SlideShare a Scribd company logo
1 of 4
Download to read offline
 
Закон Бенфорда
Источник: Алекс Беллос, "Красота в квадрате"
	
  
	
  
Тенденцию к преобладанию чисел, начинающихся с единицы, впервые заметил
американский астроном канадского происхождения Саймон Ньюком, В 1881 году он опубликовал
в журнале American Journal of Mathematics краткую заметку, в которой объяснил, что выявил
данную особенность благодаря книгам с логарифмическми таблицами. Первые страницы с
таблицами логарифмов для чисел, начинающихся с цифры 1, всегда были более истрепаны, чем
страницы с таблицами для чисел, начинающихся с цифры 9. Подобный феномен уж точно не
объяснишь тем, что исследователи якобы внимательно читали первые страницы книги, а затем
теряли к ней интерес из-за отсутствия захватывающего сюжета. Здесь причина в другом: они чаще
сталкивались в работе с числами, начинающимися с единицы. Ньюком предположил, что
частотность первых цифр чисел, выраженная в процентах, примерно такова.
Частота наличия цифры 1 в начале чисел составляет 30,1 процента, цифры 2 – 17,6 процента,
цифры 3 – 12,5 процента, причем этот показатель стремительно падает по мере увеличения цифры:
шанс встретить цифру 1 в начале чисел в семь раз превышает подобную вероятность по
отношению к цифре 9.
Ньюком рассчитал эти показатели с помощью логарифмов. Он утверждал, что вероятность
появления цифры d в начале числе определяется по формуле: log (d + 1) – log d. Однако он не смог
четко обосновать ее, поэтому привел вместо этого неформальный аргумент, просто представив его
как некую любопытную тенденцию.
Логарифм можно определить следующим образом. Если a = 10b
, то логарифм числа a равен b
и записывается в таком виде:
log a = b
Другими словами, если число a выражено в виде степени 10, то логарифм числа a – это
показатель степени. Вот некоторые простые значения логарифмов:
30.10%
17.60%
12.50%
9.70%
7.90%
6.70% 5.80% 5.10% 4.60%
1 2 3 4 5 6 7 8 9
Первая цифра числа
2	
  
log 10 = 1, поскольку  10 = 10!
  
log100 = 2, поскольку  100 = 10!
  
log 1000 = 3, поскольку  1000 = 10!
    
А вот таблица логарифмов чисел от 1 до 10:
log 1 = 0  
log2 = 0,301  
log 3 = 0,477
log 4 = 0,602  
log 5 = 0,699
log 6 = 0,778  
log 7 = 0,845  
log 8 = 0,903
log 9 = 0,954  
log 10 = 1
Если мы отметим логарифмы чисел от 1 до 10 на числовой оси, разместив их в соответствии
с их значениями, то получис логарифмическую шкалу от 0 до 1. Чем дельше по оси находятся
лоагрифмы, тем плотнее они расположены.
На этой шкале отмечено расстояние между логарифмами. Вы узнаете в них проценты из
закона Бенфорда. Иными словами, если вы случайным образом выберу на этой шкале точку от 0
до 1, вероятность того, что она попадет в интервал от log 1 до log 2, составляет 30,1 процента, в
интервал от log 2 до log 3 – 17,6 процента и т.д.
Точно так же длина первого интервала равна log 2 – log 1, второго log 3 – log 2, а интервала d
– log (d + 1) – log d. Это означает, что эти вероятности можно более точно выразить как log (d + 1)
– log d для каждого значения d.
Более чем полвека спустя, в 1938 году, физик из General Electric Фрэнк Бенфорд заново
открыл феномен первой цифры, тоже обратив внимание на потрепанность страниц в книгах с
таблицами логарифмов (по всей вероятности, он не знал о статье Ньюкома). Однако Бенфорд
проанализировал эту закономерность не только на основании книг с логарифмами. Он изучил
распределение первых цифр исходя из таких данных, как население городов США, адреса первых
нескольких сотен людей из библиографического справочника американских ученых American Men
of Science, атомный вес химических элементов, площадь бассейна рек и статистика бейсбольных
матчей. В большинстве случаев результаты были близки к ожидаемому распределению. Наверное,
было очень интресено наблюдать за тем, как представленные выше проценты (в реальном мире
подобной точности нет). Тем не менее в целом они почти полностью совпадали с
прогнозируемыми значениями, отклонясь от них не более чем на нельсколько десятых процента. В
настоящее время закон Бенфорда нашел свое подтверждение в самых разных областях, в том
числе в естествознании, финансах, экономике и вычислительной технике. Этот закон гласит: в
любом множестве данных о естественных произвольных процессах, включающем в себя величины
нескольких порядков, частота появления цифры 1 в качестве первой значащей цифры составляет
около 30 процентов, цифры 2 – около 18 процентов и т.д. Бенфорд считал, что этот феномен
3	
  
отражает универсальный закон, который он обозначил термином «закон аномальных чисел». Но
термин не прижился, и открытие получило известнотсь под названием «закон Бенфорда».
Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и
фактически любой позиции в записи числа. На представленном ниже рисунке продемон-
стрирована частотность вторых цифр в процентном выражении (среди которых есть теперь цифра
0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все
же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и
результатов выборов. По мере продвижения к следующим позициям данные о частоте появления
цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых
цифр.
В суде часто просят обосновать закон Бенфорда. Мы можем сделать то же самое. Вот числа
от 1 до 20:
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа
начинаются с единицы. Продолжаем считать. Где бы ни остановились, чисел с первой цифрой 1
будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго
десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой
сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с
первой цифрой 3 и т.д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять
закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного
органа, а вот для суда математики требуется более строгое доказательство.
Одно из самых поразительных свойств закона Бенфорда – что последовательность цифр не
12.00%
11.40%
10.90%
10.40%
10.00% 9.70%
9.30%
5.10%
4.60%
8.50%
0 1 2 3 4 5 6 7 8 9
Вторая цифра числа
4	
  
зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в
случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации
в доллары. Это свойство, обозначаемое термином «масштабная инвариантность», верно всегда,
поскольку числа, взятые из газет, банковских счетов и атласов пира показывают одно и то же
распределение первых цифр независимо от используемых систем измерения и валюты.
Для перевода расстояния из миль в километры необходимо умножить его на 1,6; для
конвертации денежной суммы из фунтов в доллары ее тоже следует умножить на фиксированное
число, соответствующее текущему обменному курсу. Простейший способ понять масштабную
инвариантность закона Бенфорда сводится к анализу поведения чисел в случае их умножения на
два.
Первая цифра числа n 1 2 3 4 5 6 7 8 9
Первая цифра числа 2n 2
или
3
4
или
5
6
или
7
8
или
9
1 1 1 1 1
Процент чисел в распределении Бенфорда 30,1 17,6 12,5 9,7 7,9 6,7 5,8 5,1 4,6
Предположим, S – это массив данных, подчиняющихся закону Бенфорда. Давайте умножим
на два каждое число, ходящее в массив S, и обозначим новый массив буквой T. Согласно таблице,
числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества
чисел в массиве; числа, первая цифра которых 6, – 6,7 процента, 7,8,9 – 5,8; 5,1 и 4,6 процента
соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9
+ 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9,
умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице.
Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует
закону Бенфорда!
Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала
нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при
этом сохраняется. Умножение на 2 является самым простым множителем, но с таким же успехом
можно было взять в качестве множителя 3, или 1,6 или число π, или какое-либо еще – закон
Бенфорда действовал бы, так или иначе, подстраиваясь под любое изменение масштаба рас-
пределения.

More Related Content

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

000 закон Бенфорда

  • 1.   Закон Бенфорда Источник: Алекс Беллос, "Красота в квадрате"     Тенденцию к преобладанию чисел, начинающихся с единицы, впервые заметил американский астроном канадского происхождения Саймон Ньюком, В 1881 году он опубликовал в журнале American Journal of Mathematics краткую заметку, в которой объяснил, что выявил данную особенность благодаря книгам с логарифмическми таблицами. Первые страницы с таблицами логарифмов для чисел, начинающихся с цифры 1, всегда были более истрепаны, чем страницы с таблицами для чисел, начинающихся с цифры 9. Подобный феномен уж точно не объяснишь тем, что исследователи якобы внимательно читали первые страницы книги, а затем теряли к ней интерес из-за отсутствия захватывающего сюжета. Здесь причина в другом: они чаще сталкивались в работе с числами, начинающимися с единицы. Ньюком предположил, что частотность первых цифр чисел, выраженная в процентах, примерно такова. Частота наличия цифры 1 в начале чисел составляет 30,1 процента, цифры 2 – 17,6 процента, цифры 3 – 12,5 процента, причем этот показатель стремительно падает по мере увеличения цифры: шанс встретить цифру 1 в начале чисел в семь раз превышает подобную вероятность по отношению к цифре 9. Ньюком рассчитал эти показатели с помощью логарифмов. Он утверждал, что вероятность появления цифры d в начале числе определяется по формуле: log (d + 1) – log d. Однако он не смог четко обосновать ее, поэтому привел вместо этого неформальный аргумент, просто представив его как некую любопытную тенденцию. Логарифм можно определить следующим образом. Если a = 10b , то логарифм числа a равен b и записывается в таком виде: log a = b Другими словами, если число a выражено в виде степени 10, то логарифм числа a – это показатель степени. Вот некоторые простые значения логарифмов: 30.10% 17.60% 12.50% 9.70% 7.90% 6.70% 5.80% 5.10% 4.60% 1 2 3 4 5 6 7 8 9 Первая цифра числа
  • 2. 2   log 10 = 1, поскольку  10 = 10!   log100 = 2, поскольку  100 = 10!   log 1000 = 3, поскольку  1000 = 10!     А вот таблица логарифмов чисел от 1 до 10: log 1 = 0   log2 = 0,301   log 3 = 0,477 log 4 = 0,602   log 5 = 0,699 log 6 = 0,778   log 7 = 0,845   log 8 = 0,903 log 9 = 0,954   log 10 = 1 Если мы отметим логарифмы чисел от 1 до 10 на числовой оси, разместив их в соответствии с их значениями, то получис логарифмическую шкалу от 0 до 1. Чем дельше по оси находятся лоагрифмы, тем плотнее они расположены. На этой шкале отмечено расстояние между логарифмами. Вы узнаете в них проценты из закона Бенфорда. Иными словами, если вы случайным образом выберу на этой шкале точку от 0 до 1, вероятность того, что она попадет в интервал от log 1 до log 2, составляет 30,1 процента, в интервал от log 2 до log 3 – 17,6 процента и т.д. Точно так же длина первого интервала равна log 2 – log 1, второго log 3 – log 2, а интервала d – log (d + 1) – log d. Это означает, что эти вероятности можно более точно выразить как log (d + 1) – log d для каждого значения d. Более чем полвека спустя, в 1938 году, физик из General Electric Фрэнк Бенфорд заново открыл феномен первой цифры, тоже обратив внимание на потрепанность страниц в книгах с таблицами логарифмов (по всей вероятности, он не знал о статье Ньюкома). Однако Бенфорд проанализировал эту закономерность не только на основании книг с логарифмами. Он изучил распределение первых цифр исходя из таких данных, как население городов США, адреса первых нескольких сотен людей из библиографического справочника американских ученых American Men of Science, атомный вес химических элементов, площадь бассейна рек и статистика бейсбольных матчей. В большинстве случаев результаты были близки к ожидаемому распределению. Наверное, было очень интресено наблюдать за тем, как представленные выше проценты (в реальном мире подобной точности нет). Тем не менее в целом они почти полностью совпадали с прогнозируемыми значениями, отклонясь от них не более чем на нельсколько десятых процента. В настоящее время закон Бенфорда нашел свое подтверждение в самых разных областях, в том числе в естествознании, финансах, экономике и вычислительной технике. Этот закон гласит: в любом множестве данных о естественных произвольных процессах, включающем в себя величины нескольких порядков, частота появления цифры 1 в качестве первой значащей цифры составляет около 30 процентов, цифры 2 – около 18 процентов и т.д. Бенфорд считал, что этот феномен
  • 3. 3   отражает универсальный закон, который он обозначил термином «закон аномальных чисел». Но термин не прижился, и открытие получило известнотсь под названием «закон Бенфорда». Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и фактически любой позиции в записи числа. На представленном ниже рисунке продемон- стрирована частотность вторых цифр в процентном выражении (среди которых есть теперь цифра 0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и результатов выборов. По мере продвижения к следующим позициям данные о частоте появления цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых цифр. В суде часто просят обосновать закон Бенфорда. Мы можем сделать то же самое. Вот числа от 1 до 20: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т.д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство. Одно из самых поразительных свойств закона Бенфорда – что последовательность цифр не 12.00% 11.40% 10.90% 10.40% 10.00% 9.70% 9.30% 5.10% 4.60% 8.50% 0 1 2 3 4 5 6 7 8 9 Вторая цифра числа
  • 4. 4   зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации в доллары. Это свойство, обозначаемое термином «масштабная инвариантность», верно всегда, поскольку числа, взятые из газет, банковских счетов и атласов пира показывают одно и то же распределение первых цифр независимо от используемых систем измерения и валюты. Для перевода расстояния из миль в километры необходимо умножить его на 1,6; для конвертации денежной суммы из фунтов в доллары ее тоже следует умножить на фиксированное число, соответствующее текущему обменному курсу. Простейший способ понять масштабную инвариантность закона Бенфорда сводится к анализу поведения чисел в случае их умножения на два. Первая цифра числа n 1 2 3 4 5 6 7 8 9 Первая цифра числа 2n 2 или 3 4 или 5 6 или 7 8 или 9 1 1 1 1 1 Процент чисел в распределении Бенфорда 30,1 17,6 12,5 9,7 7,9 6,7 5,8 5,1 4,6 Предположим, S – это массив данных, подчиняющихся закону Бенфорда. Давайте умножим на два каждое число, ходящее в массив S, и обозначим новый массив буквой T. Согласно таблице, числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества чисел в массиве; числа, первая цифра которых 6, – 6,7 процента, 7,8,9 – 5,8; 5,1 и 4,6 процента соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9 + 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9, умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице. Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует закону Бенфорда! Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при этом сохраняется. Умножение на 2 является самым простым множителем, но с таким же успехом можно было взять в качестве множителя 3, или 1,6 или число π, или какое-либо еще – закон Бенфорда действовал бы, так или иначе, подстраиваясь под любое изменение масштаба рас- пределения.