Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.



Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this


  1. 1. Step 1:  Pick a Topic Force and Motion: Levers Step 2: Research •­fair­   projects/project_ideas/Phys_p014.shtml? fave=no&isb=c2lkOjEsaWE6UGh5cyxwOjEscmlkOjUxMzA0MjI&from=TSW •   •   •­fair­   projects/project_ideas/Phys_p065.shtml? fave=no&isb=c2lkOjEsaWE6UGh5cyxwOjEscmlkOjUxMzA0MjI&from=TSW •  •   • Stop Faking It! Energy, by William C. Robertson Step 3: Question Where should the fulcrum be placed to require the least amount of force  to lift a 50 g load? Step 3: Variables Manipulated Variable: Placement of fulcrum Responding Variable: N of force or number of grams to move load Controlled Variables:  • Same cup on each end • Same Wooden Ruler and pen (as the fulcrum) • Same amount of load (50 g) • Newtons or grams measured when ruler is touching the table • Same amount of tape holding the cup to the ruler Step 4: Hypothesis WITH Research I think the fulcrum placed the closest to the ruler will take less newtons  of force or grams, to lift a 50 g load.  I think this because I’ve found,  through research, that a fulcrum is part of a lever in a simple machine.  A lever makes work easier and uses less energy or requires less force to  lift a load.  I have also noticed that people use levers to help them  complete daily tasks.
  2. 2. Step 5: Materials List Wooden Ruler 12 inches (30 cm) 1 or 2 Plastic Bathroom Cups 3oz (88.7 mL) Ink Pen with cap 50 g weight Push Pull Spring Scale or Metal Washers for gram weights Masking Tape Step 6: What’s the Plan? 1. Research 2. Details of testing – see variables 3. Measurable results­ newtons and/or grams 4. Log 5. Repeat test – 3 trials Step 7: Procedure 1. Build Lever a. Use 5 cm of masking tape rolled under each cup. b. If using metal washer to measure grams, place each cup at  the end of the ruler. c. If using the push pull spring scale to measure, only use one  cup. d. Put a 50g piece in one cup at the 0 cm end, this is the load. 2. Place the fulcrum, pen, at the 21 cm mark on the lever. Hold pen  in place with one hand. 3. Measuring Force: a. Use the push end of the push pull spring scale to push down  on the rulers end until the ruler touches the table. b. Place gram pieces into the cup until the ruler touches the  table. 4. Record results, and repeat two more times for three trials. 5. Repeat procedure with fulcrum, pen, at 15 cm and 8 cm marks on  the ruler. 
  3. 3. Step 8: Data Fulcrum Trial 1 Trial 2 Trial 3 21 cm 1.5N / 150g 1.5N / 150g 1.5N / 150g 15 cm .5N / 50g .5N / 50g .5N / 50g 8 cm .1N /10g .1N / 10g .1N / 10g Step 9: Discussion of Results/Charts & Graphs/Pictures Setting the fulcrum at 8 cm, which was closest to the load, took the  least amount of effort or grams to lift the load.  The lever produced a  force of .1N/10g to lift the load of 50 g. When the fulcrum was set at 15  cm, it took .5N/50g of force to lift the 50 g load.  The measurement  furthest from the load produced the most amount of effort with  1.5N/150g of force to lift a 50 g load.
  4. 4. Load Fulcrum Effort Load Arm Effort Arm
  5. 5. 8 cm 08 cm 15 cm cm
  6. 6. 21 cm 08 cm
  7. 7. Step 10: Conclusion My hypothesis was that the fulcrum placed closest to the load on the beam  will take the least amount of newtons or grams, to lift the load.  The results indicate my hypothesis should be accepted. The fulcrum placed closest to the load, 8 cm, took the least amount of effort to move a 50 g load. This experiment proved that the easiest way to move a load with a lever is to place the fulcrum close to the load. When the fulcrum was places at 8 cm, it only took a force of .1N/10g. As the fulcrum moves further from the load, more force is required to lift the load. At 15 cm it took .5N/50g to lift the load, and at 21 cm it took even more effort by using the 1.l5N/150g of force. Even though I was correct in my hypothesis, I was surprised how little force it took to lift a load of 50 g. I learned that when the fulcrum is placed in the middle, the work done on the system is equal to the work done by the system. That is why it took .5N/50g of force to move a 50g load. Through further research I also learned that each time you change the position of the fulcrum you change the load’s gravitational potential energy by raising the load up. This means that the effort arm distance is also changing. So, when moving the fulcrum closer and farther away from the middle there is a difference in the distance you have to push down on the effort arm end, which means the load arm requires different amounts of effort. When the fulcrum is close to the load, the effort arm has a greater distance to move and the load arm has less of a distance to move. Where the fulcrum is farther away from the load, the effort arm has a smaller distance and the load arm has to move the load a further distance. See chart below. Fulcrum Load Arm Effort Arm 8 cm 1 cm 3.3 cm 15 cm 1.9 cm 1.9 cm 21 cm 2.6 cm 1.2 cm I have learned that people use fulcrums everywhere is their daily lives to make work easier. Just in preparing my science project I used scissors and a stapler which are both levers. Both simple machines make work easier by using less energy to do work. Because of the results of this experiment, I wonder if changing the thickness of the fulcrum would have made a difference in the results. This would be a very interesting variable to change and see if there is a difference in the results.
  8. 8. Step 11: Abstract People are always looking for an easier way to do work, and I am no  different! Through simple machines, people around the world and for  thousands of years have been using levers to do their work with less  effort.  My interest in this topic started while studying force and motion  and thinking about the amount of energy or force used to move objects. While thinking about this problem I came up with my hypothesis: I  think the fulcrum placed closest to the load will take less newtons of  force or grams, to lift the load.  I think this because I’ve found, through  research, that a fulcrum is part of a lever in a simple machine that can  make work easier.  Levers use less energy or require less force to lift a  load when the fulcrum is placed closest to the load on the beam.   Through this experiment I wanted to see if the fulcrum placement made  a difference in the amount of effort it took me to lift a load.  When I  devised my plan, I tried to make sure all my variables were controlled.  I used the same ruler, cup, pen, spring scale, and load amount.  The  only variable I manipulated was the placement of the fulcrum. My final results showed that the easiest way to lift a load with a lever is  to place the fulcrum close to the load.  When the fulcrum was placed at  8 cm, it only took a force of .1N/10g. As the fulcrum moves further from  the load the more effort is required to lift the load.  At 15 cm it took .5N/ 50g to lift the load, and at 21 cm it took even more effort by using the  1.l5N/150g of force. In conclusion, I have proven that my hypothesis was correct: the  fulcrum placed closest to the load, at 8 cm, took the least amount of  effort to lift a 50 g load.  The most important thing I learned is little  force is needed when lifting a heavy load, when the fulcrum is placed  close to the load.