.
@freakonometrics 92
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
Dans ce modĆØle, on a alors 2n paramĆØtres Ć  identiļ¬er : Ī»k et Ī±k pour k = 1, ..., n.
La mĆ©thode la plus naturelle consiste Ć  estimer ces paramĆØtres Ć  lā€™aide des
moindres carrĆ©s, cā€™est Ć  dire que lā€™on cherche, pour tout k,
Ī»k, Ī±k = arg min
nāˆ’k
i=1
(Ci,k+1 āˆ’ Ī±k āˆ’ Ī»kCi,k)
2
ce qui donne, ļ¬nallement
Ī»k =
1
nāˆ’k
nāˆ’k
i=1 Ci,kCi,k+1 āˆ’ C
(k)
k C
(k)
k+1
1
nāˆ’k
nāˆ’k
i=1 C2
i,k āˆ’ C
(k)2
k
oĆ¹ C
(k)
k =
1
n āˆ’ k
nāˆ’k
i=1
Ci,k et C
(k)
k+1 =
1
n āˆ’ k
nāˆ’k
i=1
Ci,k+1
et oĆ¹ la constante est donnĆ©e par Ī±k = C
(k)
k+1 āˆ’ Ī»kC
(k)
k .
@freakonometrics 93
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
Dans le cas particulier du triangle que nous Ć©tudions, on obtient
k 0 1 2 3 4
Ī»k 1.404 1.405 1.0036 1.0103 1.0047
Ī±k āˆ’90.311 āˆ’147.27 3.742 āˆ’38.493 0
@freakonometrics 94
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
The completed (cumulated) triangle is then
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730
2 3871 5345 5398 5420
3 4239 5917 6020
4 4929 6794
5 5217
@freakonometrics 95
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752
2 3871 5345 5398 5420 5437 5463
3 4239 5917 6020 6045 6069 6098
4 4929 6794 6922 6950 6983 7016
5 5217 7234 7380 7410 7447 7483
One the triangle has been completed, we obtain the amount of reserves, with
respectively 22, 43, 78, 222 and 2266 per accident year, i.e. the total is 2631 (to
be compared with 2427, obtained with the Chain Ladder technique).
@freakonometrics 96
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
From Chain Ladder to London Chain and London Pivot
La mƩthode dite London Pivot a ƩtƩ introduite par Straub, dans Nonlife
Insurance Mathematics (1989). On suppose ici que Ci,k+1 et Ci,k sont liƩs par
une relation de la forme
Ci,k+1 + Ī± = Ī»k. (Ci,k + Ī±)
(de faƧon pratique, les points (Ci,k, Ci,k+1) doivent ĆŖtre sensiblement alignĆ©s (Ć  k
ļ¬xĆ©) sur une droite passant par le point dit pivot (āˆ’Ī±, āˆ’Ī±)). Dans ce modĆØle,
(n + 1) paramĆØtres sont alors a estimer, et une estimation par moindres carrĆ©s
ordinaires donne des estimateurs de faƧon itƩrative.
@freakonometrics 97
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Introduction to factorial models: Taylor (1977)
This approach was studied in a paper entitled Separation of inļ¬‚ation and other
eļ¬€ects from the distribution of non-life insurance claim delays
We assume the incremental payments are functions of two factors, one related to
accident year i, and one to calendar year i + j. Hence, assume that
Yij = rjĀµi+jāˆ’1 for all i, j
r1Āµ1 r2Āµ2 Ā· Ā· Ā· rnāˆ’1Āµnāˆ’1 rnĀµn
r1Āµ2 r2Āµ3 Ā· Ā· Ā· rnāˆ’1Āµn
...
...
r1Āµnāˆ’1 r2Āµn
r1Āµn
et
r1Āµ1 r2Āµ2 Ā· Ā· Ā· rnāˆ’1Āµnāˆ’1 rnĀµn
r1Āµ2 r2Āµ3 Ā· Ā· Ā· rnāˆ’1Āµn
...
...
r1Āµnāˆ’1 r2Āµn
r1Āµn
@freakonometrics 98
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Hence, incremental payments are functions of development factors, rj, and a
calendar factor, Āµi+jāˆ’1, that might be related to some inļ¬‚ation index.
@freakonometrics 99
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Introduction to factorial models: Taylor (1977)
In order to identify factors r1, r2, .., rn and Āµ1, Āµ2, ..., Āµn, i.e. 2n coeļ¬ƒcients, an
additional constraint is necessary, e.g. on the rjā€™s, r1 + r2 + .... + rn = 1 (this will
be called arithmetic separation method). Hence, the sum on the latest diagonal is
dn = Y1,n + Y2,nāˆ’1 + ... + Yn,1 = Āµn (r1 + r2 + .... + rk) = Āµn
On the ļ¬rst sur-diagonal
dnāˆ’1 = Y1,nāˆ’1 +Y2,nāˆ’2 +...+Ynāˆ’1,1 = Āµnāˆ’1 (r1 + r2 + .... + rnāˆ’1) = Āµnāˆ’1 (1 āˆ’ rn)
and using the nth column, we get Ī³n = Y1,n = rnĀµn, so that
rn =
Ī³n
Āµn
and Āµnāˆ’1 =
dnāˆ’1
1 āˆ’ rn
More generally, it is possible to iterate this idea, and on the ith sur-diagonal,
dnāˆ’i = Y1,nāˆ’i + Y2,nāˆ’iāˆ’1 + ... + Ynāˆ’i,1 = Āµnāˆ’i (r1 + r2 + .... + rnāˆ’i)
= Āµnāˆ’i (1 āˆ’ [rn + rnāˆ’1 + ... + rnāˆ’i+1])
@freakonometrics 100
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Introduction to factorial models: Taylor (1977)
and ļ¬nally, based on the n āˆ’ i + 1th column,
Ī³nāˆ’i+1 = Y1,nāˆ’i+1 + Y2,nāˆ’i+1 + ... + Yiāˆ’1,nāˆ’i+1
= rnāˆ’i+1Āµnāˆ’i+1 + ... + rnāˆ’i+1Āµnāˆ’1 + rnāˆ’i+1Āµn
rnāˆ’i+1 =
Ī³nāˆ’i+1
Āµn + Āµnāˆ’1 + ... + Āµnāˆ’i+1
and Āµkāˆ’i =
dnāˆ’i
1 āˆ’ [rn + rnāˆ’1 + ... + rnāˆ’i+1]
k 1 2 3 4 5 6
Āµk 4391 4606 5240 5791 6710 7238
rk in % 73.08 25.25 0.93 0.32 0.12 0.29
@freakonometrics 101
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Introduction to factorial models: Taylor (1977)
The challenge here is to forecast forecast values for the Āµkā€™s. Either a linear
model or an exponential model can be considered.
q q
q
q
q
q
0 2 4 6 8 10
20004000600080001000012000
q q
q
q
q
q
@freakonometrics 102
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Lemaire (1982) and autoregressive models
Instead of a simple Markov process, it is possible to assume that the Ci,jā€™s can be
modeled with an autorgressive model in two directions, rows and columns,
Ci,j = Ī±Ciāˆ’1,j + Ī²Ci,jāˆ’1 + Ī³.
@freakonometrics 103
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Zehnwirth (1977)
Here, we consider the following model for the Ci,jā€™s
Ci,j = exp (Ī±i + Ī³i Ā· j) (1 + j)
Ī²i
,
which can be seen as an extended Gamma model. Ī±i is a scale parameter, while
Ī²i and Ī³i are shape parameters. Note that
log Ci,j = Ī±i + Ī²i log (1 + j) + Ī³i Ā· j.
For convenience, we usually assume that Ī²i = Ī² et Ī³i = Ī³.
Note that if log Ci,j is assume to be Gaussian, then Ci,j will be lognormal. But
then, estimators one the Ci,jā€™s while be overestimated.
@freakonometrics 104
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Zehnwirth (1977)
Assume that log Ci,j āˆ¼ N Xi,jĪ², Ļƒ2
, then, if parameters were obtained using
maximum likelihood techniques
E Ci,j = E exp Xi,jĪ² +
Ļƒ2
2
= Ci,j exp āˆ’
n āˆ’ 1
n
Ļƒ2
2
1 āˆ’
Ļƒ2
n
āˆ’ nāˆ’1
2
> Ci,j,
Further, the homoscedastic assumption might not be relevant. Thus Zehnwirth
suggested
Ļƒ2
i,j = V ar (log Ci,j) = Ļƒ2
(1 + j)
h
.
@freakonometrics 105
Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10
Regression and reserving
De Vylder (1978) proposed a least squares factor method, i.e. we need to ļ¬nd
Ī± = (Ī±0, Ā· Ā· Ā· , Ī±n) and Ī² = (Ī²0, Ā· Ā· Ā· , Ī²n) such
(Ī±, Ī²) = argmin
n
i,j=0
(Xi,j āˆ’ Ī±i Ɨ Ī²j)
2
,
or equivalently, assume that
Xi,j āˆ¼ N(Ī±i Ɨ Ī²j, Ļƒ2
), independent.
A more general model proposed by De Vylder is the following
(Ī±, Ī², Ī³) = argmin
n
i,j=0
(Xi,j āˆ’ Ī±i Ɨ Ī²j Ɨ Ī³i+jāˆ’1)
2
.
In order to have an identiļ¬able model, De Vylder suggested to assume Ī³k = Ī³k
(so that this coeļ¬ƒcient will be related to some inļ¬‚ation index).
@freakonometrics 106

More Related Content

What's hot (20)

Slides 2040-8-2013
Slides 2040-8-2013Slides 2040-8-2013
Slides 2040-8-2013
Ā 
Slides erm
Slides ermSlides erm
Slides erm
Ā 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
Ā 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
Ā 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
Ā 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
Ā 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
Ā 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
Ā 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
Ā 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
Ā 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
Ā 
Slides ensae 11bis
Slides ensae 11bisSlides ensae 11bis
Slides ensae 11bis
Ā 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
Ā 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
Ā 
Slides irisa
Slides irisaSlides irisa
Slides irisa
Ā 
Berlin
BerlinBerlin
Berlin
Ā 
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-masterSlides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Ā 
Classification
ClassificationClassification
Classification
Ā 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
Ā 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
Ā 

Viewers also liked

Viewers also liked (16)

Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
Ā 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
Ā 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
Ā 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
Ā 
Slides econ-lm
Slides econ-lmSlides econ-lm
Slides econ-lm
Ā 
Slides 2040-7
Slides 2040-7Slides 2040-7
Slides 2040-7
Ā 
Slides networks-2017-2
Slides networks-2017-2Slides networks-2017-2
Slides networks-2017-2
Ā 
Slides simplexe
Slides simplexeSlides simplexe
Slides simplexe
Ā 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
Ā 
IA-advanced-R
IA-advanced-RIA-advanced-R
IA-advanced-R
Ā 
15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman
Ā 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
Ā 
Slides arbres-ubuntu
Slides arbres-ubuntuSlides arbres-ubuntu
Slides arbres-ubuntu
Ā 
Julien slides - sƩminaire quantact
Julien slides - sƩminaire quantactJulien slides - sƩminaire quantact
Julien slides - sƩminaire quantact
Ā 
Slides inequality 2017
Slides inequality 2017Slides inequality 2017
Slides inequality 2017
Ā 
Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1
Ā 

Similar to Slides ensae-2016-10

Slides emerging-charpentier
Slides emerging-charpentierSlides emerging-charpentier
Slides emerging-charpentierArthur Charpentier
Ā 
1st QuƩbec-Ontario Workshop on Insurance Mathematics
1st QuƩbec-Ontario Workshop on Insurance Mathematics1st QuƩbec-Ontario Workshop on Insurance Mathematics
1st QuƩbec-Ontario Workshop on Insurance MathematicsArthur Charpentier
Ā 
IRJET- Health Monitor with Syncope Detection System
IRJET- Health Monitor with Syncope Detection SystemIRJET- Health Monitor with Syncope Detection System
IRJET- Health Monitor with Syncope Detection SystemIRJET Journal
Ā 
205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ballp6academy
Ā 
Zero to Dual_EC_DRBG in 30 minutes
Zero to Dual_EC_DRBG in 30 minutesZero to Dual_EC_DRBG in 30 minutes
Zero to Dual_EC_DRBG in 30 minutesEntrust Datacard
Ā 
Page rank for anomaly detection - Big Things meetup in Israel
Page rank for anomaly detection - Big Things meetup in IsraelPage rank for anomaly detection - Big Things meetup in Israel
Page rank for anomaly detection - Big Things meetup in IsraelOfer Mendelevitch
Ā 
Weekly equity report of 31 march 2014 by epic research
Weekly equity report of 31 march 2014 by epic researchWeekly equity report of 31 march 2014 by epic research
Weekly equity report of 31 march 2014 by epic researchEpic Research Limited
Ā 
Meetup crafting data science #3 (mars)
Meetup crafting data science #3 (mars)Meetup crafting data science #3 (mars)
Meetup crafting data science #3 (mars)Emmanuel-Lin TOULEMONDE
Ā 
Introducing R package ESG at Rmetrics Paris 2014 conference
Introducing R package ESG at Rmetrics Paris 2014 conferenceIntroducing R package ESG at Rmetrics Paris 2014 conference
Introducing R package ESG at Rmetrics Paris 2014 conferenceThierry Moudiki
Ā 
Asset Maintenance Cost Optimisation Model
Asset Maintenance Cost Optimisation ModelAsset Maintenance Cost Optimisation Model
Asset Maintenance Cost Optimisation ModelArash Riazifar
Ā 
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part V
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part VSkyscraper Security Mgt.- Administration Mgt. Section 1 Part V
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part VRichard Garrity
Ā 
IHP 450 Module Four Journal Rubric Prompt Your expe.docx
 IHP 450 Module Four Journal Rubric  Prompt Your expe.docx IHP 450 Module Four Journal Rubric  Prompt Your expe.docx
IHP 450 Module Four Journal Rubric Prompt Your expe.docxShiraPrater50
Ā 
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...Eesti Pank
Ā 
reliability workshop
reliability workshopreliability workshop
reliability workshopGaurav Dixit
Ā 
Cyber security financial x-ray
Cyber security financial x-rayCyber security financial x-ray
Cyber security financial x-rayJisc
Ā 
Risk assessment
Risk assessment Risk assessment
Risk assessment GunelMalikova
Ā 
1. What are the four basic financial statements and what can you l.docx
1. What are the four basic financial statements and what can you l.docx1. What are the four basic financial statements and what can you l.docx
1. What are the four basic financial statements and what can you l.docxjackiewalcutt
Ā 

Similar to Slides ensae-2016-10 (20)

Swiss part3
Swiss part3Swiss part3
Swiss part3
Ā 
Slides emerging-charpentier
Slides emerging-charpentierSlides emerging-charpentier
Slides emerging-charpentier
Ā 
1st QuƩbec-Ontario Workshop on Insurance Mathematics
1st QuƩbec-Ontario Workshop on Insurance Mathematics1st QuƩbec-Ontario Workshop on Insurance Mathematics
1st QuƩbec-Ontario Workshop on Insurance Mathematics
Ā 
IRJET- Health Monitor with Syncope Detection System
IRJET- Health Monitor with Syncope Detection SystemIRJET- Health Monitor with Syncope Detection System
IRJET- Health Monitor with Syncope Detection System
Ā 
205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ball
Ā 
Zero to Dual_EC_DRBG in 30 minutes
Zero to Dual_EC_DRBG in 30 minutesZero to Dual_EC_DRBG in 30 minutes
Zero to Dual_EC_DRBG in 30 minutes
Ā 
Page rank for anomaly detection - Big Things meetup in Israel
Page rank for anomaly detection - Big Things meetup in IsraelPage rank for anomaly detection - Big Things meetup in Israel
Page rank for anomaly detection - Big Things meetup in Israel
Ā 
Weekly equity report of 31 march 2014 by epic research
Weekly equity report of 31 march 2014 by epic researchWeekly equity report of 31 march 2014 by epic research
Weekly equity report of 31 march 2014 by epic research
Ā 
Meetup crafting data science #3 (mars)
Meetup crafting data science #3 (mars)Meetup crafting data science #3 (mars)
Meetup crafting data science #3 (mars)
Ā 
Building Cyber Resilience: No Safe Harbor
Building Cyber Resilience: No Safe HarborBuilding Cyber Resilience: No Safe Harbor
Building Cyber Resilience: No Safe Harbor
Ā 
Introducing R package ESG at Rmetrics Paris 2014 conference
Introducing R package ESG at Rmetrics Paris 2014 conferenceIntroducing R package ESG at Rmetrics Paris 2014 conference
Introducing R package ESG at Rmetrics Paris 2014 conference
Ā 
Asset Maintenance Cost Optimisation Model
Asset Maintenance Cost Optimisation ModelAsset Maintenance Cost Optimisation Model
Asset Maintenance Cost Optimisation Model
Ā 
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part V
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part VSkyscraper Security Mgt.- Administration Mgt. Section 1 Part V
Skyscraper Security Mgt.- Administration Mgt. Section 1 Part V
Ā 
IHP 450 Module Four Journal Rubric Prompt Your expe.docx
 IHP 450 Module Four Journal Rubric  Prompt Your expe.docx IHP 450 Module Four Journal Rubric  Prompt Your expe.docx
IHP 450 Module Four Journal Rubric Prompt Your expe.docx
Ā 
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...
Juan Carlos Cuestas. The Great (De)leveraging in the GIIPS countries. Foreign...
Ā 
reliability workshop
reliability workshopreliability workshop
reliability workshop
Ā 
AUDITO TOOLS
AUDITO TOOLSAUDITO TOOLS
AUDITO TOOLS
Ā 
Cyber security financial x-ray
Cyber security financial x-rayCyber security financial x-ray
Cyber security financial x-ray
Ā 
Risk assessment
Risk assessment Risk assessment
Risk assessment
Ā 
1. What are the four basic financial statements and what can you l.docx
1. What are the four basic financial statements and what can you l.docx1. What are the four basic financial statements and what can you l.docx
1. What are the four basic financial statements and what can you l.docx
Ā 

More from Arthur Charpentier

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Ā 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
Ā 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
Ā 
Control epidemics
Control epidemics Control epidemics
Control epidemics
Ā 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
Ā 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Ā 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
Ā 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
Ā 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
Ā 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
Ā 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
Ā 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
Ā 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
Ā 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
Ā 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
Ā 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
Ā 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
Ā 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
Ā 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
Ā 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
Ā 

Recently uploaded

Top Rated Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...
Top Rated  Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...Top Rated  Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...
Top Rated Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...Call Girls in Nagpur High Profile
Ā 
Best VIP Call Girls Morni Hills Just Click Me 6367492432
Best VIP Call Girls Morni Hills Just Click Me 6367492432Best VIP Call Girls Morni Hills Just Click Me 6367492432
Best VIP Call Girls Morni Hills Just Click Me 6367492432motiram463
Ā 
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...roshnidevijkn ( Why You Choose Us? ) Escorts
Ā 
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...dipikadinghjn ( Why You Choose Us? ) Escorts
Ā 
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...dipikadinghjn ( Why You Choose Us? ) Escorts
Ā 
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...Henry Tapper
Ā 
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...priyasharma62062
Ā 
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...priyasharma62062
Ā 
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļøcall girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø9953056974 Low Rate Call Girls In Saket, Delhi NCR
Ā 
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...priyasharma62062
Ā 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
Ā 
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Pooja Nehwal
Ā 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfMichael Silva
Ā 
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7jayawati511
Ā 
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...priyasharma62062
Ā 
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...priyasharma62062
Ā 
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...priyasharma62062
Ā 
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...dipikadinghjn ( Why You Choose Us? ) Escorts
Ā 

Recently uploaded (20)

Top Rated Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...
Top Rated  Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...Top Rated  Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...
Top Rated Pune Call Girls Viman Nagar āŸŸ 6297143586 āŸŸ Call Me For Genuine Sex...
Ā 
Best VIP Call Girls Morni Hills Just Click Me 6367492432
Best VIP Call Girls Morni Hills Just Click Me 6367492432Best VIP Call Girls Morni Hills Just Click Me 6367492432
Best VIP Call Girls Morni Hills Just Click Me 6367492432
Ā 
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune ā‚¹7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Ā 
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
Ā 
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai šŸŒ¹ 9920725232 ( Call Me ) Mumbai Escorts ...
Ā 
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...
VIP Independent Call Girls in Mira Bhayandar šŸŒ¹ 9920725232 ( Call Me ) Mumbai ...
Ā 
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-ā€“-design-optio...
Ā 
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Ā 
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-šŸ“žšŸ“ž9833754194 No 1 Vipp HIgh...
Ā 
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļøcall girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø
call girls in Sant Nagar (DELHI) šŸ” >ą¼’9953056974 šŸ” genuine Escort Service šŸ”āœ”ļøāœ”ļø
Ā 
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Ā 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Ā 
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Ā 
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
Ā 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdf
Ā 
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7
(Sexy Sheela) Call Girl Mumbai Call Now šŸ‘‰9920725232šŸ‘ˆ Mumbai Escorts 24x7
Ā 
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...
Vasai-Virar High Profile Model Call GirlsšŸ“ž9833754194-Nalasopara Satisfy Call ...
Ā 
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Ā 
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...
Mira Road Memorable Call Grls Number-9833754194-Bhayandar Speciallty Call Gir...
Ā 
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul šŸ’§ 7737669865 šŸ’§ by Dindigul Call G...
Ā 

Slides ensae-2016-10

  • 1. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Actuariat de lā€™Assurance Non-Vie # 10 A. Charpentier (UniversitĆ© de Rennes 1) ENSAE ParisTech, Octobre / DĆ©cembre 2016. http://freakonometrics.hypotheses.org @freakonometrics 1
  • 2. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 GĆ©nĆ©ralitĆ©s sur les Provisions pour Sinistres Ć  Payer RĆ©fĆ©rences: de Jong & Heller (2008), section 1.5 et 8.1, and WĆ¼thrich & Merz (2015), chapitres 1 Ć  3, et Pigeon (2015). ā€œ Les provisions techniques sont les provisions destinĆ©es Ć  permettre le rĆ©glement intĆ©gral des engagements pris envers les assurĆ©s et bĆ©nĆ©ļ¬caires de contrats. Elles sont liĆ©es Ć  la technique mĆŖme de lā€™assurance, et imposĆ©es par la rĆ©glementation.ā€ ā€œIt is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat ā€˜the problem of incurred but not reported claim reserves is essentially actuarial or statisticalā€™. Perhaps in todayā€™s environment the quotation would be even more relevant if it stated that the problem ā€˜...is more actuarial than statisticalā€™.ā€ Bornhuetter & Ferguson (1972) @freakonometrics 2
  • 3. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La vie des sinistres ā€¢ date t1 : survenance du sinistre ā€¢ pĆ©riode [t1, t2] : IBNR Incureed But Not Reported ā€¢ date t2 : dĆ©claration du sinistre Ć  lā€™assureur ā€¢ pĆ©riode [t2, t3] : IBNP Incureed But Not Paid ā€¢ pĆ©riode [t2, t6] : IBNS Incureed But Not Settled ā€¢ dates t3, t4, t5 : paiements ā€¢ date t6 : clĆ“ture du sinistre @freakonometrics 3
  • 4. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La vie des sinistres ƀ la survenance, un montant estimĆ© est indiquĆ© par les gestionnaires de sinistres (charge dossier/dossier). Ensuite deux opĆ©rations sont possibles : ā€¢ eļ¬€ectuer un paiement ā€¢ rĆ©viser le montant du sinistre @freakonometrics 4
  • 5. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La vie des sinistres: ProblĆ©matique des PSAP La Provision pour Sinistres Ć  Payer est la diļ¬€Ć©rence entre le montant du sinistre et le paiement dĆ©jĆ  eļ¬€ectuĆ©. @freakonometrics 5
  • 6. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : du micro au macro Analyse micro Sinistres i = 1, Ā· Ā· Ā· , n survenances, date Ti,0 dĆ©claration, date Ti,0 + Qi paiements, dates Ti,j = Ti,0 + Qi + j k=1 Zi,k et montants (Ti,j, Yi,j) Montant de i Ć  la date t, Ci(t) = j:Ti,j ā‰¤t Yi,j Provision (idĆ©ale) Ć  la date t, Ri(t) = Ci(āˆž) āˆ’ Ci(t) @freakonometrics 6
  • 7. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : du micro au macro Analyse macro On agrĆ©ge les sinistres par annĆ©e de survenance : Si = {k : Tk,0 āˆˆ [i, i + 1)} On regarde les paiements eļ¬€ectuĆ©s aprĆØs j annĆ©es Yi,j = kāˆˆSi Tk, āˆˆ[j,j+1) Zk, Ici Ynāˆ’1,0 @freakonometrics 7
  • 8. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : du micro au macro Analyse macro On agrĆ©ge les sinistres par annĆ©e de survenance : Si = {k : Tk,0 āˆˆ [i, i + 1)} On regarde les paiements eļ¬€ectuĆ©s aprĆØs j annĆ©es Yi,j = kāˆˆSi Tk, āˆˆ[j,j+1) Zk, Ici Ynāˆ’1,1 et Yn,0 @freakonometrics 8
  • 9. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : du micro au macro Analyse macro On agrĆ©ge les sinistres par annĆ©e de survenance : Si = {k : Tk,0 āˆˆ [i, i + 1)} On regarde les paiements eļ¬€ectuĆ©s aprĆØs j annĆ©es Yi,j = kāˆˆSi Tk, āˆˆ[j,j+1) Zk, Ici Ynāˆ’1,2, Yn,1 et Yn+1,0 @freakonometrics 9
  • 10. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : du micro au macro ā€¢ les provisions techniques peuvent reprĆ©senter 75% du bilan, ā€¢ le ratio de couverture (provision / chiļ¬€re dā€™aļ¬€aire) peut dĆ©passer 2, ā€¢ certaines branches sont Ć  dĆ©veloppement long, en montant n n + 1 n + 2 n + 3 n + 4 habitation 55% 90% 94% 95% 96% automobile 55% 80% 85% 88% 90% dont corporels 15% 40% 50% 65% 70% R.C. 10% 25% 35% 40% 45% @freakonometrics 10
  • 11. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : complĆ©ment sur les donnĆ©es micro On note Fn t lā€™information accessible Ć  la date t, Fn t = Ļƒ {(Ti,0, Ti,j, Xi,j), i = 1, Ā· Ā· Ā· , n, Ti,j ā‰¤ t} et C(āˆž) = n i=1 Ci(āˆž). Notons que Mt = E [C(āˆž)|F ] est une martingale, i.e. E[Mt+h|Ft] = Mt alors que Vt = Var [C(āˆž)|F ] est une sur-martingale, i.e. E[Vt+h|Ft] ā‰¤ Vt. @freakonometrics 11
  • 12. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : les mĆ©thodes usuelles Source : http://www.actuaries.org.uk @freakonometrics 12
  • 13. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : les mĆ©thodes usuelles Source : http://www.actuaries.org.uk @freakonometrics 13
  • 14. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : les mĆ©thodes usuelles Source : http://www.actuaries.org.uk @freakonometrics 14
  • 15. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles de Paiements : les mĆ©thodes usuelles Source : http://www.actuaries.org.uk @freakonometrics 15
  • 16. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: multirisques habitation @freakonometrics 16
  • 17. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: risque incendies entreprises @freakonometrics 17
  • 18. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: automobile (total) @freakonometrics 18
  • 19. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: automobile matĆ©riel @freakonometrics 19
  • 20. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: automobile corporel @freakonometrics 20
  • 21. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: responsabilitĆ© civile entreprise @freakonometrics 21
  • 22. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: responabilitĆ© civile mĆ©dicale @freakonometrics 22
  • 23. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Exemples de cadence de paiement: assurance construction @freakonometrics 23
  • 24. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Les triangles: incrĆ©ments de paiements NotĆ©s Yi,j, pour lā€™annĆ©e de survenance i, et lā€™annĆ©e de dĆ©veloppement j, 0 1 2 3 4 5 0 3209 1163 39 17 7 21 1 3367 1292 37 24 10 2 3871 1474 53 22 3 4239 1678 103 4 4929 1865 5 5217 @freakonometrics 24
  • 25. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Les triangles: paiements cumulĆ©s NotĆ©s Ci,j = Yi,0 + Yi,1 + Ā· Ā· Ā· + Yi,j, pour lā€™annĆ©e de survenance i, et lā€™annĆ©e de dĆ©veloppement j, 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 2 3871 5345 5398 5420 3 4239 5917 6020 4 4929 6794 5 5217 @freakonometrics 25
  • 26. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Les triangles: nombres de sinistres NotĆ©s Ni,j sinistres survenus lā€™annĆ©e i connus (dĆ©clarĆ©s) au bout de j annĆ©es, 0 1 2 3 4 5 0 1043.4 1045.5 1047.5 1047.7 1047.7 1047.7 1 1043.0 1027.1 1028.7 1028.9 1028.7 2 965.1 967.9 967.8 970.1 3 977.0 984.7 986.8 4 1099.0 1118.5 5 1076.3 @freakonometrics 26
  • 27. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La prime acquise NotĆ©e Ļ€i, prime acquise pour lā€™annĆ©e i annĆ©e i 0 1 2 3 4 5 Pi 4591 4672 4863 5175 5673 6431 @freakonometrics 27
  • 28. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles 1 > rm(list=ls()) 2 > source("http:// freakonometrics .free.fr/bases.R") 3 > ls() 4 [1] "INCURRED" "NUMBER" "PAID" "PREMIUM" 5 > PAID 6 [,1] [,2] [,3] [,4] [,5] [,6] 7 [1,] 3209 4372 4411 4428 4435 4456 8 [2,] 3367 4659 4696 4720 4730 NA 9 [3,] 3871 5345 5398 5420 NA NA 10 [4,] 4239 5917 6020 NA NA NA 11 [5,] 4929 6794 NA NA NA NA 12 [6,] 5217 NA NA NA NA NA @freakonometrics 28
  • 29. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles ? Actually, there might be two diļ¬€erent cases in practice, the ļ¬rst one being when initial data are missing 0 1 2 3 4 5 0 ā—¦ ā—¦ ā—¦ ā€¢ ā€¢ ā€¢ 1 ā—¦ ā—¦ ā€¢ ā€¢ ā€¢ 2 ā—¦ ā€¢ ā€¢ ā€¢ 3 ā€¢ ā€¢ ā€¢ 4 ā€¢ ā€¢ 5 ā€¢ In that case it is mainly an index-issue in calculation. @freakonometrics 29
  • 30. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Triangles ? Actually, there might be two diļ¬€erent cases in practice, the ļ¬rst one being when ļ¬nal data are missing, i.e. some tail factor should be included 0 1 2 3 4 5 0 ā€¢ ā€¢ ā€¢ ā€¢ ā—¦ ā—¦ 1 ā€¢ ā€¢ ā€¢ ā—¦ ā—¦ ā—¦ 2 ā€¢ ā€¢ ā—¦ ā—¦ ā—¦ ā—¦ 3 ā€¢ ā—¦ ā—¦ ā—¦ ā—¦ ā—¦ In that case it is necessary to extrapolate (with past information) the ļ¬nal loss (tail factor). @freakonometrics 30
  • 31. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 The Chain Ladder estimate We assume here that Ci,j+1 = Ī»j Ā· Ci,j for all i, j = 0, 1, Ā· Ā· Ā· , n. A natural estimator for Ī»j based on past history is Ī»j = nāˆ’j i=0 Ci,j+1 nāˆ’j i=0 Ci,j for all j = 0, 1, Ā· Ā· Ā· , n āˆ’ 1. Hence, it becomes possible to estimate future payments using Ci,j = Ī»n+1āˆ’i Ā· Ā· Ā· Ī»jāˆ’1 Ci,n+1āˆ’i. @freakonometrics 31
  • 32. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»0 = 4372 + Ā· Ā· Ā· + 6794 3209 + Ā· Ā· Ā· + 4929 āˆ¼ 1.38093 @freakonometrics 32
  • 33. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»0 = 4372 + Ā· Ā· Ā· + 6794 3209 + Ā· Ā· Ā· + 4929 āˆ¼ 1.38093 @freakonometrics 33
  • 34. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»0 = 4372 + Ā· Ā· Ā· + 6794 3209 + Ā· Ā· Ā· + 4929 āˆ¼ 1.38093 @freakonometrics 34
  • 35. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»1 = 4411 + Ā· Ā· Ā· + 6020 4372 + Ā· Ā· Ā· + 5917 āˆ¼ 1.01143 @freakonometrics 35
  • 36. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»1 = 4411 + Ā· Ā· Ā· + 6020 4372 + Ā· Ā· Ā· + 5917 āˆ¼ 1.01143 @freakonometrics 36
  • 37. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»2 = 4428 + Ā· Ā· Ā· + 5420 4411 + Ā· Ā· Ā· + 5398 āˆ¼ 1.00434 @freakonometrics 37
  • 38. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»2 = 4428 + Ā· Ā· Ā· + 5420 4411 + Ā· Ā· Ā· + 5398 āˆ¼ 1.00434 @freakonometrics 38
  • 39. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»3 = 4435 + 4730 4428 + 4720 āˆ¼ 1.00186 @freakonometrics 39
  • 40. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.1 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Ī»4 = 4456 4435 āˆ¼ 1.00474 @freakonometrics 40
  • 41. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 La mĆ©thode Chain Ladder, en pratique 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.15 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427. @freakonometrics 41
  • 42. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Computational Issues 1 > library( ChainLadder ) 2 > MackChainLadder (PAID) 3 MackChainLadder (Triangle = PAID) 4 5 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 6 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN 7 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285 8 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699 9 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764 10 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047 11 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318 12 13 Totals 14 Latest: 32 ,637.00 15 Dev: 0.93 16 Ultimate: 35 ,063.99 17 IBNR: 2 ,426.99 @freakonometrics 42
  • 43. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 18 Mack.S.E 79.30 19 CV(IBNR): 0.03 @freakonometrics 43
  • 44. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Three ways to look at triangles There are basically three kind of approaches to model development ā€¢ developments as percentages of total incured, i.e. consider Ļ• = (Ļ•0, Ļ•1, Ā· Ā· Ā· , Ļ•n), with Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•n = 1, such that E(Yi,j) = Ļ•jE(Ci,n), where j = 0, 1, Ā· Ā· Ā· , n. ā€¢ developments as rates of total incured, i.e. consider Ī³ = (Ī³0, Ī³1, Ā· Ā· Ā· , Ī³n), such that E(Ci,j) = Ī³jE(Ci,n), where j = 0, 1, Ā· Ā· Ā· , n. ā€¢ developments as factors of previous estimation, i.e. consider Ī» = (Ī»0, Ī»1, Ā· Ā· Ā· , Ī»n), such that E(Ci,j+1) = Ī»jE(Ci,j), where j = 0, 1, Ā· Ā· Ā· , n. @freakonometrics 44
  • 45. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Three ways to look at triangles From a mathematical point of view, it is strictly equivalent to study one of those. Hence, Ī³j = Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j = 1 Ī»j 1 Ī»j+1 Ā· Ā· Ā· 1 Ī»nāˆ’1 , Ī»j = Ī³j+1 Ī³j = Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j + Ļ•j+1 Ļ•0 + Ļ•1 + Ā· Ā· Ā· + Ļ•j Ļ•j = ļ£± ļ£² ļ£³ Ī³0 if j = 0 Ī³j āˆ’ Ī³jāˆ’1 if j ā‰„ 1 = ļ£± ļ£“ļ£² ļ£“ļ£³ 1 Ī»0 1 Ī»1 Ā· Ā· Ā· 1 Ī»nāˆ’1 , if j = 0 1 Ī»j+1 1 Ī»j+2 Ā· Ā· Ā· 1 Ī»nāˆ’1 āˆ’ 1 Ī»j 1 Ī»j+1 Ā· Ā· Ā· 1 Ī»nāˆ’1 , if j ā‰„ 1 @freakonometrics 45
  • 46. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Three ways to look at triangles On the previous triangle, 0 1 2 3 4 n Ī»j 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000 Ī³j 70,819% 97,796% 98,914% 99,344% 99,529% 100,000% Ļ•j 70,819% 26,977% 1,118% 0,430% 0,185% 0,000% @freakonometrics 46
  • 47. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 d-triangles It is possible to deļ¬ne the d-triangles, with empirical Ī»ā€™s, i.e. Ī»i,j 0 1 2 3 4 5 0 1.362 1.009 1.004 1.002 1.005 1 1.384 1.008 1.005 1.002 2 1.381 1.010 1.001 3 1.396 1.017 4 1.378 5 @freakonometrics 47
  • 48. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 The Chain-Ladder estimate The Chain-Ladder estimate is probably the most popular technique to estimate claim reserves. Let Ft denote the information avalable at time t, or more formally the ļ¬ltration generated by {Ci,j, i + j ā‰¤ t} - or equivalently {Xi,j, i + j ā‰¤ t} Assume that incremental payments are independent by occurence years, i.e. Ci1,Ā· and Ci2,Ā· are independent for any i1 and i2 [H1] . Further, assume that (Ci,j)jā‰„0 is Markov, and more precisely, there exist Ī»jā€™s and Ļƒ2 j ā€™s such that ļ£± ļ£² ļ£³ E(Ci,j+1|Fi+j) = E(Ci,j+1|Ci,j) = Ī»j Ā· Ci,j [H2] Var(Ci,j+1|Fi+j) = Var(Ci,j+1|Ci,j) = Ļƒ2 j Ā· Ci,j [H3] Under those assumption (see Mack (1993)), one gets E(Ci,j+k|Fi+j) = (Ci,j+k|Ci,j) = Ī»j Ā· Ī»j+1 Ā· Ā· Ā· Ī»j+kāˆ’1Ci,j @freakonometrics 48
  • 49. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Testing assumptions Assumption H2 can be interpreted as a linear regression model, i.e. Yi = Ī²0 + Xi Ā· Ī²1 + Īµi, i = 1, Ā· Ā· Ā· , n, where Īµ is some error term, such that E(Īµ) = 0, where Ī²0 = 0, Yi = Ci,j+1 for some j, Xi = Ci,j, and Ī²1 = Ī»j. Weighted least squares can be considered, i.e. min nāˆ’j i=1 Ļ‰i (Yi āˆ’ Ī²0 āˆ’ Ī²1Xi) 2 where the Ļ‰iā€™s are proportional to Var(Yi)āˆ’1 . This leads to min nāˆ’j i=1 1 Ci,j (Ci,j+1 āˆ’ Ī»jCi,j) 2 . As in any linear regression model, it is possible to test assumptions H1 and H2, the following graphs can be considered, given j ā€¢ plot Ci,j+1ā€™s versus Ci,jā€™s. Points should be on the straight line with slope Ī»j. ā€¢ plot (standardized) residuals Īµi,j = Ci,j+1 āˆ’ Ī»jCi,j Ci,j versus Ci,jā€™s. @freakonometrics 49
  • 50. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Testing assumptions H1 is the accident year independent assumption. More precisely, we assume there is no calendar eļ¬€ect. Deļ¬ne the diagonal Bk = {Ck,0, Ckāˆ’1,1, Ckāˆ’2,2 Ā· Ā· Ā· , C2,kāˆ’2, C1,kāˆ’1, C0,k}. If there is a calendar eļ¬€ect, it should aļ¬€ect adjacent factor lines, Ak = Ck,1 Ck,0 , Ckāˆ’1,2 Ckāˆ’1,1 , Ckāˆ’2,3 Ckāˆ’2,2 , Ā· Ā· Ā· , C1,k C1,kāˆ’1 , C0,k+1 C0,k = ā€ Ī“k+1 Ī“k ā€, and Akāˆ’1 = Ckāˆ’1,1 Ckāˆ’1,0 , Ckāˆ’2,2 Ckāˆ’2,1 , Ckāˆ’3,3 Ckāˆ’3,2 , Ā· Ā· Ā· , C1,kāˆ’1 C1,kāˆ’2 , C0,k C0,kāˆ’1 = ā€ Ī“k Ī“kāˆ’1 ā€. For each k, let N+ k denote the number of elements exceeding the median, and Nāˆ’ k the number of elements lower than the mean. The two years are independent, N+ k and Nāˆ’ k should be ā€œclosedā€, i.e. Nk = min N+ k , Nāˆ’ k should be ā€œclosedā€ to N+ k + Nāˆ’ k /2. @freakonometrics 50
  • 51. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Testing assumptions Since Nāˆ’ k and N+ k are two binomial distributions B p = 1/2, n = Nāˆ’ k + N+ k , then E (Nk) = nk 2 āˆ’ ļ£« ļ£­ nk āˆ’ 1 mk ļ£¶ ļ£ø nk 2nk where nk = N+ k + Nāˆ’ k and mk = nk āˆ’ 1 2 and V (Nk) = nk (nk āˆ’ 1) 2 āˆ’ ļ£« ļ£­ nk āˆ’ 1 mk ļ£¶ ļ£ø nk (nk āˆ’ 1) 2nk + E (Nk) āˆ’ E (Nk) 2 . Under some normality assumption on N, a 95% conļ¬dence interval can be derived, i.e. E (Z) Ā± 1.96 V (Z). @freakonometrics 51
  • 52. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 0 1 2 3 4 5 0 0.734 .0991 0.996 0.998 0.995 1 0.723 0.992 0.995 0.998 2 0.724 0.990 0.996 3 0.716 0.983 4 0.725 5 6 0.724 0.991 0.996 0.998 0.995 et 0 1 2 3 4 5 0 + + + + Ā· 1 āˆ’ + āˆ’ āˆ’ 2 Ā· āˆ’ Ā· 3 āˆ’ āˆ’ 4 + 5 @freakonometrics 52
  • 53. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain-Ladder to Grossing-Up The idea of the Chain-Ladder technique was to estimate the Ī»jā€™s, so that we can derive estimates for Ci,n, since Ci,n = Ci,nāˆ’i Ā· n k=nāˆ’i+1 Ī»k Based on the Chain-Ladder link ratios, Ī», it is possible to deļ¬ne grossing-up coeļ¬ƒcients Ī³j = n k=j 1 Ī»k and thus, the total loss incured for accident year i is then Ci,n = Ci,nāˆ’i Ā· Ī³n Ī³nāˆ’i @freakonometrics 53
  • 54. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Variant of the Chain-Ladder Method (1) Historically (see e.g.), the natural idea was to consider a (standard) average of individual link ratios. Several techniques have been introduces to study individual link-ratios. A ļ¬rst idea is to consider a simple linear model, Ī»i,j = aji + bj. Using OLS techniques, it is possible to estimate those coeļ¬ƒcients simply. Then, we project those ratios using predicted one, Ī»i,j = aji + bj. @freakonometrics 54
  • 55. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Variant of the Chain-Ladder Method (2) A second idea is to assume that Ī»j is the weighted sum of Ī»Ā·Ā·Ā· ,jā€™s, Ī»j = jāˆ’1 i=0 Ļ‰i,jĪ»i,j jāˆ’1 i=0 Ļ‰i,j If Ļ‰i,j = Ci,j we obtain the chain ladder estimate. An alternative is to assume that Ļ‰i,j = i + j + 1 (in order to give more weight to recent years). @freakonometrics 55
  • 56. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Variant of the Chain-Ladder Method (3) Here, we assume that cumulated run-oļ¬€ triangles have an exponential trend, i.e. Ci,j = Ī±j exp(i Ā· Ī²j). In order to estimate the Ī±jā€™s and Ī²jā€™s is to consider a linear model on log Ci,j, log Ci,j = aj log(Ī±j ) +Ī²j Ā· i + Īµi,j. Once the Ī²jā€™s have been estimated, set Ī³j = exp(Ī²j), and deļ¬ne Ī“i,j = Ī³nāˆ’iāˆ’j j Ā· Ci,j. @freakonometrics 56
  • 57. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 The extended link ratio family of estimators For convenience, link ratios are factors that give relation between cumulative payments of one development year (say j) and the next development year (j + 1). They are simply the ratios yi/xi, where xiā€™s are cumulative payments year j (i.e. xi = Ci,j) and yiā€™s are cumulative payments year j + 1 (i.e. yi = Ci,j+1). For example, the Chain Ladder estimate is obtained as Ī»j = nāˆ’j i=0 yi nāˆ’j k=0 xk = nāˆ’j i=0 xi nāˆ’j k=1 xk Ā· yi xi . But several other link ratio techniques can be considered, e.g. Ī»j = 1 n āˆ’ j + 1 nāˆ’j i=0 yi xi , i.e. the simple arithmetic mean, Ī»j = nāˆ’j i=0 yi xi nāˆ’j+1 , i.e. the geometric mean, @freakonometrics 57
  • 58. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Ī»j = nāˆ’j i=0 x2 i nāˆ’j k=1 x2 k Ā· yi xi , i.e. the weighted average ā€œby volume squaredā€, Hence, these techniques can be related to weighted least squares, i.e. yi = Ī²xi + Īµi, where Īµi āˆ¼ N(0, Ļƒ2 xĪ“ i ), for some Ī“ > 0. E.g. if Ī“ = 0, we obtain the arithmetic mean, if Ī“ = 1, we obtain the Chain Ladder estimate, and if Ī“ = 2, the weighted average ā€œby volume squaredā€. The interest of this regression approach, is that standard error for predictions can be derived, under standard (and testable) assumptions. Hence ā€¢ standardized residuals (Ļƒx Ī“/2 i )āˆ’1 Īµi are N(0, 1), i.e. QQ plot ā€¢ E(yi|xi) = Ī²xi, i.e. graph of xi versus yi. @freakonometrics 58
  • 59. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Properties of the Chain-Ladder estimate Further Ī»j = nāˆ’jāˆ’1 i=0 Ci,j+1 nāˆ’jāˆ’1 i=0 Ci,j is an unbiased estimator for Ī»j, given Fj, and Ī»j and Ī»j+h are non-correlated, given Fj. Hence, an unbiased estimator for E(Ci,j|Fn) is Ci,j = Ī»nāˆ’i Ā· Ī»nāˆ’i+1 Ā· Ā· Ā· Ī»jāˆ’2 Ī»jāˆ’1 āˆ’ 1 Ā· Ci,nāˆ’i. Recall that Ī»j is the estimator with minimal variance among all linear estimators obtained from Ī»i,j = Ci,j+1/Ci,jā€™s. Finally, recall that Ļƒ2 j = 1 n āˆ’ j āˆ’ 1 nāˆ’jāˆ’1 i=0 Ci,j+1 Ci,j āˆ’ Ī»j 2 Ā· Ci,j is an unbiased estimator of Ļƒ2 j , given Fj (see Mack (1993) or Denuit & Charpentier (2005)). @freakonometrics 59
  • 60. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Prediction error of the Chain-Ladder estimate We stress here that estimating reserves is a prediction process: based on past observations, we predict future amounts. Recall that prediction error can be explained as follows, E[(Y āˆ’ Y )2 ] prediction variance = E[ (Y āˆ’ EY ) + (E(Y ) āˆ’ Y ) 2 ] ā‰ˆ E[(Y āˆ’ EY )2 ] process variance + E[(EY āˆ’ Y )2 ] estimation variance . ā€¢ the process variance reļ¬‚ects randomness of the random variable ā€¢ the estimation variance reļ¬‚ects uncertainty of statistical estimation @freakonometrics 60
  • 61. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Process variance of reserves per occurrence year The amount of reserves for accident year i is simply Ri = Ī»nāˆ’i Ā· Ī»nāˆ’i+1 Ā· Ā· Ā· Ī»nāˆ’2Ī»nāˆ’1 āˆ’ 1 Ā· Ci,nāˆ’i. Note that E(Ri|Fn) = Ri Since Var(Ri|Fn) = Var(Ci,n|Fn) = Var(Ci,n|Ci,nāˆ’i) = n k=i+1 n l=k+1 Ī»2 l Ļƒ2 kE[Ci,k|Ci,nāˆ’i] and a natural estimator for this variance is then Var(Ri|Fn) = n k=i+1 n l=k+1 Ī»2 l Ļƒ2 kCi,k = Ci,n n k=i+1 Ļƒ2 k Ī»2 kCi,k . @freakonometrics 61
  • 62. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Note that it is possible to get not only the variance of the ultimate cumulate payments, but also the variance of any increment. Hence Var(Yi,j|Fn) = Var(Yi,j|Ci,nāˆ’i) = E[Var(Yi,j|Ci,jāˆ’1)|Ci,nāˆ’i] + Var[E(Yi,j|Ci,jāˆ’1)|Ci,nāˆ’i] = E[Ļƒ2 i Ci,jāˆ’1|Ci,nāˆ’i] + Var[(Ī»jāˆ’1 āˆ’ 1)Ci,jāˆ’1|Ci,nāˆ’i] and a natural estimator for this variance is then Var(Yi,j|Fn) = Var(Ci,j|Fn) + (1 āˆ’ 2Ī»jāˆ’1)Var(Ci,jāˆ’1|Fn) where, from the expressions given above, Var(Ci,j|Fn) = Ci,nāˆ’i jāˆ’1 k=i+1 Ļƒ2 k Ī»2 kCi,k . @freakonometrics 62
  • 63. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Parameter variance when estimating reserves per occurrence year So far, we have obtained an estimate for the process error of technical risks (increments or cumulated payments). But since parameters Ī»jā€™s and Ļƒ2 j are estimated from past information, there is an additional potential error, also called parameter error (or estimation error). Hence, we have to quantify E [Ri āˆ’ Ri]2 . In order to quantify that error, Murphy (1994) assume the following underlying model, Ci,j = Ī»jāˆ’1 Ā· Ci,jāˆ’1 + Ī·i,j with independent variables Ī·i,j. From the structure of the conditional variance, Var(Ci,j+1|Fi+j) = Var(Ci,j+1|Ci,j) = Ļƒ2 j Ā· Ci,j, @freakonometrics 63
  • 64. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Parameter variance when estimating reserves per occurrence year it is natural to write the equation above Ci,j = Ī»jāˆ’1Ci,jāˆ’1 + Ļƒjāˆ’1 Ci,jāˆ’1Īµi,j, with independent and centered variables with unit variance Īµi,j. Then E [Ri āˆ’ Ri]2 |Fn = R2 i nāˆ’iāˆ’1 k=0 Ļƒ2 i+k Ī»2 i+k CĀ·,i+k + Ļƒ2 nāˆ’1 [Ī»nāˆ’1 āˆ’ 1]2 CĀ·,i+k Based on that estimator, it is possible to derive the following estimator for the Conditional Mean Square Error of reserve prediction for occurrence year i, CMSEi = Var(Ri|Fn) + E [Ri āˆ’ Ri]2 |Fn . @freakonometrics 64
  • 65. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Variance of global reserves (for all occurrence years) The estimate total amount of reserves is Var(R) = Var(R1) + Ā· Ā· Ā· + Var(Rn). In order to derive the conditional mean square error of reserve prediction, deļ¬ne the covariance term, for i < j, as CMSEi,j = RiRj n k=i Ļƒ2 i+k Ī»2 i+k CĀ·,k + Ļƒ2 j [Ī»jāˆ’1 āˆ’ 1]Ī»jāˆ’1 CĀ·,j+k , then the conditional mean square error of overall reserves CMSE = n i=1 CMSEi + 2 j>i CMSEi,j. @freakonometrics 65
  • 66. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Application on our triangle 1 > MackChainLadder (PAID) 2 3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 4 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN 5 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285 6 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699 7 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764 8 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047 9 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318 10 11 Totals 12 Latest: 32 ,637.00 13 Dev: 0.93 14 Ultimate: 35 ,063.99 15 IBNR: 2 ,426.99 16 Mack.S.E 79.30 17 CV(IBNR): 0.03 @freakonometrics 66
  • 67. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Application on our triangle 1 > MackChainLadder (PAID)$f 2 [1] 1.380933 1.011433 1.004343 1.001858 1.004735 1.000000 3 > MackChainLadder (PAID)$f.se 4 [1] 5.175575e-03 2.248904e-03 3.808886e -04 2.687604e-04 9.710323e-05 5 > MackChainLadder (PAID)$sigma 6 [1] 0.724857769 0.320364221 0.045872973 0.025705640 0.006466667 7 > MackChainLadder (PAID)$sigma ^2 8 [1] 5.254188e-01 1.026332e-01 2.104330e-03 6.607799e-04 4.181778e-05 @freakonometrics 67
  • 68. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 A short word on Munich Chain Ladder Munich chain ladder is an extension of Mackā€™s technique based on paid (P) and incurred (I) losses. Here we adjust the chain-ladder link-ratios Ī»jā€™s depending if the momentary (P/I) ratio is above or below average. It integrated correlation of residuals between P vs. I/P and I vs. P/I chain-ladder link-ratio to estimate the correction factor. Use standard Chain Ladder technique on the two triangles. @freakonometrics 68
  • 69. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 A short word on Munich Chain Ladder The (standard) payment triangle, P 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 6046.15 6057.4 6086.1 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 @freakonometrics 69
  • 70. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Computational Issues 1 > MackChainLadder (PAID) 2 3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 4 1 4 ,456 1.000 4 ,456 0.0 0.000 NaN 5 2 4 ,730 0.995 4 ,752 22.4 0.639 0.0285 6 3 5 ,420 0.993 5 ,456 35.8 2.503 0.0699 7 4 6 ,020 0.989 6 ,086 66.1 5.046 0.0764 8 5 6 ,794 0.978 6 ,947 153.1 31.332 0.2047 9 6 5 ,217 0.708 7 ,367 2 ,149.7 68.449 0.0318 10 11 Totals 12 Latest: 32 ,637.00 13 Dev: 0.93 14 Ultimate: 35 ,063.99 15 IBNR: 2 ,426.99 16 Mack.S.E 79.30 17 CV(IBNR): 0.03 @freakonometrics 70
  • 71. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 A short word on Munich Chain Ladder The Incurred Triangle (I) with estimated losses, 0 1 2 3 4 5 0 4795 4629 4497 4470 4456 4456 1 5135 4949 4783 4760 4750 4750.0 2 5681 5631 5492 5470 5455.8 5455.8 3 6272 6198 6131 6101.1 6085.3 6085.3 4 7326 7087 6920.1 6886.4 6868.5 6868.5 5 7353 7129.1 6991.2 6927.3 6909.3 6909.3 @freakonometrics 71
  • 72. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Computational Issues 1 > MackChainLadder (INCURRED) 2 3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 4 1 4 ,456 1.00 4 ,456 0.0 0.000 NaN 5 2 4 ,750 1.00 4 ,750 0.0 0.975 Inf 6 3 5 ,470 1.00 5 ,456 -14.2 4.747 -0.334 7 4 6 ,131 1.01 6 ,085 -45.7 8.305 -0.182 8 5 7 ,087 1.03 6 ,869 -218.5 71.443 -0.327 9 6 7 ,353 1.06 6 ,909 -443.7 180.166 -0.406 10 11 Totals 12 Latest: 35 ,247.00 13 Dev: 1.02 14 Ultimate: 34 ,524.83 15 IBNR: -722.17 16 Mack.S.E 201.00 (keep only here Cn = 34, 524, to be compared with the previous 35, 067. @freakonometrics 72
  • 73. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Computational Issues 1 > MunichChainLadder (PAID ,INCURRED) 2 3 Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred Ult. P/I Ratio 4 1 4 ,456 4 ,456 1.000 4 ,456 4 ,456 1 5 2 4 ,730 4 ,750 0.996 4 ,753 4 ,750 1 6 3 5 ,420 5 ,470 0.991 5 ,455 5 ,454 1 7 4 6 ,020 6 ,131 0.982 6 ,086 6 ,085 1 8 5 6 ,794 7 ,087 0.959 6 ,983 6 ,980 1 9 6 5 ,217 7 ,353 0.710 7 ,538 7 ,533 1 10 @freakonometrics 73
  • 74. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 11 Totals 12 Paid Incurred P/I Ratio 13 Latest: 32 ,637 35 ,247 0.93 14 Ultimate: 35 ,271 35 ,259 1.00 It is possible to get a model mixing the two approaches together... @freakonometrics 74
  • 75. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Bornhuetter Ferguson One of the diļ¬ƒculties with using the chain ladder method is that reserve forecasts can be quite unstable. The Bornhuetter & Ferguson (1972) method provides a procedure for stabilizing such estimates. Recall that in the standard chain ladder model, Ci,n = Fn Ā· Ci,nāˆ’i, where Fn = nāˆ’1 k=nāˆ’i Ī»k If Ri denotes the estimated outstanding reserves, Ri = Ci,n āˆ’ Ci,nāˆ’i = Ci,n Ā· Fn āˆ’ 1 Fn . @freakonometrics 75
  • 76. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Bornhuetter Ferguson For a bayesian interpretation of the Bornhutter-Ferguson model, England & Verrall (2002) considered the case where incremental paiments Yi,j are i.i.d. overdispersed Poisson variables. Here E(Yi,j) = aibj and Var(Yi,j) = Ļ• Ā· aibj, where we assume that b1 + Ā· Ā· Ā· + bn = 1. Parameter ai is assumed to be a drawing of a random variable Ai āˆ¼ G(Ī±i, Ī²i), so that E(Ai) = Ī±i/Ī²i, so that E(Ci,n) = Ī±i Ī²i = Ci , which is simply a prior expectation of the ļ¬nal loss amount. @freakonometrics 76
  • 77. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Bornhuetter Ferguson The posterior distribution of Xi,j+1 is then E(Xi,j+1|Fi+j) = Zi,j+1Ci,j + [1 āˆ’ Zi,j+1] Ci Fj Ā· (Ī»j āˆ’ 1) where Zi,j+1 = Fāˆ’1 j Ī²Ļ• + Fj , where Fj = Ī»j+1 Ā· Ā· Ā· Ī»n. Hence, Bornhutter-Ferguson technique can be interpreted as a Bayesian method, and a a credibility estimator (since bayesian with conjugated distributed leads to credibility). @freakonometrics 77
  • 78. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Bornhuetter Ferguson The underlying assumptions are here ā€¢ assume that accident years are independent ā€¢ assume that there exist parameters Āµ = (Āµ0, Ā· Ā· Ā· , Āµn) and a pattern Ī² = (Ī²0, Ī²1, Ā· Ā· Ā· , Ī²n) with Ī²n = 1 such that E(Ci,0) = Ī²0Āµi E(Ci,j+k|Fi+j) = Ci,j + [Ī²j+k āˆ’ Ī²j] Ā· Āµi Hence, one gets that E(Ci,j) = Ī²jĀµi. The sequence (Ī²j) denotes the claims development pattern. The Bornhuetter-Ferguson estimator for E(Ci,n|Ci, 1, Ā· Ā· Ā· , Ci,j) is Ci,n = Ci,j + [1 āˆ’ Ī²jāˆ’i]Āµi @freakonometrics 78
  • 79. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 where Āµi is an estimator for E(Ci,n). If we want to relate that model to the classical Chain Ladder one, Ī²j is n k=j+1 1 Ī»k Consider the classical triangle. Assume that the estimator Āµi is a plan value (obtain from some business plan). For instance, consider a 105% loss ratio per accident year. @freakonometrics 79
  • 80. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Bornhuetter Ferguson i 0 1 2 3 4 5 premium 4591 4692 4863 5175 5673 6431 Āµi 4821 4927 5106 5434 5957 6753 Ī»i 1, 380 1, 011 1, 004 1, 002 1, 005 Ī²i 0, 708 0, 978 0, 989 0, 993 0, 995 Ci,n 4456 4753 5453 6079 6925 7187 Ri 0 23 33 59 131 1970 @freakonometrics 80
  • 81. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali As point out earlier, the (conditional) mean square error of prediction (MSE) is mset(X) = E [X āˆ’ X]2 |Ft = Var(X|Ft) process variance + E E (X|Ft) āˆ’ X 2 parameter estimation error i.e X is ļ£± ļ£² ļ£³ a predictor for X an estimator for E(X|Ft). But this is only a a long-term view, since we focus on the uncertainty over the whole runoļ¬€ period. It is not a one-year solvency view, where we focus on changes over the next accounting year. @freakonometrics 81
  • 82. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali From time t = n and time t = n + 1, Ī»j (n) = nāˆ’jāˆ’1 i=0 Ci,j+1 nāˆ’jāˆ’1 i=0 Ci,j and Ī»j (n+1) = nāˆ’j i=0 Ci,j+1 nāˆ’j i=0 Ci,j and the ultimate loss predictions are then C (n) i = Ci,nāˆ’i Ā· n j=nāˆ’i Ī»j (n) and C (n+1) i = Ci,nāˆ’i+1 Ā· n j=nāˆ’i+1 Ī»j (n+1) @freakonometrics 82
  • 83. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali and the one-year-uncertainty @freakonometrics 83
  • 84. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali and the one-year-uncertainty @freakonometrics 84
  • 85. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali and the one-year-uncertainty @freakonometrics 85
  • 86. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali In order to study the one-year claims development, we have to focus on R (n) i and Yi,nāˆ’i+1 + R (n+1) i The boni-mali for accident year i, from year n to year n + 1 is then BM (n,n+1) i = R (n) i āˆ’ Yi,nāˆ’i+1 + R (n+1) i = C (n) i āˆ’ C (n+1) i . Thus, the conditional one-year runoļ¬€ uncertainty is mse(BM (n,n+1) i ) = E C (n) i āˆ’ C (n+1) i 2 |Fn @freakonometrics 86
  • 87. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali Hence, mse(BM (n,n+1) i ) = [C (n) i ]2 Ļƒ2 nāˆ’i/[Ī» (n) nāˆ’i]2 Ci,nāˆ’i + Ļƒ2 nāˆ’i/[Ī» (n) nāˆ’i]2 iāˆ’1 k=0 Ck,nāˆ’i + nāˆ’1 j=nāˆ’i+1 Cnāˆ’j,j nāˆ’j k=0 Ck,j Ā· Ļƒ2 j /[Ī» (n) j ]2 nāˆ’jāˆ’1 k=0 Ck,j ļ£¹ ļ£» Further, it is possible to derive the MSEP for aggregated accident years (see Merz & WĆ¼thrich (2008)). @freakonometrics 87
  • 88. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Boni-Mali, Computational Issues 1 > CDR( MackChainLadder (PAID)) 2 IBNR CDR (1)S.E. Mack.S.E. 3 1 0.00000 0.0000000 0.0000000 4 2 22.39684 0.6393379 0.6393379 5 3 35.78388 2.4291919 2.5025153 6 4 66.06466 4.3969805 5.0459004 7 5 153.08358 30.9004962 31.3319292 8 6 2149.65640 60.8243560 68.4489667 9 Total 2426.98536 72.4127862 79.2954414 @freakonometrics 88
  • 89. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Ultimate Loss and Tail Factor The idea - introduced by Mack (1999) - is to compute Ī»āˆž = kā‰„n Ī»k and then to compute Ci,āˆž = Ci,n Ɨ Ī»āˆž. Assume here that Ī»i are exponentially decaying to 1, i.e. log(Ī»k āˆ’ 1)ā€™s are linearly decaying 1 > Lambda= MackChainLadder (PAID)$f[1:( ncol(PAID) -1)] 2 > logL <- log(Lambda -1) 3 > tps <- 1:( ncol(PAID) -1) 4 > modele <- lm(logL~tps) 5 > logP <- predict(modele ,newdata=data.frame(tps=seq (6 ,1000))) 6 > (facteur <- prod(exp(logP)+1)) 7 [1] 1.000707 @freakonometrics 89
  • 90. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Ultimate Loss and Tail Factor 1 > DIAG <- diag(PAID [ ,6:1]) 2 > PRODUIT <- c(1,rev(Lambda)) 3 > sum(( cumprod(PRODUIT) -1)*DIAG) 4 [1] 2426.985 5 > sum(( cumprod(PRODUIT)*facteur -1)*DIAG) 6 [1] 2451.764 The ultimate loss is here 0.07% larger, and the reserves are 1% larger. @freakonometrics 90
  • 91. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Ultimate Loss and Tail Factor 1 > MackChainLadder (Triangle = PAID , tail = TRUE) 2 3 Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 4 0 4 ,456 0.999 4 ,459 3.15 0.299 0.0948 5 12 4 ,730 0.995 4 ,756 25.76 0.712 0.0277 6 24 5 ,420 0.993 5 ,460 39.64 2.528 0.0638 7 36 6 ,020 0.988 6 ,090 70.37 5.064 0.0720 8 48 6 ,794 0.977 6 ,952 157.99 31.357 0.1985 9 60 5 ,217 0.708 7 ,372 2 ,154.86 68.499 0.0318 10 11 Totals 12 Latest: 32 ,637.00 13 Dev: 0.93 14 Ultimate: 35 ,088.76 15 IBNR: 2 ,451.76 16 Mack.S.E 79.37 17 CV(IBNR): 0.03 @freakonometrics 91
  • 92. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot La mĆ©thode dite London Chain a Ć©tĆ© introduite par Benjamin & Eagles (1986). On suppose ici que la dynamique des (Cij)j=1,..,n est donnĆ©e par un modĆØle de type AR (1) avec constante, de la forme Ci,k+1 = Ī»k Ā· Cik + Ī±k pour tout i, k = 1, .., n De faƧon pratique, on peut noter que la mĆ©thode standard de Chain Ladder, reposant sur un modĆØle de la forme Ci,k+1 = Ī»kCik, ne pouvait ĆŖtre appliquĆ© que lorsque les points (Ci,k, Ci,k+1) sont sensiblement alignĆ©s (Ć  k ļ¬xĆ©) sur une droite passant par lā€™origine. La mĆ©thode London Chain suppose elle aussi que les points soient alignĆ©s sur une mĆŖme droite, mais on ne suppose plus quā€™elle passe par 0. Example:On obtient la droite passant au mieux par le nuage de points et par 0, et la droite passant au mieux par le nuage de points. @freakonometrics 92
  • 93. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot Dans ce modĆØle, on a alors 2n paramĆØtres Ć  identiļ¬er : Ī»k et Ī±k pour k = 1, ..., n. La mĆ©thode la plus naturelle consiste Ć  estimer ces paramĆØtres Ć  lā€™aide des moindres carrĆ©s, cā€™est Ć  dire que lā€™on cherche, pour tout k, Ī»k, Ī±k = arg min nāˆ’k i=1 (Ci,k+1 āˆ’ Ī±k āˆ’ Ī»kCi,k) 2 ce qui donne, ļ¬nallement Ī»k = 1 nāˆ’k nāˆ’k i=1 Ci,kCi,k+1 āˆ’ C (k) k C (k) k+1 1 nāˆ’k nāˆ’k i=1 C2 i,k āˆ’ C (k)2 k oĆ¹ C (k) k = 1 n āˆ’ k nāˆ’k i=1 Ci,k et C (k) k+1 = 1 n āˆ’ k nāˆ’k i=1 Ci,k+1 et oĆ¹ la constante est donnĆ©e par Ī±k = C (k) k+1 āˆ’ Ī»kC (k) k . @freakonometrics 93
  • 94. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot Dans le cas particulier du triangle que nous Ć©tudions, on obtient k 0 1 2 3 4 Ī»k 1.404 1.405 1.0036 1.0103 1.0047 Ī±k āˆ’90.311 āˆ’147.27 3.742 āˆ’38.493 0 @freakonometrics 94
  • 95. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot The completed (cumulated) triangle is then 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 2 3871 5345 5398 5420 3 4239 5917 6020 4 4929 6794 5 5217 @freakonometrics 95
  • 96. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 4752 2 3871 5345 5398 5420 5437 5463 3 4239 5917 6020 6045 6069 6098 4 4929 6794 6922 6950 6983 7016 5 5217 7234 7380 7410 7447 7483 One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 43, 78, 222 and 2266 per accident year, i.e. the total is 2631 (to be compared with 2427, obtained with the Chain Ladder technique). @freakonometrics 96
  • 97. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 From Chain Ladder to London Chain and London Pivot La mĆ©thode dite London Pivot a Ć©tĆ© introduite par Straub, dans Nonlife Insurance Mathematics (1989). On suppose ici que Ci,k+1 et Ci,k sont liĆ©s par une relation de la forme Ci,k+1 + Ī± = Ī»k. (Ci,k + Ī±) (de faƧon pratique, les points (Ci,k, Ci,k+1) doivent ĆŖtre sensiblement alignĆ©s (Ć  k ļ¬xĆ©) sur une droite passant par le point dit pivot (āˆ’Ī±, āˆ’Ī±)). Dans ce modĆØle, (n + 1) paramĆØtres sont alors a estimer, et une estimation par moindres carrĆ©s ordinaires donne des estimateurs de faƧon itĆ©rative. @freakonometrics 97
  • 98. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Introduction to factorial models: Taylor (1977) This approach was studied in a paper entitled Separation of inļ¬‚ation and other eļ¬€ects from the distribution of non-life insurance claim delays We assume the incremental payments are functions of two factors, one related to accident year i, and one to calendar year i + j. Hence, assume that Yij = rjĀµi+jāˆ’1 for all i, j r1Āµ1 r2Āµ2 Ā· Ā· Ā· rnāˆ’1Āµnāˆ’1 rnĀµn r1Āµ2 r2Āµ3 Ā· Ā· Ā· rnāˆ’1Āµn ... ... r1Āµnāˆ’1 r2Āµn r1Āµn et r1Āµ1 r2Āµ2 Ā· Ā· Ā· rnāˆ’1Āµnāˆ’1 rnĀµn r1Āµ2 r2Āµ3 Ā· Ā· Ā· rnāˆ’1Āµn ... ... r1Āµnāˆ’1 r2Āµn r1Āµn @freakonometrics 98
  • 99. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Hence, incremental payments are functions of development factors, rj, and a calendar factor, Āµi+jāˆ’1, that might be related to some inļ¬‚ation index. @freakonometrics 99
  • 100. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Introduction to factorial models: Taylor (1977) In order to identify factors r1, r2, .., rn and Āµ1, Āµ2, ..., Āµn, i.e. 2n coeļ¬ƒcients, an additional constraint is necessary, e.g. on the rjā€™s, r1 + r2 + .... + rn = 1 (this will be called arithmetic separation method). Hence, the sum on the latest diagonal is dn = Y1,n + Y2,nāˆ’1 + ... + Yn,1 = Āµn (r1 + r2 + .... + rk) = Āµn On the ļ¬rst sur-diagonal dnāˆ’1 = Y1,nāˆ’1 +Y2,nāˆ’2 +...+Ynāˆ’1,1 = Āµnāˆ’1 (r1 + r2 + .... + rnāˆ’1) = Āµnāˆ’1 (1 āˆ’ rn) and using the nth column, we get Ī³n = Y1,n = rnĀµn, so that rn = Ī³n Āµn and Āµnāˆ’1 = dnāˆ’1 1 āˆ’ rn More generally, it is possible to iterate this idea, and on the ith sur-diagonal, dnāˆ’i = Y1,nāˆ’i + Y2,nāˆ’iāˆ’1 + ... + Ynāˆ’i,1 = Āµnāˆ’i (r1 + r2 + .... + rnāˆ’i) = Āµnāˆ’i (1 āˆ’ [rn + rnāˆ’1 + ... + rnāˆ’i+1]) @freakonometrics 100
  • 101. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Introduction to factorial models: Taylor (1977) and ļ¬nally, based on the n āˆ’ i + 1th column, Ī³nāˆ’i+1 = Y1,nāˆ’i+1 + Y2,nāˆ’i+1 + ... + Yiāˆ’1,nāˆ’i+1 = rnāˆ’i+1Āµnāˆ’i+1 + ... + rnāˆ’i+1Āµnāˆ’1 + rnāˆ’i+1Āµn rnāˆ’i+1 = Ī³nāˆ’i+1 Āµn + Āµnāˆ’1 + ... + Āµnāˆ’i+1 and Āµkāˆ’i = dnāˆ’i 1 āˆ’ [rn + rnāˆ’1 + ... + rnāˆ’i+1] k 1 2 3 4 5 6 Āµk 4391 4606 5240 5791 6710 7238 rk in % 73.08 25.25 0.93 0.32 0.12 0.29 @freakonometrics 101
  • 102. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Introduction to factorial models: Taylor (1977) The challenge here is to forecast forecast values for the Āµkā€™s. Either a linear model or an exponential model can be considered. q q q q q q 0 2 4 6 8 10 20004000600080001000012000 q q q q q q @freakonometrics 102
  • 103. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Lemaire (1982) and autoregressive models Instead of a simple Markov process, it is possible to assume that the Ci,jā€™s can be modeled with an autorgressive model in two directions, rows and columns, Ci,j = Ī±Ciāˆ’1,j + Ī²Ci,jāˆ’1 + Ī³. @freakonometrics 103
  • 104. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Zehnwirth (1977) Here, we consider the following model for the Ci,jā€™s Ci,j = exp (Ī±i + Ī³i Ā· j) (1 + j) Ī²i , which can be seen as an extended Gamma model. Ī±i is a scale parameter, while Ī²i and Ī³i are shape parameters. Note that log Ci,j = Ī±i + Ī²i log (1 + j) + Ī³i Ā· j. For convenience, we usually assume that Ī²i = Ī² et Ī³i = Ī³. Note that if log Ci,j is assume to be Gaussian, then Ci,j will be lognormal. But then, estimators one the Ci,jā€™s while be overestimated. @freakonometrics 104
  • 105. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Zehnwirth (1977) Assume that log Ci,j āˆ¼ N Xi,jĪ², Ļƒ2 , then, if parameters were obtained using maximum likelihood techniques E Ci,j = E exp Xi,jĪ² + Ļƒ2 2 = Ci,j exp āˆ’ n āˆ’ 1 n Ļƒ2 2 1 āˆ’ Ļƒ2 n āˆ’ nāˆ’1 2 > Ci,j, Further, the homoscedastic assumption might not be relevant. Thus Zehnwirth suggested Ļƒ2 i,j = V ar (log Ci,j) = Ļƒ2 (1 + j) h . @freakonometrics 105
  • 106. Arthur CHARPENTIER - Actuariat de lā€™Assurance Non-Vie, # 10 Regression and reserving De Vylder (1978) proposed a least squares factor method, i.e. we need to ļ¬nd Ī± = (Ī±0, Ā· Ā· Ā· , Ī±n) and Ī² = (Ī²0, Ā· Ā· Ā· , Ī²n) such (Ī±, Ī²) = argmin n i,j=0 (Xi,j āˆ’ Ī±i Ɨ Ī²j) 2 , or equivalently, assume that Xi,j āˆ¼ N(Ī±i Ɨ Ī²j, Ļƒ2 ), independent. A more general model proposed by De Vylder is the following (Ī±, Ī², Ī³) = argmin n i,j=0 (Xi,j āˆ’ Ī±i Ɨ Ī²j Ɨ Ī³i+jāˆ’1) 2 . In order to have an identiļ¬able model, De Vylder suggested to assume Ī³k = Ī³k (so that this coeļ¬ƒcient will be related to some inļ¬‚ation index). @freakonometrics 106