SlideShare a Scribd company logo
1 of 1
Download to read offline
INMO–2005
February 6, 2005
1. Let M be the midpoint of side BC of a triangle ABC. Let the median AM intersect the
incircle of ABC at K and L, K being nearer to A than L. If AK = KL = LM, prove that
the sides of triangle ABC are in the ratio 5 : 10 : 13 in some order.
2. Let α and β be positive integers such that
43
197
<
α
β
<
17
77
.
Find the minimum possible value of β.
3. Let p, q, r be positive real numbers, not all equal, such that some two of the equations
px2
+ 2qx + r = 0, qx2
+ 2rx + p = 0, rx2
+ 2px + q = 0,
have a common root, say α. Prove that
(a) α is real and negative; and
(b) the remaining third equation has non-real roots.
4. All possible 6-digit numbers, in each of which the digits occur in non-increasing order (from left
to right, e.g.,877550) are written as a sequence in increasing order. Find the 2005-th number
in this sequence.
5. Let x1 be a given positive integer. A sequence(xn)∞
n=1 = (x1, x2, x3, · · ·) of positive integers is
such that xn, for n ≥ 2, is obtained from xn−1 by adding some nonzero digit of xn−1. Prove
that
(a) the sequence has an even number;
(b) the sequence has infinitely many even numbers.
6. Find all functions f : R → R such that
f(x2
+ yf(z)) = xf(x) + zf(y),
for all x, y, z in R. (Here R denotes the set of all real numbers.)
1

More Related Content

What's hot

Chapter4.6
Chapter4.6Chapter4.6
Chapter4.6
nglaze10
 
November 18, 2015
November 18, 2015November 18, 2015
November 18, 2015
khyps13
 

What's hot (17)

Pappus Geometry as one type of Finite Geometry
Pappus Geometry as one type of Finite GeometryPappus Geometry as one type of Finite Geometry
Pappus Geometry as one type of Finite Geometry
 
Pappus and desargues finite geometries
Pappus and desargues finite geometriesPappus and desargues finite geometries
Pappus and desargues finite geometries
 
Rearranging SOHCAHTOA
Rearranging SOHCAHTOARearranging SOHCAHTOA
Rearranging SOHCAHTOA
 
Maths Preparation Tips for SSC 2014
Maths Preparation Tips for SSC 2014Maths Preparation Tips for SSC 2014
Maths Preparation Tips for SSC 2014
 
3.9.2 Similar Polygons
3.9.2 Similar Polygons3.9.2 Similar Polygons
3.9.2 Similar Polygons
 
6.6 notes
6.6 notes6.6 notes
6.6 notes
 
6 3 Proving Parallelograms
6 3 Proving Parallelograms6 3 Proving Parallelograms
6 3 Proving Parallelograms
 
Carl Friedrich Gauss by Marina García Lorenzo
Carl Friedrich Gauss by Marina García LorenzoCarl Friedrich Gauss by Marina García Lorenzo
Carl Friedrich Gauss by Marina García Lorenzo
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
Gauss ppt
Gauss pptGauss ppt
Gauss ppt
 
Chapter4.6
Chapter4.6Chapter4.6
Chapter4.6
 
November 18, 2015
November 18, 2015November 18, 2015
November 18, 2015
 
Take home quiz
Take home quizTake home quiz
Take home quiz
 
pi
pipi
pi
 
Set Of Primes Is Infinite - Number Theory
Set Of Primes Is Infinite - Number TheorySet Of Primes Is Infinite - Number Theory
Set Of Primes Is Infinite - Number Theory
 
The Three Perpendicular Bisectors of Triangle are Concurrent
The Three Perpendicular Bisectors of Triangle are ConcurrentThe Three Perpendicular Bisectors of Triangle are Concurrent
The Three Perpendicular Bisectors of Triangle are Concurrent
 
Similarity on right triangle
Similarity on right triangleSimilarity on right triangle
Similarity on right triangle
 

Similar to 20th inmo 05

IIT JEE - 2008 ii- mathematics
IIT JEE  - 2008  ii- mathematicsIIT JEE  - 2008  ii- mathematics
IIT JEE - 2008 ii- mathematics
Vasista Vinuthan
 

Similar to 20th inmo 05 (20)

18 inmo_03
18  inmo_0318  inmo_03
18 inmo_03
 
22nd inmo 07
22nd inmo 0722nd inmo 07
22nd inmo 07
 
Imo 2012
Imo 2012 Imo 2012
Imo 2012
 
Imo2012 sl
Imo2012 slImo2012 sl
Imo2012 sl
 
23rd inmo 08
23rd inmo 0823rd inmo 08
23rd inmo 08
 
19 th inmo_04
19 th inmo_0419 th inmo_04
19 th inmo_04
 
Imo 2016
Imo 2016 Imo 2016
Imo 2016
 
Imo 2011
Imo 2011 Imo 2011
Imo 2011
 
Imo2011 sl
Imo2011 slImo2011 sl
Imo2011 sl
 
IOQM_22_finalversion_for_publish.pdf
IOQM_22_finalversion_for_publish.pdfIOQM_22_finalversion_for_publish.pdf
IOQM_22_finalversion_for_publish.pdf
 
k - Symmetric Doubly Stochastic, s - Symmetric Doubly Stochastic and s - k - ...
k - Symmetric Doubly Stochastic, s - Symmetric Doubly Stochastic and s - k - ...k - Symmetric Doubly Stochastic, s - Symmetric Doubly Stochastic and s - k - ...
k - Symmetric Doubly Stochastic, s - Symmetric Doubly Stochastic and s - k - ...
 
Complete ncert exemplar class 10
Complete ncert exemplar class 10Complete ncert exemplar class 10
Complete ncert exemplar class 10
 
Imo 2014
Imo 2014 Imo 2014
Imo 2014
 
Imo2014 sl
Imo2014 slImo2014 sl
Imo2014 sl
 
Pmo20072008questions&amp;solutions(6)
Pmo20072008questions&amp;solutions(6)Pmo20072008questions&amp;solutions(6)
Pmo20072008questions&amp;solutions(6)
 
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
 
1. ejercicios
1. ejercicios1. ejercicios
1. ejercicios
 
Imo2013 sl
Imo2013 slImo2013 sl
Imo2013 sl
 
Imo2015 sl
Imo2015 slImo2015 sl
Imo2015 sl
 
IIT JEE - 2008 ii- mathematics
IIT JEE  - 2008  ii- mathematicsIIT JEE  - 2008  ii- mathematics
IIT JEE - 2008 ii- mathematics
 

More from askiitians

Sa~ 2009 (kvpy)
Sa~ 2009 (kvpy)Sa~ 2009 (kvpy)
Sa~ 2009 (kvpy)
askiitians
 
Sb sx english_qp_2011
Sb sx english_qp_2011Sb sx english_qp_2011
Sb sx english_qp_2011
askiitians
 
Answerkey2010 sa-sb-sx
Answerkey2010 sa-sb-sxAnswerkey2010 sa-sb-sx
Answerkey2010 sa-sb-sx
askiitians
 
Answerkey2010 sa-part b
Answerkey2010 sa-part bAnswerkey2010 sa-part b
Answerkey2010 sa-part b
askiitians
 
Kvpy2010 sb-sx
Kvpy2010 sb-sxKvpy2010 sb-sx
Kvpy2010 sb-sx
askiitians
 
Kvpy2010 sa-part b
Kvpy2010 sa-part bKvpy2010 sa-part b
Kvpy2010 sa-part b
askiitians
 
Kvpy2010 sa-part a
Kvpy2010 sa-part aKvpy2010 sa-part a
Kvpy2010 sa-part a
askiitians
 
Answer key 2011
Answer key 2011Answer key 2011
Answer key 2011
askiitians
 
Sa english qp_2011
Sa english qp_2011Sa english qp_2011
Sa english qp_2011
askiitians
 
2012 answer keys
2012 answer keys2012 answer keys
2012 answer keys
askiitians
 
18 th inmo_solu
18 th inmo_solu18 th inmo_solu
18 th inmo_solu
askiitians
 
19 th inmo_solu
19 th inmo_solu19 th inmo_solu
19 th inmo_solu
askiitians
 
20 th inmo_solu
20 th inmo_solu20 th inmo_solu
20 th inmo_solu
askiitians
 
21 st inmo_solu
21 st inmo_solu21 st inmo_solu
21 st inmo_solu
askiitians
 
22 nd inmo_solu
22 nd inmo_solu22 nd inmo_solu
22 nd inmo_solu
askiitians
 

More from askiitians (20)

Sa~ 2009 (kvpy)
Sa~ 2009 (kvpy)Sa~ 2009 (kvpy)
Sa~ 2009 (kvpy)
 
Sb 2009
Sb 2009Sb 2009
Sb 2009
 
Sa 2009
Sa 2009Sa 2009
Sa 2009
 
Sb sx english_qp_2011
Sb sx english_qp_2011Sb sx english_qp_2011
Sb sx english_qp_2011
 
Answerkey2010 sa-sb-sx
Answerkey2010 sa-sb-sxAnswerkey2010 sa-sb-sx
Answerkey2010 sa-sb-sx
 
Answerkey2010 sa-part b
Answerkey2010 sa-part bAnswerkey2010 sa-part b
Answerkey2010 sa-part b
 
Kvpy2010 sb-sx
Kvpy2010 sb-sxKvpy2010 sb-sx
Kvpy2010 sb-sx
 
Kvpy2010 sa-part b
Kvpy2010 sa-part bKvpy2010 sa-part b
Kvpy2010 sa-part b
 
Kvpy2010 sa-part a
Kvpy2010 sa-part aKvpy2010 sa-part a
Kvpy2010 sa-part a
 
Answer key 2011
Answer key 2011Answer key 2011
Answer key 2011
 
Sa english qp_2011
Sa english qp_2011Sa english qp_2011
Sa english qp_2011
 
2012 answer keys
2012 answer keys2012 answer keys
2012 answer keys
 
2012 qa-sbsx
2012 qa-sbsx2012 qa-sbsx
2012 qa-sbsx
 
2012 qa-sa
2012 qa-sa2012 qa-sa
2012 qa-sa
 
18 th inmo_solu
18 th inmo_solu18 th inmo_solu
18 th inmo_solu
 
19 th inmo_solu
19 th inmo_solu19 th inmo_solu
19 th inmo_solu
 
20 th inmo_solu
20 th inmo_solu20 th inmo_solu
20 th inmo_solu
 
21 st inmo_solu
21 st inmo_solu21 st inmo_solu
21 st inmo_solu
 
21st inmo 06
21st inmo 0621st inmo 06
21st inmo 06
 
22 nd inmo_solu
22 nd inmo_solu22 nd inmo_solu
22 nd inmo_solu
 

20th inmo 05

  • 1. INMO–2005 February 6, 2005 1. Let M be the midpoint of side BC of a triangle ABC. Let the median AM intersect the incircle of ABC at K and L, K being nearer to A than L. If AK = KL = LM, prove that the sides of triangle ABC are in the ratio 5 : 10 : 13 in some order. 2. Let α and β be positive integers such that 43 197 < α β < 17 77 . Find the minimum possible value of β. 3. Let p, q, r be positive real numbers, not all equal, such that some two of the equations px2 + 2qx + r = 0, qx2 + 2rx + p = 0, rx2 + 2px + q = 0, have a common root, say α. Prove that (a) α is real and negative; and (b) the remaining third equation has non-real roots. 4. All possible 6-digit numbers, in each of which the digits occur in non-increasing order (from left to right, e.g.,877550) are written as a sequence in increasing order. Find the 2005-th number in this sequence. 5. Let x1 be a given positive integer. A sequence(xn)∞ n=1 = (x1, x2, x3, · · ·) of positive integers is such that xn, for n ≥ 2, is obtained from xn−1 by adding some nonzero digit of xn−1. Prove that (a) the sequence has an even number; (b) the sequence has infinitely many even numbers. 6. Find all functions f : R → R such that f(x2 + yf(z)) = xf(x) + zf(y), for all x, y, z in R. (Here R denotes the set of all real numbers.) 1