SlideShare a Scribd company logo
1 of 10
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
Declarative	
  Memory	
  and	
  tACS:	
  Inducing	
  Sleep	
  Spindles.	
  A	
  Proposal	
  
Zac	
  Shaiken	
  (ID:5882389)	
  
PSYC	
  211	
  Lab	
  2007	
  	
  
Demonstrator:	
  Kahla	
  Redman	
  
1423	
  words	
  
	
  
	
  
	
  
 
Abstract	
  
	
  
The	
  relationship	
  between	
  sleep	
  and	
  memory	
  is	
  well	
  documented.	
  Specifically,	
  the	
  
relationship	
  between	
  thalamacortical	
  oscillations	
  (sleep	
  spindles,	
  which	
  occur	
  in	
  
stage-­‐2	
  sleep	
  and	
  slow	
  wave	
  sleep)	
  and	
  declarative	
  memory	
  is	
  well	
  documented.	
  
Until	
  recently,	
  artificially	
  generating	
  brain	
  states	
  and	
  events	
  was	
  thought	
  to	
  be	
  
possible	
  but	
  the	
  technology	
  was	
  not	
  adequate	
  to	
  do	
  so.	
  However,	
  recent	
  
technological	
  breakthroughs	
  have	
  proven	
  that	
  the	
  technology	
  now	
  exists	
  to	
  
generate	
  brain	
  states.	
  The	
  proposed	
  study	
  would	
  attempt	
  to	
  generate	
  sleep	
  spindles	
  
by	
  using	
  transcranial	
  alternating	
  current	
  stimulation	
  between	
  12	
  and	
  15	
  Hz	
  on	
  the	
  
thalamacortical	
  regions	
  of	
  the	
  brain.	
  Using	
  a	
  paired-­‐associates	
  wordlist,	
  participants	
  
will	
  be	
  tested	
  to	
  see	
  if	
  such	
  stimulation	
  can	
  be	
  used	
  to	
  enhance	
  declarative	
  memory.	
  	
  
	
  
 
Review	
  
	
  
Have	
  you	
  ever	
  wondered	
  why	
  we	
  sleep?	
  An	
  individual	
  who	
  sleeps	
  eight	
  
hours	
  each	
  night	
  and	
  lives	
  to	
  be	
  80	
  years	
  old	
  will	
  spend	
  close	
  to	
  27	
  of	
  those	
  years	
  
asleep.	
  One	
  of	
  the	
  many	
  functions	
  of	
  sleep	
  is	
  the	
  consolidation	
  and	
  encoding	
  of	
  
memories	
  (Schabus,	
  2004).	
  Specifically,	
  sleep	
  spindles	
  (thalamacortical	
  oscillations	
  
occurring	
  primarily	
  during	
  stage-­‐2	
  sleep	
  and	
  slow	
  wave	
  sleep)	
  have	
  been	
  linked	
  to	
  
the	
  consolidation	
  and	
  encoding	
  of	
  declarative	
  memories	
  (Schabus	
  et	
  al.,	
  2004).	
  
	
   The	
  Schabus	
  et	
  al.	
  (2004)	
  study	
  involved	
  giving	
  participants	
  a	
  paired	
  word	
  
list	
  to	
  memorize	
  and	
  asking	
  them	
  to	
  recall	
  the	
  pairs	
  after	
  sleep.	
  Participants	
  who	
  
had	
  more	
  sleep	
  spindles	
  tended	
  to	
  recall	
  the	
  paired	
  words	
  better	
  than	
  participants	
  
who	
  had	
  less	
  sleep	
  spindles.	
  This	
  implies	
  a	
  relationship	
  between	
  sleep	
  spindles	
  and	
  
declarative	
  memory	
  consolidation.	
  However,	
  it	
  remains	
  unknown	
  whether	
  sleep	
  
spindles	
  are	
  a	
  result	
  of	
  thalamacoritcal	
  encoding	
  and	
  consolidation,	
  or	
  are	
  the	
  
catalyst.	
  	
  
	
   Additionally,	
  spindles	
  occurring	
  during	
  slow	
  wave	
  sleep	
  (SWS)	
  seem	
  to	
  be	
  
especially	
  important	
  to	
  declarative	
  memory	
  retention.	
  Cox,	
  Hofman,	
  and	
  Talamini	
  
(2012)	
  examined	
  this	
  phenomenon	
  in	
  subjects	
  who	
  watched	
  a	
  movie	
  and	
  were	
  
asked	
  to	
  answer	
  questions	
  about	
  the	
  movie.	
  They	
  found	
  that	
  sleep	
  spindle	
  density	
  in	
  
SWS	
  was	
  strongly	
  and	
  positively	
  correlated	
  to	
  declarative	
  memory	
  and	
  the	
  
associated	
  recall.	
  In	
  other	
  words,	
  subjects	
  who	
  experienced	
  dense	
  sleep	
  spindles	
  in	
  
SWS	
  were	
  more	
  likely	
  to	
  correctly	
  answer	
  questions	
  about	
  the	
  film	
  than	
  subjects	
  
who	
  did	
  not	
  experience	
  sleep	
  spindles	
  in	
  SWS.	
  	
  
	
   Furthermore,	
  a	
  study	
  in	
  elderly	
  women	
  found	
  that	
  the	
  number	
  of	
  sleep	
  
spindles	
  in	
  stage-­‐2	
  sleep	
  was	
  positively	
  correlated	
  with	
  declarative	
  memory	
  
performance	
  (Seeck-­‐Hirschner	
  et	
  al.,	
  2012).	
  In	
  this	
  study,	
  elderly	
  women	
  were	
  
asked	
  to	
  draw	
  a	
  figure	
  using	
  a	
  template.	
  After	
  sleep,	
  they	
  were	
  asked	
  to	
  reproduce	
  
the	
  drawing.	
  The	
  number	
  of	
  discrepancies	
  between	
  the	
  two	
  drawings	
  was	
  
negatively	
  correlated	
  with	
  the	
  number	
  of	
  sleep	
  spindles	
  that	
  the	
  participant	
  
experienced	
  during	
  the	
  night.	
  It	
  is	
  important	
  to	
  note	
  that	
  this	
  study	
  emphasizes	
  the	
  
importance	
  of	
  the	
  number	
  of	
  sleep	
  spindles	
  in	
  stage-­‐2	
  sleep	
  as	
  opposed	
  to	
  SWS.	
  This	
  
can	
  be	
  attributed	
  to	
  age.	
  As	
  humans	
  age,	
  the	
  time	
  spent	
  in	
  SWS	
  decreases.	
  Some	
  
studies	
  suggest	
  that	
  this	
  decrease	
  is	
  tied	
  to	
  age-­‐related	
  reductions	
  in	
  cognitive	
  
performance	
  and	
  abilities—such	
  as	
  memory	
  (Tisserand	
  &	
  Jolies,	
  2003).	
  
	
   The	
  evidence	
  that	
  suggests	
  the	
  importance	
  of	
  sleep	
  spindles	
  to	
  declarative	
  
memory	
  inspired	
  the	
  central	
  research	
  question	
  for	
  the	
  current	
  study:	
  is	
  it	
  possible	
  
to	
  artificially	
  induce	
  sleep	
  spindles	
  in	
  a	
  way	
  that	
  catalyzes	
  or	
  promotes	
  the	
  
consolidation	
  of	
  declarative	
  memories?	
  Until	
  relatively	
  recently,	
  the	
  idea	
  of	
  
artificially	
  inducing	
  brain	
  processes	
  was	
  reserved	
  for	
  the	
  realm	
  of	
  science	
  fiction.	
  
However,	
  new	
  research	
  has	
  opened	
  the	
  door	
  to	
  this	
  previously	
  latent	
  ability.	
  
	
   In	
  fact,	
  in	
  a	
  groundbreaking	
  study	
  by	
  Voss	
  et	
  al.	
  (2014),	
  researchers	
  used	
  
current	
  stimulation	
  to	
  induce	
  lucid	
  dreaming	
  in	
  subjects	
  who	
  were	
  in	
  REM	
  sleep.	
  
Using	
  a	
  method	
  called	
  transcranial	
  altering	
  current	
  stimulation	
  (tACS),	
  researchers	
  
were	
  able	
  to	
  artificially	
  produce	
  a	
  gamma	
  frequency	
  that	
  closely	
  resembled	
  the	
  
frequency	
  produced	
  during	
  a	
  lucid	
  dream.	
  Neuronal	
  synchrony	
  occurred,	
  inducing	
  
self-­‐awareness	
  and	
  other	
  elements	
  of	
  lucidity	
  into	
  the	
  subject’s	
  dream.	
  
	
   In	
  two	
  studies,	
  participants	
  were	
  given	
  direct	
  stimulation	
  at	
  a	
  low	
  frequency	
  
to	
  enhance	
  SWS.	
  Participants	
  were	
  given	
  a	
  paired	
  wordlist	
  to	
  memorize	
  before	
  the	
  
experimental	
  group	
  received	
  direct	
  stimulation	
  early	
  in	
  sleep.	
  They	
  found	
  that	
  
direct	
  transcranial	
  stimulation	
  enhanced	
  SWS,	
  promoted	
  sleep	
  spindles,	
  and	
  
resulted	
  in	
  enhanced	
  performances	
  on	
  the	
  recall	
  task	
  the	
  next	
  day	
  (Marshall	
  et	
  al.,	
  
2006;	
  2011).	
  These	
  studies	
  show	
  that	
  transcranial	
  stimulation	
  can	
  be	
  viable	
  to	
  
enhancing	
  memory	
  through	
  neuronal	
  synchrony.	
  
	
   Although	
  studies	
  have	
  been	
  conducted	
  that	
  enhance	
  various	
  stages	
  of	
  sleep,	
  
no	
  study	
  thus	
  far	
  has	
  specifically	
  attempted	
  to	
  generate	
  sleep	
  spindles	
  (as	
  opposed	
  
to	
  attempting	
  to	
  induce	
  or	
  prolong	
  a	
  specific	
  stage	
  of	
  sleep).	
  Instead	
  of	
  creating	
  the	
  
circumstances	
  during	
  which	
  these	
  oscilliatory	
  events	
  occur,	
  the	
  current	
  study	
  
attempts	
  to	
  generate	
  the	
  oscilliatory	
  events	
  themselves.	
  
	
   In	
  order	
  to	
  understand	
  how	
  tACS	
  can	
  catalyze	
  sleep	
  spindles,	
  it	
  is	
  important	
  
to	
  have	
  an	
  intimate	
  understanding	
  of	
  what	
  sleep	
  spindles	
  are.	
  Sleep	
  spindles	
  are	
  
thalamacortical	
  bursts	
  that	
  occur	
  roughly	
  every	
  3-­‐10	
  seconds	
  and	
  last	
  for	
  around	
  1-­‐
3	
  seconds.	
  They	
  are	
  theta	
  waves	
  and	
  are	
  roughly	
  between	
  12	
  and	
  15	
  Hz.	
  As	
  was	
  
alluded	
  to	
  earlier,	
  the	
  precise	
  function	
  of	
  sleep	
  spindles	
  is	
  unknown,	
  however,	
  
studies	
  suggest	
  that	
  they	
  functionally	
  “preserve	
  sleep	
  by	
  inhibiting	
  sensory	
  input”	
  
(Schabus,	
  2004;	
  Yamadori,	
  1971).	
  
	
   In	
  conclusion,	
  sleep	
  spindles	
  are	
  thalamacortical	
  bursts	
  that	
  occur	
  during	
  
stage-­‐2	
  sleep	
  and	
  SWS	
  and	
  are	
  correlated	
  with	
  the	
  consolidation	
  and	
  encoding	
  of	
  
declarative	
  memories	
  (Schabus,	
  2004;	
  Schabus	
  et	
  al.,	
  2004;	
  Cox	
  et	
  al.,	
  2012;	
  Seeck-­‐
Hirschner,	
  2012;	
  Marshall	
  et	
  al.,	
  2006;	
  2011).	
  Until	
  recently,	
  artificially	
  generating	
  
brain	
  states	
  was	
  theoretically	
  possible	
  but	
  the	
  technology	
  was	
  not	
  advanced	
  enough	
  
to	
  make	
  this	
  a	
  reality.	
  However,	
  studies	
  have	
  been	
  conducted	
  that	
  enhanced	
  stage-­‐2	
  
sleep	
  and	
  SWS,	
  using	
  direct	
  transcranial	
  stimulation,	
  thereby	
  creating	
  the	
  conditions	
  
necessary	
  for	
  sleep	
  spindles	
  to	
  occur	
  (Marshall	
  et	
  al.,	
  2006;	
  2011).	
  Additionally,	
  
Voss	
  et	
  al.	
  (2014)	
  used	
  tACS	
  to	
  induce	
  lucidity	
  in	
  dreams,	
  which	
  is	
  indicative	
  of	
  the	
  
immense	
  technological	
  advancements	
  that	
  have	
  occurred	
  in	
  this	
  field.	
  
	
  
Proposal	
  
	
  
	
   It	
  has	
  been	
  suggested	
  that	
  tACS	
  can	
  induce	
  brain	
  states	
  during	
  sleep	
  through	
  
neuronal	
  synchrony.	
  We	
  want	
  to	
  give	
  subjects	
  a	
  declarative	
  memory	
  test,	
  expose	
  the	
  
experimental	
  group	
  to	
  either	
  tACS	
  during	
  stage-­‐2	
  sleep	
  or	
  SWS,	
  then	
  test	
  their	
  recall.	
  
We	
  hypothesize	
  that	
  individuals	
  who	
  are	
  exposed	
  to	
  tACS	
  between	
  12	
  and	
  15	
  Hz	
  
during	
  stage-­‐2	
  sleep	
  will	
  demonstrate	
  neuronal	
  synchrony	
  in	
  the	
  form	
  of	
  a	
  sleep	
  
spindle	
  and	
  will	
  ultimately	
  perform	
  better	
  on	
  a	
  declarative	
  recall	
  test	
  than	
  
individuals	
  who	
  are	
  not	
  exposed	
  to	
  tACS.	
  Additionally,	
  we	
  hypothesize	
  that	
  
individuals	
  who	
  are	
  exposed	
  to	
  tACS	
  between	
  12	
  and	
  15	
  Hz	
  during	
  SWS	
  will	
  
demonstrate	
  neuronal	
  synchrony	
  in	
  the	
  form	
  of	
  a	
  sleep	
  spindle	
  and	
  will	
  ultimately	
  
perform	
  better	
  on	
  a	
  declarative	
  recall	
  test	
  than	
  individuals	
  who	
  are	
  not	
  exposed	
  to	
  
tACS,	
  as	
  well	
  as	
  individuals	
  who	
  are	
  exposed	
  to	
  tACS	
  during	
  stage-­‐2	
  sleep.	
  
	
  
Method	
  
	
   Participants.	
  We	
  would	
  like	
  to	
  recruit	
  200	
  participants	
  for	
  this	
  study.	
  Ideally	
  
these	
  participants	
  would	
  be	
  diverse	
  in	
  age,	
  ethnicity,	
  and	
  gender	
  identification	
  in	
  
order	
  to	
  ensure	
  generalizability.	
  Additionally,	
  participants	
  would	
  ideally	
  have	
  no	
  
history	
  of	
  sleep	
  disorders	
  or	
  mental	
  illness	
  as	
  these	
  could	
  be	
  potential	
  confounds.	
  
We	
  would	
  like	
  to	
  recruit	
  them	
  through	
  email	
  blasts,	
  social	
  media,	
  word	
  of	
  mouth,	
  
and	
  newspaper	
  ads.	
  Finally,	
  we	
  would	
  like	
  to	
  compensate	
  individuals	
  for	
  their	
  time	
  
with	
  a	
  small	
  gift	
  card	
  to	
  a	
  local	
  restaurant.	
  
	
   Apparatus.	
  For	
  this	
  experiment,	
  we	
  would	
  need	
  access	
  to	
  a	
  sleep	
  lab	
  
containing	
  the	
  necessary	
  equipment	
  for	
  monitoring	
  brain	
  waves	
  and	
  for	
  
administering	
  current	
  stimulation	
  (EEG	
  with	
  tACS	
  capabilities,	
  EOG,	
  and	
  EMG).	
  
Additionally,	
  we	
  would	
  need	
  a	
  declarative	
  memory	
  task.	
  The	
  task	
  that	
  we	
  would	
  like	
  
to	
  use	
  is	
  a	
  modified	
  version	
  of	
  the	
  Plihal	
  and	
  Born	
  test	
  used	
  in	
  the	
  Schabus	
  et	
  al.	
  
(2004)	
  study.	
  This	
  test	
  is	
  a	
  paired-­‐associate	
  wordlist	
  that	
  has	
  been	
  modified	
  to	
  
reduce	
  the	
  likelihood	
  of	
  a	
  false	
  pairing	
  as	
  a	
  result	
  of	
  a	
  semantic	
  connection—thus	
  
giving	
  the	
  most	
  accurate	
  depiction	
  of	
  declarative	
  recall.	
  
	
   Procedure.	
  All	
  participants	
  will	
  be	
  given	
  the	
  modified	
  version	
  of	
  the	
  Plihal	
  
and	
  Born	
  test	
  in	
  which	
  they	
  are	
  to	
  memorize	
  paired	
  words.	
  The	
  participants	
  will	
  be	
  
randomly	
  divided	
  into	
  two	
  groups-­‐	
  the	
  control	
  group	
  and	
  the	
  experimental	
  group.	
  
Then	
  they	
  will	
  go	
  into	
  the	
  sleep	
  lab	
  for	
  a	
  night.	
  In	
  the	
  lab,	
  their	
  sleep	
  will	
  be	
  
monitored.	
  The	
  control	
  group	
  will	
  only	
  be	
  monitored.	
  The	
  experimental	
  group	
  will	
  
be	
  randomly	
  divided	
  in	
  half.	
  One	
  half	
  of	
  the	
  experimental	
  group	
  will	
  receive	
  tACS	
  
during	
  stage-­‐2	
  sleep	
  while	
  the	
  other	
  half	
  of	
  the	
  experimental	
  group	
  will	
  receive	
  tACS	
  
during	
  SWS.	
  The	
  number	
  of	
  sleep	
  spindles	
  will	
  be	
  recorded.	
  The	
  next	
  day,	
  
participants	
  will	
  be	
  given	
  the	
  recall	
  portion	
  of	
  the	
  Plihal	
  and	
  Born	
  test	
  in	
  which	
  they	
  
identify	
  as	
  many	
  of	
  the	
  pairs	
  that	
  they	
  have	
  already	
  been	
  exposed	
  to	
  as	
  possible.	
  	
  
	
  
	
   Results	
  
	
   Once	
  we	
  have	
  recorded	
  all	
  of	
  the	
  data	
  we	
  will	
  first	
  compare	
  the	
  number	
  of	
  
sleep	
  spindles	
  that	
  participants	
  in	
  each	
  group	
  had	
  using	
  an	
  ANOVA	
  test.	
  Then,	
  we	
  
will	
  use	
  the	
  same	
  test	
  to	
  determine	
  if	
  the	
  independent	
  variables	
  (tACS	
  at	
  different	
  
stages	
  of	
  sleep)	
  had	
  an	
  effect	
  on	
  the	
  number	
  of	
  pairs	
  recalled.	
  If	
  the	
  tests	
  show	
  that	
  
tACS	
  resulted	
  in	
  significantly	
  higher	
  or	
  lower	
  recall	
  ability	
  than	
  the	
  control	
  group	
  
and	
  the	
  tACS	
  group	
  experienced	
  less	
  than	
  or	
  equal	
  to	
  the	
  number	
  of	
  sleep	
  spindles	
  
that	
  the	
  control	
  group	
  experienced	
  then	
  we	
  will	
  know	
  that	
  there	
  is	
  a	
  confounding	
  
variable.	
  	
  
	
  
References	
  
	
   	
  
Cox,	
  R.,	
  Hofman,	
  W.	
  F.,	
  &	
  Talamini,	
  L.	
  M.	
  (2012).	
  Involvement	
  of	
  spindles	
  in	
  memory	
  	
  
	
   consolidation	
  is	
  slow	
  wave	
  sleep-­‐specific.	
  Learning	
  &	
  Memory,	
  19.	
  264-­‐267.	
  
Marshall	
  L.,	
  Helgadottir	
  H.,	
  &	
  Molle	
  M.	
  (2006).	
  Boosting	
  slow	
  oscillations	
  during	
  	
  
	
   sleep	
  potentiates	
  memory.	
  Nature,	
  444.	
  610-­‐613	
  
Marshall	
  L,	
  Kirov	
  R,	
  Brade	
  J,	
  Mölle	
  M,	
  &	
  Born	
  J.	
  (2011).	
  Transcranial	
  electrical	
  	
  
	
   currents	
  to	
  probe	
  EEG	
  brain	
  rhythms	
  and	
  memory	
  consolidation	
  during	
  sleep	
  	
  
	
   in	
  humans.	
  PLOS	
  One,	
  6.	
  
Schabus,	
  M.	
  (2004).	
  The	
  significance	
  of	
  sleep	
  spindles	
  for	
  declarative	
  memory	
  
	
  consolidation	
  (Doctoral	
  dissertation).	
  Retreived	
  from	
  University	
  of	
  Salzburg.	
  
Schabus,	
  M.,	
  Gruber,	
  G.,	
  Parapatics,	
  S.,	
  Sauter,	
  C.,	
  Klösch,	
  G.,	
  Anderer,	
  P.,	
  …	
  Zeitlhofer,	
  	
  
	
   J.	
  (2004).	
  Sleep	
  spindles	
  and	
  their	
  significance	
  for	
  declarative	
  memory	
  	
  
	
   consolidation.	
  SLEEP,	
  27(8).	
  1479-­‐1485.	
  
Seeck-­‐Hirschner,	
  M.,	
  Baier,	
  P.	
  C.,	
  Weinhold,	
  S.	
  L.,	
  Dittmar,	
  M.,	
  Heiermann,	
  S.	
  (2012).	
  	
  
	
   Declarative	
  memory	
  performance	
  is	
  associated	
  with	
  the	
  number	
  of	
  sleep	
  	
  
	
   spindles	
  in	
  elderly	
  women.	
  The	
  American	
  Journal	
  of	
  Geriatric	
  Psychiatry,	
  	
  
	
   20(9).	
  782-­‐8.	
  
Tisserand,	
  D.	
  J.,	
  &	
  Jolies,	
  J.	
  (2003).	
  On	
  the	
  involvement	
  of	
  prefrontal	
  networks	
  in	
  	
  
	
   cognitive	
  ageing.	
  Cortex,	
  39.	
  1107-­‐1128.	
  
Voss,	
  U.,	
  Holzmann,	
  R.,	
  Hobson,	
  A.,	
  Paulus,	
  W.,	
  Koppehele-­‐Gossel,	
  J.,	
  Kilmke,	
  A.,	
  &	
  	
  
	
   Nitsche,	
  M.	
  A.	
  (2014).	
  Induction	
  of	
  self	
  awareness	
  in	
  dreams	
  through	
  frontal	
  	
  
	
   low	
  current	
  stimulation	
  of	
  gamma	
  activity.	
  Nature	
  Neuroscience.	
  	
  
Yamadori,	
  A.	
  (1971).	
  Role	
  of	
  the	
  spindles	
  in	
  the	
  onset	
  of	
  sleep.	
  Kobe	
  Journal	
  of	
  
Medical	
  Sciences,	
  17,	
  97-­‐111.	
  

More Related Content

What's hot

Neuronal plasticity
Neuronal plasticityNeuronal plasticity
Neuronal plasticitySyed Nadir
 
Brain Science Applying Neuroplasticity Principles To Higher Education
Brain Science Applying Neuroplasticity Principles To Higher EducationBrain Science Applying Neuroplasticity Principles To Higher Education
Brain Science Applying Neuroplasticity Principles To Higher Educationsmarkbarnes
 
Neuroplasticity of brain
Neuroplasticity of brainNeuroplasticity of brain
Neuroplasticity of brainDiptanshu Das
 
Neuroplasticity
NeuroplasticityNeuroplasticity
NeuroplasticityBPKIHS
 
Heart rate variability and social dysfunction
Heart rate variability and social dysfunctionHeart rate variability and social dysfunction
Heart rate variability and social dysfunctionDaniel Quintana
 
Neuroplasticity
NeuroplasticityNeuroplasticity
NeuroplasticityAdit Shah
 

What's hot (6)

Neuronal plasticity
Neuronal plasticityNeuronal plasticity
Neuronal plasticity
 
Brain Science Applying Neuroplasticity Principles To Higher Education
Brain Science Applying Neuroplasticity Principles To Higher EducationBrain Science Applying Neuroplasticity Principles To Higher Education
Brain Science Applying Neuroplasticity Principles To Higher Education
 
Neuroplasticity of brain
Neuroplasticity of brainNeuroplasticity of brain
Neuroplasticity of brain
 
Neuroplasticity
NeuroplasticityNeuroplasticity
Neuroplasticity
 
Heart rate variability and social dysfunction
Heart rate variability and social dysfunctionHeart rate variability and social dysfunction
Heart rate variability and social dysfunction
 
Neuroplasticity
NeuroplasticityNeuroplasticity
Neuroplasticity
 

Viewers also liked

Viewers also liked (7)

How does my brain work
How does my brain workHow does my brain work
How does my brain work
 
Cep wk4
Cep wk4Cep wk4
Cep wk4
 
Declarative memory
Declarative memoryDeclarative memory
Declarative memory
 
CogSci2014-kbs-2
CogSci2014-kbs-2CogSci2014-kbs-2
CogSci2014-kbs-2
 
LB wk 13
LB wk 13LB wk 13
LB wk 13
 
Dis Connections. Sla Theories
Dis Connections. Sla TheoriesDis Connections. Sla Theories
Dis Connections. Sla Theories
 
Prototyping is an attitude
Prototyping is an attitudePrototyping is an attitude
Prototyping is an attitude
 

Similar to Declarative Memory and tACS- Inducing Sleep Spindles. A Proposal

The Effects of Distinctive Processing and Sleep Deprivation on False Memory
The Effects of Distinctive Processing and Sleep Deprivation on False MemoryThe Effects of Distinctive Processing and Sleep Deprivation on False Memory
The Effects of Distinctive Processing and Sleep Deprivation on False MemoryZachary Shaiken
 
6.1 Mary Morrell
6.1 Mary Morrell6.1 Mary Morrell
6.1 Mary Morrellmomentumbrn
 
35762 chapter2
35762 chapter235762 chapter2
35762 chapter2JH Cristal
 
Memory and brain
Memory and brainMemory and brain
Memory and brainmuberraoz
 
How the brain works grows vip
How the brain works grows vipHow the brain works grows vip
How the brain works grows vipParfum Pompeii
 
The Effects of Sleep Deprivation on Item and AssociativeReco.docx
The Effects of Sleep Deprivation on Item and AssociativeReco.docxThe Effects of Sleep Deprivation on Item and AssociativeReco.docx
The Effects of Sleep Deprivation on Item and AssociativeReco.docxtodd701
 
Jamie Kleiner Luther Rice Application
Jamie Kleiner Luther Rice ApplicationJamie Kleiner Luther Rice Application
Jamie Kleiner Luther Rice ApplicationJamie Kleiner
 
Premotor Cortex Argumentative Analysis
Premotor Cortex Argumentative AnalysisPremotor Cortex Argumentative Analysis
Premotor Cortex Argumentative AnalysisAmanda Hengel
 
Modulation of theta phase sync during a recognition memory task
Modulation of theta phase sync during a recognition memory taskModulation of theta phase sync during a recognition memory task
Modulation of theta phase sync during a recognition memory taskKyongsik Yun
 
The Effect Of Priming Effect On The Dual Process Essay
The Effect Of Priming Effect On The Dual Process EssayThe Effect Of Priming Effect On The Dual Process Essay
The Effect Of Priming Effect On The Dual Process EssayDenise Enriquez
 
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTER
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTERMedicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTER
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTERhungnguyenthien
 
SpindlesAndKcomplexes_MergedAndSubmmited
SpindlesAndKcomplexes_MergedAndSubmmitedSpindlesAndKcomplexes_MergedAndSubmmited
SpindlesAndKcomplexes_MergedAndSubmmitedAhmad Zureick/ Zrik
 
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxSleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxedgar6wallace88877
 
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxSleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxjennifer822
 
Effect of Memory Binding on the ERP Correlates of Recollection
Effect of Memory Binding on the ERP Correlates of RecollectionEffect of Memory Binding on the ERP Correlates of Recollection
Effect of Memory Binding on the ERP Correlates of RecollectionAlexander Velosky
 

Similar to Declarative Memory and tACS- Inducing Sleep Spindles. A Proposal (20)

The Effects of Distinctive Processing and Sleep Deprivation on False Memory
The Effects of Distinctive Processing and Sleep Deprivation on False MemoryThe Effects of Distinctive Processing and Sleep Deprivation on False Memory
The Effects of Distinctive Processing and Sleep Deprivation on False Memory
 
6.1 Mary Morrell
6.1 Mary Morrell6.1 Mary Morrell
6.1 Mary Morrell
 
35762 chapter2
35762 chapter235762 chapter2
35762 chapter2
 
Developing consciousness fetal anesthesia and analgesia
Developing consciousness fetal anesthesia and analgesiaDeveloping consciousness fetal anesthesia and analgesia
Developing consciousness fetal anesthesia and analgesia
 
Awake to Sleep2
Awake to Sleep2Awake to Sleep2
Awake to Sleep2
 
Memory and brain
Memory and brainMemory and brain
Memory and brain
 
Why do we sleep?
Why do we  sleep?Why do we  sleep?
Why do we sleep?
 
How the brain works grows vip
How the brain works grows vipHow the brain works grows vip
How the brain works grows vip
 
The Effects of Sleep Deprivation on Item and AssociativeReco.docx
The Effects of Sleep Deprivation on Item and AssociativeReco.docxThe Effects of Sleep Deprivation on Item and AssociativeReco.docx
The Effects of Sleep Deprivation on Item and AssociativeReco.docx
 
Jamie Kleiner Luther Rice Application
Jamie Kleiner Luther Rice ApplicationJamie Kleiner Luther Rice Application
Jamie Kleiner Luther Rice Application
 
Premotor Cortex Argumentative Analysis
Premotor Cortex Argumentative AnalysisPremotor Cortex Argumentative Analysis
Premotor Cortex Argumentative Analysis
 
Modulation of theta phase sync during a recognition memory task
Modulation of theta phase sync during a recognition memory taskModulation of theta phase sync during a recognition memory task
Modulation of theta phase sync during a recognition memory task
 
Neuromarketing
NeuromarketingNeuromarketing
Neuromarketing
 
The Effect Of Priming Effect On The Dual Process Essay
The Effect Of Priming Effect On The Dual Process EssayThe Effect Of Priming Effect On The Dual Process Essay
The Effect Of Priming Effect On The Dual Process Essay
 
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTER
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTERMedicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTER
Medicine Nobel Prize 2014, Dr CHI DAC BUI, MEDIC MEDICAL CENTER
 
SpindlesAndKcomplexes_MergedAndSubmmited
SpindlesAndKcomplexes_MergedAndSubmmitedSpindlesAndKcomplexes_MergedAndSubmmited
SpindlesAndKcomplexes_MergedAndSubmmited
 
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxSleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
 
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docxSleep & MemoryReviewSleep, dreams, and memory consolidati.docx
Sleep & MemoryReviewSleep, dreams, and memory consolidati.docx
 
Effect of Memory Binding on the ERP Correlates of Recollection
Effect of Memory Binding on the ERP Correlates of RecollectionEffect of Memory Binding on the ERP Correlates of Recollection
Effect of Memory Binding on the ERP Correlates of Recollection
 
Tononi koch-08
Tononi koch-08Tononi koch-08
Tononi koch-08
 

Declarative Memory and tACS- Inducing Sleep Spindles. A Proposal

  • 1.               Declarative  Memory  and  tACS:  Inducing  Sleep  Spindles.  A  Proposal   Zac  Shaiken  (ID:5882389)   PSYC  211  Lab  2007     Demonstrator:  Kahla  Redman   1423  words        
  • 2.   Abstract     The  relationship  between  sleep  and  memory  is  well  documented.  Specifically,  the   relationship  between  thalamacortical  oscillations  (sleep  spindles,  which  occur  in   stage-­‐2  sleep  and  slow  wave  sleep)  and  declarative  memory  is  well  documented.   Until  recently,  artificially  generating  brain  states  and  events  was  thought  to  be   possible  but  the  technology  was  not  adequate  to  do  so.  However,  recent   technological  breakthroughs  have  proven  that  the  technology  now  exists  to   generate  brain  states.  The  proposed  study  would  attempt  to  generate  sleep  spindles   by  using  transcranial  alternating  current  stimulation  between  12  and  15  Hz  on  the   thalamacortical  regions  of  the  brain.  Using  a  paired-­‐associates  wordlist,  participants   will  be  tested  to  see  if  such  stimulation  can  be  used  to  enhance  declarative  memory.      
  • 3.   Review     Have  you  ever  wondered  why  we  sleep?  An  individual  who  sleeps  eight   hours  each  night  and  lives  to  be  80  years  old  will  spend  close  to  27  of  those  years   asleep.  One  of  the  many  functions  of  sleep  is  the  consolidation  and  encoding  of   memories  (Schabus,  2004).  Specifically,  sleep  spindles  (thalamacortical  oscillations   occurring  primarily  during  stage-­‐2  sleep  and  slow  wave  sleep)  have  been  linked  to   the  consolidation  and  encoding  of  declarative  memories  (Schabus  et  al.,  2004).     The  Schabus  et  al.  (2004)  study  involved  giving  participants  a  paired  word   list  to  memorize  and  asking  them  to  recall  the  pairs  after  sleep.  Participants  who   had  more  sleep  spindles  tended  to  recall  the  paired  words  better  than  participants   who  had  less  sleep  spindles.  This  implies  a  relationship  between  sleep  spindles  and   declarative  memory  consolidation.  However,  it  remains  unknown  whether  sleep   spindles  are  a  result  of  thalamacoritcal  encoding  and  consolidation,  or  are  the   catalyst.       Additionally,  spindles  occurring  during  slow  wave  sleep  (SWS)  seem  to  be   especially  important  to  declarative  memory  retention.  Cox,  Hofman,  and  Talamini   (2012)  examined  this  phenomenon  in  subjects  who  watched  a  movie  and  were   asked  to  answer  questions  about  the  movie.  They  found  that  sleep  spindle  density  in   SWS  was  strongly  and  positively  correlated  to  declarative  memory  and  the   associated  recall.  In  other  words,  subjects  who  experienced  dense  sleep  spindles  in  
  • 4. SWS  were  more  likely  to  correctly  answer  questions  about  the  film  than  subjects   who  did  not  experience  sleep  spindles  in  SWS.       Furthermore,  a  study  in  elderly  women  found  that  the  number  of  sleep   spindles  in  stage-­‐2  sleep  was  positively  correlated  with  declarative  memory   performance  (Seeck-­‐Hirschner  et  al.,  2012).  In  this  study,  elderly  women  were   asked  to  draw  a  figure  using  a  template.  After  sleep,  they  were  asked  to  reproduce   the  drawing.  The  number  of  discrepancies  between  the  two  drawings  was   negatively  correlated  with  the  number  of  sleep  spindles  that  the  participant   experienced  during  the  night.  It  is  important  to  note  that  this  study  emphasizes  the   importance  of  the  number  of  sleep  spindles  in  stage-­‐2  sleep  as  opposed  to  SWS.  This   can  be  attributed  to  age.  As  humans  age,  the  time  spent  in  SWS  decreases.  Some   studies  suggest  that  this  decrease  is  tied  to  age-­‐related  reductions  in  cognitive   performance  and  abilities—such  as  memory  (Tisserand  &  Jolies,  2003).     The  evidence  that  suggests  the  importance  of  sleep  spindles  to  declarative   memory  inspired  the  central  research  question  for  the  current  study:  is  it  possible   to  artificially  induce  sleep  spindles  in  a  way  that  catalyzes  or  promotes  the   consolidation  of  declarative  memories?  Until  relatively  recently,  the  idea  of   artificially  inducing  brain  processes  was  reserved  for  the  realm  of  science  fiction.   However,  new  research  has  opened  the  door  to  this  previously  latent  ability.     In  fact,  in  a  groundbreaking  study  by  Voss  et  al.  (2014),  researchers  used   current  stimulation  to  induce  lucid  dreaming  in  subjects  who  were  in  REM  sleep.   Using  a  method  called  transcranial  altering  current  stimulation  (tACS),  researchers   were  able  to  artificially  produce  a  gamma  frequency  that  closely  resembled  the  
  • 5. frequency  produced  during  a  lucid  dream.  Neuronal  synchrony  occurred,  inducing   self-­‐awareness  and  other  elements  of  lucidity  into  the  subject’s  dream.     In  two  studies,  participants  were  given  direct  stimulation  at  a  low  frequency   to  enhance  SWS.  Participants  were  given  a  paired  wordlist  to  memorize  before  the   experimental  group  received  direct  stimulation  early  in  sleep.  They  found  that   direct  transcranial  stimulation  enhanced  SWS,  promoted  sleep  spindles,  and   resulted  in  enhanced  performances  on  the  recall  task  the  next  day  (Marshall  et  al.,   2006;  2011).  These  studies  show  that  transcranial  stimulation  can  be  viable  to   enhancing  memory  through  neuronal  synchrony.     Although  studies  have  been  conducted  that  enhance  various  stages  of  sleep,   no  study  thus  far  has  specifically  attempted  to  generate  sleep  spindles  (as  opposed   to  attempting  to  induce  or  prolong  a  specific  stage  of  sleep).  Instead  of  creating  the   circumstances  during  which  these  oscilliatory  events  occur,  the  current  study   attempts  to  generate  the  oscilliatory  events  themselves.     In  order  to  understand  how  tACS  can  catalyze  sleep  spindles,  it  is  important   to  have  an  intimate  understanding  of  what  sleep  spindles  are.  Sleep  spindles  are   thalamacortical  bursts  that  occur  roughly  every  3-­‐10  seconds  and  last  for  around  1-­‐ 3  seconds.  They  are  theta  waves  and  are  roughly  between  12  and  15  Hz.  As  was   alluded  to  earlier,  the  precise  function  of  sleep  spindles  is  unknown,  however,   studies  suggest  that  they  functionally  “preserve  sleep  by  inhibiting  sensory  input”   (Schabus,  2004;  Yamadori,  1971).     In  conclusion,  sleep  spindles  are  thalamacortical  bursts  that  occur  during   stage-­‐2  sleep  and  SWS  and  are  correlated  with  the  consolidation  and  encoding  of  
  • 6. declarative  memories  (Schabus,  2004;  Schabus  et  al.,  2004;  Cox  et  al.,  2012;  Seeck-­‐ Hirschner,  2012;  Marshall  et  al.,  2006;  2011).  Until  recently,  artificially  generating   brain  states  was  theoretically  possible  but  the  technology  was  not  advanced  enough   to  make  this  a  reality.  However,  studies  have  been  conducted  that  enhanced  stage-­‐2   sleep  and  SWS,  using  direct  transcranial  stimulation,  thereby  creating  the  conditions   necessary  for  sleep  spindles  to  occur  (Marshall  et  al.,  2006;  2011).  Additionally,   Voss  et  al.  (2014)  used  tACS  to  induce  lucidity  in  dreams,  which  is  indicative  of  the   immense  technological  advancements  that  have  occurred  in  this  field.     Proposal       It  has  been  suggested  that  tACS  can  induce  brain  states  during  sleep  through   neuronal  synchrony.  We  want  to  give  subjects  a  declarative  memory  test,  expose  the   experimental  group  to  either  tACS  during  stage-­‐2  sleep  or  SWS,  then  test  their  recall.   We  hypothesize  that  individuals  who  are  exposed  to  tACS  between  12  and  15  Hz   during  stage-­‐2  sleep  will  demonstrate  neuronal  synchrony  in  the  form  of  a  sleep   spindle  and  will  ultimately  perform  better  on  a  declarative  recall  test  than   individuals  who  are  not  exposed  to  tACS.  Additionally,  we  hypothesize  that   individuals  who  are  exposed  to  tACS  between  12  and  15  Hz  during  SWS  will   demonstrate  neuronal  synchrony  in  the  form  of  a  sleep  spindle  and  will  ultimately   perform  better  on  a  declarative  recall  test  than  individuals  who  are  not  exposed  to   tACS,  as  well  as  individuals  who  are  exposed  to  tACS  during  stage-­‐2  sleep.    
  • 7. Method     Participants.  We  would  like  to  recruit  200  participants  for  this  study.  Ideally   these  participants  would  be  diverse  in  age,  ethnicity,  and  gender  identification  in   order  to  ensure  generalizability.  Additionally,  participants  would  ideally  have  no   history  of  sleep  disorders  or  mental  illness  as  these  could  be  potential  confounds.   We  would  like  to  recruit  them  through  email  blasts,  social  media,  word  of  mouth,   and  newspaper  ads.  Finally,  we  would  like  to  compensate  individuals  for  their  time   with  a  small  gift  card  to  a  local  restaurant.     Apparatus.  For  this  experiment,  we  would  need  access  to  a  sleep  lab   containing  the  necessary  equipment  for  monitoring  brain  waves  and  for   administering  current  stimulation  (EEG  with  tACS  capabilities,  EOG,  and  EMG).   Additionally,  we  would  need  a  declarative  memory  task.  The  task  that  we  would  like   to  use  is  a  modified  version  of  the  Plihal  and  Born  test  used  in  the  Schabus  et  al.   (2004)  study.  This  test  is  a  paired-­‐associate  wordlist  that  has  been  modified  to   reduce  the  likelihood  of  a  false  pairing  as  a  result  of  a  semantic  connection—thus   giving  the  most  accurate  depiction  of  declarative  recall.     Procedure.  All  participants  will  be  given  the  modified  version  of  the  Plihal   and  Born  test  in  which  they  are  to  memorize  paired  words.  The  participants  will  be   randomly  divided  into  two  groups-­‐  the  control  group  and  the  experimental  group.   Then  they  will  go  into  the  sleep  lab  for  a  night.  In  the  lab,  their  sleep  will  be   monitored.  The  control  group  will  only  be  monitored.  The  experimental  group  will   be  randomly  divided  in  half.  One  half  of  the  experimental  group  will  receive  tACS   during  stage-­‐2  sleep  while  the  other  half  of  the  experimental  group  will  receive  tACS  
  • 8. during  SWS.  The  number  of  sleep  spindles  will  be  recorded.  The  next  day,   participants  will  be  given  the  recall  portion  of  the  Plihal  and  Born  test  in  which  they   identify  as  many  of  the  pairs  that  they  have  already  been  exposed  to  as  possible.         Results     Once  we  have  recorded  all  of  the  data  we  will  first  compare  the  number  of   sleep  spindles  that  participants  in  each  group  had  using  an  ANOVA  test.  Then,  we   will  use  the  same  test  to  determine  if  the  independent  variables  (tACS  at  different   stages  of  sleep)  had  an  effect  on  the  number  of  pairs  recalled.  If  the  tests  show  that   tACS  resulted  in  significantly  higher  or  lower  recall  ability  than  the  control  group   and  the  tACS  group  experienced  less  than  or  equal  to  the  number  of  sleep  spindles   that  the  control  group  experienced  then  we  will  know  that  there  is  a  confounding   variable.      
  • 9. References       Cox,  R.,  Hofman,  W.  F.,  &  Talamini,  L.  M.  (2012).  Involvement  of  spindles  in  memory       consolidation  is  slow  wave  sleep-­‐specific.  Learning  &  Memory,  19.  264-­‐267.   Marshall  L.,  Helgadottir  H.,  &  Molle  M.  (2006).  Boosting  slow  oscillations  during       sleep  potentiates  memory.  Nature,  444.  610-­‐613   Marshall  L,  Kirov  R,  Brade  J,  Mölle  M,  &  Born  J.  (2011).  Transcranial  electrical       currents  to  probe  EEG  brain  rhythms  and  memory  consolidation  during  sleep       in  humans.  PLOS  One,  6.   Schabus,  M.  (2004).  The  significance  of  sleep  spindles  for  declarative  memory    consolidation  (Doctoral  dissertation).  Retreived  from  University  of  Salzburg.   Schabus,  M.,  Gruber,  G.,  Parapatics,  S.,  Sauter,  C.,  Klösch,  G.,  Anderer,  P.,  …  Zeitlhofer,       J.  (2004).  Sleep  spindles  and  their  significance  for  declarative  memory       consolidation.  SLEEP,  27(8).  1479-­‐1485.   Seeck-­‐Hirschner,  M.,  Baier,  P.  C.,  Weinhold,  S.  L.,  Dittmar,  M.,  Heiermann,  S.  (2012).       Declarative  memory  performance  is  associated  with  the  number  of  sleep       spindles  in  elderly  women.  The  American  Journal  of  Geriatric  Psychiatry,       20(9).  782-­‐8.   Tisserand,  D.  J.,  &  Jolies,  J.  (2003).  On  the  involvement  of  prefrontal  networks  in       cognitive  ageing.  Cortex,  39.  1107-­‐1128.   Voss,  U.,  Holzmann,  R.,  Hobson,  A.,  Paulus,  W.,  Koppehele-­‐Gossel,  J.,  Kilmke,  A.,  &       Nitsche,  M.  A.  (2014).  Induction  of  self  awareness  in  dreams  through  frontal       low  current  stimulation  of  gamma  activity.  Nature  Neuroscience.    
  • 10. Yamadori,  A.  (1971).  Role  of  the  spindles  in  the  onset  of  sleep.  Kobe  Journal  of   Medical  Sciences,  17,  97-­‐111.