SlideShare a Scribd company logo
1 of 84
Download to read offline
TRƯỜNG ĐẠI HỌC NGOẠI THƯƠNG CƠ SỞ II
BỘ MÔN CƠ SỞ - CƠ BẢN
TỔ TOÁN TIN
BÀI GIẢNG TOÁN CAO CẤP
PHẦN 1: ĐẠI SỐ TUYẾN TÍNH
2
MỞ ĐẦU
0.1. Tập hợp
* Khái niệm cơ bản
Tập hợp có thể hiểu tổng quát là nhóm các đối tượng có chung một đặc trưng nào đó.
Người ta thường dùng các chữ cái in hoa A, B, C,… để ký hiệu một tập hợp. Nếu x là phần
tử của A kí hiệu x A
 . Ngược lại kí hiệu x A
 ( x không thuộc A).
Tập hợp không có phần tử nào gọi là tập rỗng. Kí hiệu: .
* Cách biểu diễn tập hợp
Có ba cách biểu diễn một tập hợp:
- Liệt kê: Liệt kê tất cả phần tử trong dấu { }.
Ví dụ 0.1. Cho tập hợp A gồm các phần tử 0,1,2, ,
a b .
{0,1,2, , }
A a b

- Theo tính chất đặc trưng: {
B x
 | x có tính chất đặc trưng Q} .
Ví dụ 0.2. 2
{ | 4 0}
B x x
    đọc là “B là tập hợp các số x sao cho 2
4 0
x   ”.
- Giản đồ Ven.
Ví dụ 0.3. Cho , ,2
a b A
 ; , 3
c A
  , ta biểu diễn bằng giản đồ Ven như sau
* Tập hợp con, tập hợp bằng nhau
- Tập hợp con: A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B.
Kí hiệu: A B
 ( A chứa trong B)
" , "
A B x x A x B
     
Nhận xét: ta có A
  và A A
 với mọi tập hợp A.
- Tập hợp bằng nhau:
A B A B
   và " , "
B A x x A x B
     
* Các phép toán trên tập hợp
- Phép giao: { ,
A B x x A
   và }
x B
 .
- Phép hợp: { ,
A B x x A
   hay }
x B
 .
a
b
2 c
-3
3
- Phép hiệu: { ,
A B x x A
   và }
x B
 .
- Phần bù: Cho A E
 , phần bù của A đối với E là một tập hợp có tính chất
 { ,
C
E
A A C A E A x x E
     và }.
x A

- Hiệu đối xứng: Cho A, B là hai tập hợp. Hiệu đối xứng của A và B, kí hiệu A B
 là
một tập hợp được xác định như sau
(  ) (  )
A B A B B A
   .
- Tích Descartes: Cho A, B là hai tập hợp. Tích Descartes của A và B, kí hiệu A B
 là
một tập hợp được xác định như sau
 
 
, | , .
A B a b a A b B
   
Ví dụ 0.4. Cho  
1,2,3
A  ,  
0,1
B  . Khi đó
           
 
1,0 , 1,1 , 2,0 , 2,1 , 3,0 , 3,1 .
A B
 
0.2. Ánh xạ
* Định nghĩa
Cho hai tập hợp ,
X Y  , một phép liên kết f tương ứng mỗi phần tử x X
 với duy
nhất một phần tử y Y
 được gọi là ánh xạ từ X vào Y .
Kí hiệu: :
f X Y


( )
x y f x

X gọi là tập hợp nguồn (miền xác định).
Y gọi là tập hợp đích (miền giá trị).
Ví dụ 0.5. 2
: , ( )
f f x x
  là một ánh xạ.
* Ảnh và tạo ảnh
Cho ánh xạ :
f X Y
 và các tập hợp ,
C X D Y
  .
- Ảnh của tập C qua ánh xạ f , kí hiệu (C)
f là tập hợp tất cả ảnh của các phần tử
x C
 .
(C) { ( ) | }
f f x Y x C
   .
Đặc biệt, ( )
f X là tập ảnh của ánh xạ f .
- Tạo ảnh của D qua ánh xạ f , kí hiệu 1
( )
f D

là tập tất cả các phần tử x X
 có ảnh
thuộc D.
1
( ) { | ( ) }
f D x X f x D

   .
4
* Đơn ánh, toàn ánh, song ánh
Cho ánh xạ : X Y
f  .
- Ánh xạ f được gọi là đơn ánh khi và chỉ khi 1 2
,
x x X
  và
1 2 1 2
( ) ( )
f x f x x x
   .
Ví dụ 0.6. Cho ánh xạ :
f  xác định bởi 3
( ) 1
f x x
  .
Nếu 1 2
( ) ( )
f x f x
 hay 3 3
1 2
1 1
x x
   , ta suy ra 3 3
1 2
x x
 do đó 1 2
x x
 . Vậy f là đơn
ánh.
- Ánh xạ f được gọi là toàn ánh khi và chỉ khi với mỗi phần tử y Y
 tồn tại một phần
tử x X
 sao cho ( )
f x y
 .
Ví dụ 0.7. Cho ánh xạ :
f  xác định bởi 3
( ) 1
f x x
  .
Lấy bất kì y , phương trình 3
1
y x
  luôn có nghiệm 3 1
x y
  . Nghĩa là
3
, 1
y x y
    sao cho 3
3 3
( ) ( 1) ( 1) 1
f x f y y y
      . Do đó f là toàn ánh.
- Ánh xạ f được gọi là song ánh khi và chỉ khi f vừa là toàn ánh vừa là đơn ánh.
Ví dụ 0.8. Cho ánh xạ :
f  xác định bởi 3
( ) 1
f x x
  vừa là toàn ánh vừa là
đơn ánh. Do đó f là song ánh.
* Ánh xạ ngược
Cho ánh xạ : X Y
f  là một song ánh. Khi đó, mỗi phần tử x đều có một ảnh xác
định ( )
f x Y
 . Ngược lại, mỗi phần tử y Y
 có một và chỉ một nghịch ảnh .
x X

Khi đó, ta gọi ánh xạ biến y Y
 thành x X
 sao cho ( )
f x y
 gọi là ánh xạ ngược
của song ánh f , kí hiệu 1
f 
. Vậy 1
f 
là ánh xạ từ Y vào X, nó cũng là song ánh.
* Tích của hai ánh xạ
Cho ba tập hợp , ,
X Y Z và hai ánh xạ : , :
f X Y g Y Z
  .
Ánh xạ từ X vào Z được xác định bởi  
( )
x X z g f x Z
    được gọi là tích
(hợp) của ánh xạ f và g , kí hiệu .
o
g f
Ví dụ 0.9. Cho :
f  , ( ) cos
f x x
 và :
g  , ( ) x
g x e
 . Khi đó, ta có
    cos
( ) ( ) ;
x
o
g f x g f x e
 
   
( ) ( ) sin .
x
o
f g x f g x e
 
0.3. Trường số thực
5
* Khái niệm số thực
Tập hợp các số hữu tỉ bao gồm các số thập phân hữu hạn và các số thập phân vô hạn
tuần hoàn.
Ngoài các số hữu tỉ, ta còn gặp các số thập phân vô hạn không tuần hoàn còn gọi là số
vô tỉ.
Tập hợp các số hữu tỉ và vô tỉ gọi là tập hợp số thực, kí hiệu .
* Các phép toán và tính chất
Trong tập số thực có các phép toán số học: cộng, trừ, nhân và chia có một số tính
chất cơ bản sau:
Với mọi , ,
a b c thì
Giao hoán: ; .
a b b a ab ba
   
Kết hợp: ( ) ( ); ( ) ( ).
a b c a b c ab c a bc
     
Phân phối: ( ) .
a b c ab ac
  
Quan hệ thứ tự: a b
 nếu a nhỏ hơn hoặc bằng b .
Tính trù mật của trong : ,
a b
  nếu a b
 thì tồn tại q sao cho .
a q b
 
Giá trị tuyệt đối
khi 0
khi 0
x x
x
x x


 
 

* Tiên đề cận trên đúng
- Tập con A gọi là bị chặn trên (chặn dưới) nếu tồn tại số ( )
M m sao cho
( )
a M a m
  với mọi .
a A

- Tập con A gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới. Nghĩa là tồn
tại các số ,
m M  sao cho [ ; ]
A m M
 . Hay tập A bị chặn nếu tồn tại số 0
  sao cho
a 
 với mọi .
a A

- Số M gọi là một cận trên của A. Số bé nhất trong tất cả các cận trên của A gọi là cận
trên đúng của A, kí hiệu sup A. Đặc biệt, nếu sup A A
 thì sup A là phần tử lớn nhất của
A, kí hiệu max A.
- Số m gọi là một cận dưới của A. Số lớn nhất trong tất cả các cận dưới của A gọi là
cận dưới đúng của A, kí hiệu inf .
A Đặc biệt, nếu inf A A
 thì inf A là phần tử nhỏ nhất
của A, kí hiệu min A.
6
Tiên đề cận trên đúng: Mọi tập hợp A không rỗng, bị chặn trên đều có cận trên
đúng thuộc . Suy ra mọi tập hợp A không rỗng, bị chặn dưới đều có cận dưới đúng
thuộc .
0.4. Trường số phức
* Khái niệm số phức
Số phức là một số có dạng z a bi
  . Trong đó ,
a b là các số thực; i là một kí hiệu
thoả 2
1
i   mà ta gọi là đơn vị ảo. Hơn nữa, a gọi là phần thực của z , kí hiệu Rez ; b
gọi là phần ảo của z , kí hiệu Imz .
Môđun của số phức z , kí hiệu z xác định bởi 2 2
z a b
  .
Hai số phức ,
z a bi w c di
    ( , , , )
a b c d  được gọi là bằng nhau nếu và chỉ nếu
,
a c b d
  .
Tập hợp các số phức được kí hiệu là .
* Các phép toán trên trường số phức
Cho hai số phức ,
z a bi w c di
    ( , , , )
a b c d  .
- Phép cộng trừ:
( ) ( )
( ) ( )
z w a c b d i
z w a c b d i
    
    
- Phép nhân:
. ( )( ) ( ) ( )
z w a bi c di ac bd ad bc i
      
- Phép chia:
2 2 2 2 2 2
( )( )
z a bi a bi c di ac bd bc ad
i
w c di c d c d c d
    
   
   
* Dạng lượng giác của số phức
Cho số phức z a bi
  ( , )
a b với môđun r z
 .
Argument của z , kí hiệu Arg z là tập hợp các góc  thoả
cos
(*)
sin
a
r
b
r







 


Nếu  là một nghiệm của (*) thì Arg 2 , .
z k k
 
  
Argument chính của ,
z kí hiệu arg z là một Argument của z thoả 0 arg 2 .
z 
 
7
Nếu z a bi
  thì
2 2
2 2 2 2
(cos sin )(**)
a b
z a b i r i
a b a b
 
 
    
 
 
 
Trong đó , Arg .
r z z

 
Ví dụ 0.10. Cho số phức 1 3
z i
  . Tìm môđun, Arg , arg
z z và dạng lượng giác của
z.
Ta có 2 2
1 ( 3) 2
z     và
1
cos
2
(*)
3
sin
2







  


.
Một nghiệm của (*) là
3

   suy ra Arg 2 ,
3
z k k


    và
5
arg .
3
z


Dạng lượng giác: 2 cos 2 sin 2 , .
3 3
z k i k k
 
 
 
   
      
   
 
   
 
* Công thức Moivre
Giả sử (cos sin ), '(cos ' sin ).
z r i w r i
   
    Khi đó ta có
(cos sin )
n n
z r n i n
 
 
 
. . ' cos( ') isin( ')
z w r r    
   
Ví dụ 0.11. Tính 2020
(1 3i)
 .
Ta có 1 3 2 cos 2 sin 2 , .
3 3
i k i k k
 
 
 
   
       
   
 
   
 
Suy ra
2020 2020
2020 2019 2019
2020 2020
(1 3) 2 cos 2 sin 2 ,
3 3
1 3
2 2 2 3.
2 2
k i k k
i i
 
 
 
   
       
   
 
   
 
 

    
 
 
* Khai căn số phức
Cho z là số phức. Số phức w gọi là một căn bậc n của z nếu như n
w z
 . Khai căn
bậc n của z tức là đi tìm tất cả các căn bậc n của z .
Cho  
cos( 2 ) sin( 2 )
z r k i k
   
     . Giả sử  
cos sin
w s i
 
  là căn bậc n
của .
z Khi đó
8
   
cosn sin n cos( 2 ) sin( 2 )
2
2
n n
n
n
w z s i r k i k
s r
s r
k
n k
n n
     
 
   
       
 
  
 
 
   
 

Vậy tập các căn bậc n của z là
2 2
cos sin , 0,1,..., 1 (*)
n n
k
k k
z w r i k n
n n
   
 
 
 
    
 
 
 
 
Căn bậc n của z là n số phức khác nhau tính bằng công thức (*).
Ví dụ 0.12. Tìm tất cả căn bậc n của 1.
Ta có 1 1 0. 1(cos 2 sin ), .
i k i k
 
     Căn bậc n của 1 là
2 2
1 cos sin , 0,1,..., 1 .
n
k
k k
i k n
n n
 

 
    
 
 
* Giải phương trình
Phương trình bậc 2: 2
0
ax bx c
   luôn có hai nghiệm. Phương trình bậc n trong tập
số phức luôn có n nghiệm.
Ví dụ 0.13. Giải phương trình 2
4 7 0
x x
   .
Ta có
2
1
2
12 12
4 2 3
2 3
2
4 2 3
2 3 .
2
i
i
x i
i
x i
   
 
   
 
   
9
CHƯƠNG 1: MA TRẬN VÀ ĐỊNH THỨC
1.1. Khái niệm cơ bản về ma trận
1.1.1. Ma trận
Ma trận là một bảng số xếp theo dòng và theo cột. Một ma trận có m dòng và n cột
được gọi là ma trận cấp m n
 . Ma trận cấp m n
 có dạng tổng quát như sau
11 12 13 1
21 22 23 2
1 2 3
n
n
m m m mn
a a a a
a a a a
A
a a a a
 
 
 

 
 
 
trong đó ( 1, ; 1, )
ij
a i m j n
   . Số ij
a nằm trên dòng i và cột j của ma trận A gọi là phần
tử của ma trận A. Phần tử nằm trên dòng i và cột j còn được kí hiệu là ( )ij
A .
Để viết ngắn gọn ma trận A, ta dùng kí hiệu ( )
ij m n
A a 
 .
Tập hợp các ma trận cấp m n
 với ij
a  được kí hiệu  
m n
M  .
Ví dụ 1.1.
2 0 1
4 8 9
A

 
  
 
là ma trận cấp 2 3
 , có 13 22
1; 8
a a
   .
1 2 3
4 6 3
5 3 7
B

 
 
  
 
 
là ma trận cấp 3 3
 , có 12 21 32
2, 4, 3
b b b
    .
1.1.2. Các dạng ma trận
* Ma trận không
Cho ma trận A cấp m n
 . A được gọi là ma trận không nếu tất các phần tử ma trận
đều bằng 0,   0, , .
ij
A i j
  Kí hiệu 0m n
 .
* Ma trận dòng, ma trận cột
- Ma trận cấp 1
m gọi là ma trận cột (ma trận có 1 cột).
- Ma trận cấp 1 n
 gọi là ma trận dòng (ma trận có 1 dòng).
Ví dụ 1.2.
 
4 1 2 5
C   là ma trận dòng.
10
2
4
1
D
 
 
  
 

 
là ma trận cột.
* Ma trận chuyển vị
Ma trận chuyển vị của A là ma trận thu được bằng cách đổi dòng thành cột tương ứng
của ma trận A. Ma trận chuyển vị của A được kí hiệu là T
A . Nếu A là ma trận cấp m n
 thì
T
A là ma trận cấp n m
 .
Ví dụ 1.3.
1 1
1 3 5
3 2
1 2 7
5 7
T
A A

 
   
  
   

   
 
.
Chú ý:  
T
T
A A
 .
* Ma trận vuông
Ma trận có số dòng và số cột bằng n được gọi là ma trận vuông cấp n. Kí hiệu
 
ij n n
A a

 hay  
ij n
a .
Tập hợp tất cả các ma trận vuông cấp n được kí hiệu  
Mn .
Các phần tử có dạng ii
a được gọi là phần tử chéo của ma trận. Đường thẳng chứa các
phần tử chéo gọi là đường chéo chính của A.
Ví dụ 1.4.
3 2 1
2 1 6
1 3 2
A

 
 
  
 
 
là ma trận vuông cấp 3. Các phần tử 3, 1, 2 là phần tử
chéo của A.
* Ma trận tam giác
Cho A là ma trận vuông cấp n.
- Ma trận A là ma trận tam giác trên nếu tất cả phần tử nằm bên dưới đường chéo
chính đều bằng 0, tức là 0, ; 1,...,n; 1,..., .
ij
a i j i j n
    
- Ma trận A là ma trận tam giác dưới nếu tất cả các phần tử nằm bên trên đường chéo
chính đều bằng 0, tức là 0, ; 1,...,n; 1,..., .
ij
a i j i j n
    
Ví dụ 1.5.
11
3 2 1
0 1 6
0 0 3
A

 
 
  
 
 
là ma trận tam giác trên.
2 0 0 0
8 0 0 0
2 4 1 0
1 2 4 1
B
 
 
 

 
 

 
là ma trận tam giác dưới.
* Ma trận chéo
Ma trận vuông A cấp n được gọi là ma trận chéo nếu các phần tử nằm ngoài đường
chéo chính bằng 0, tức là 0,
ij
a i j
   .
Ví dụ 1.6.
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
A
 
 

 

 
 

 
là ma trận chéo.
* Ma trận đơn vị
Ma trận đơn vị là ma trận chéo mà các phần tử trên đường chéo chính bằng 1. Kí hiệu
I hay n
I (nếu là ma trân vuông cấp n).
Ví dụ 1.7. 3
1 0 0
0 1 0
0 0 1
I
 
 
  
 
 
là ma trận đơn vị cấp 3.
1.1.3. Các phép biển đổi sơ cấp trên ma trận
Ba phép biến đổi sau đây gọi là ba phép biến đổi sơ cấp trên dòng của ma trận
- Nhân một dòng với một số 0
 
i i
d d



- Cộng một dòng bởi một dòng khác đã được được nhân với 1 số 
i i j
d d d


 
- Đổi chỗ hai dòng cho nhau
i j
d d


Tương tự ta có ba phép biến đổi sơ cấp trên các cột của ma trận.
12
Ví dụ.
2 2 1
3 3 1 3 3 2
5 2
1 2 8 1 2 4 1 2 4
1 1 3 0 3 1 0 3 1
5 4 7 0 6 13 0 0 11
d d d
d d d d d d
 
   
     
     
 
     
     
     
  
     
1.2. Phép toán cơ bản trên ma trận
1.2.1. Phép cộng hai ma trận
Cho hai ma trận A và B cùng cấp m n
 . Tổng hai ma trận, kí hiệu A+B là ma trận cấp
m n
 xác định bởi      
ij ij ij
A B A B
   với mọi , .
i j
Ví dụ 1.8.
1 2 3 7 8 9 1 7 2 8 3 9 8 10 12
4 5 6 10 11 12 4 10 5 11 6 12 14 16 18
  
       
  
       
  
       
.
Ví dụ 1.9. Cho
2 1
1 3
5 4
A

 
 
  
 
 
và
1
5 4
2
x
B
y
 
 
  
 
 
.
Ta có
2 1 1 2 0
1 3 5 4 6 7
5 4 2 5 6
x x
A B
y y
 
     
     
   
     
     

     
.
Chú ý: Hai ma trận chỉ cộng được với nhau khi chúng có cùng cấp.
1.2.2. Phép nhân vô hướng của ma trận với một số thực
Tích của ma trận A cấp m n
 với số thực  , kí hiệu A
 , là ma trận cấp m n
 xác
định bởi    
ij ij
A A
 
 với mọi i,j.
Ví dụ 1.10.
3 1 4 6 2 8
2
2 1 5 4 2 10
 
   

   
   
.
Chú ý: Khi 1
   , ta sẽ viết A
 thay cho ( 1)A
 và gọi là ma trận đối của A.
Ta định nghĩa ( )
A B A B
    là phép trừ hai ma trận.
1.2.3. Tích của hai ma trận
Cho hai ma trận    
,
ij ij
m p p n
A a B b
 
  . Ta gọi tích của hai ma trận A và B, kí hiệu
.
A B, là ma trận cấp m n
 được xác định như sau
  1 1 2 2
1
...
p
i j i j ip pj ik kj
ij
k
AB a b a b a b a b

      .
13
Ví dụ 1.11.
1 3
1 2 1 1.1 2.2 ( 1).3 1.3 2.1 ( 1)( 1) 2 6
. 2 1 .
3 1 2 3.1 1.2 2.3 3.3 1.1 2.( 1) 11 8
3 1
 
       
     
   
     
      
     
 

 
Chú ý:
- Để tính tích hai ma trận A và B thì số cột của A phải bằng số dòng của B.
- Phần tử ( . )ij
A B bằng tổng các tích từng phần tử trên dòng i của A với phần tử
tương ứng ở cột j của B.
Với mỗi ma trận vuông A và số tự nhiên 1
n  , ta định nghĩa:
0
A I
 , 1
.
n n
A A A


Ta gọi n
A là luỹ thừa bậc n của A.
Ví dụ 1.12. Cho
1 1
0 1
A

 
  
 
. Tính 2 3
, .
A A
Ta có
2 1 1 1 1 1 2
0 1 0 1 0 1
A
  
    
 
    
    
.
3 2 1 2 1 1 1 3
.
0 1 0 1 0 1
A A A
  
    
  
    
    
.
1.2.4. Tính chất
Giả sử các phép toán dưới đây đều thực hiện được. Khi đó ta có các tính chất sau đây:
i. A B B A
  
ii.    
A B C A B C
    
iii. 0
A A
 
iv.   0
A A
  
v.    
A B A B
   
   
vi.    
,
A A A
     
   
vii.      
,
A A
    
 
viii. 1. ;
A A AI IA A
   .
1.3. Định thức
1.3.1. Hoán vị
14
* Hoán vị
Xét tập n số tự nhiên đầu tiên  
1,2, ,n . Mỗi các sắp xếp có thứ tự được gọi là một
hoán vị từ n số đã cho. Số các hoán vị khác nhau từ n phần tử đã cho là ! 1.2.3
n n
 .
Mỗi hoán vị của tập  
1,2, ,n được kí hiệu là ( (1), (2), , ( ))
n
   
 với
 
( ) 1,2,...,
i n
  và ( ) ( )
i j
 
 .
Ví dụ 1.13. Tập  
1,2,3 có 3! 6
 hoán vị là
1 2 3 4 5 6
(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
     
     
* Nghịch thế
Trong một hoán vị, mỗi cặp số liên tiếp có số lớn đứng trước số bé gọi là một nghịch
thế của hoán vị. Số nghịch thế của hoán vị  được kí hiệu là ( )
N  .
Ví dụ 1.14. Với các hoán vị của 3 phần tử trên, ta có
1 2 3
4 5 6
( ) 0, ( ) ( ) 1,
( ) ( ) 2, ( ) 3.
N N N
N N N
  
  
  
  
1.3.2. Định thức của ma trận vuông
* Định thức cấp n
Cho ma trận vuông A cấp n
11 12 1
21 22 2
1 2
n
n
n n nn
a a a
a a a
A
a a a
 
 
 

 
 
 
Định thức của ma trận A được kí hiệu là det A hoặc A xác định như sau
11 12 1
21 22 2 ( )
1 (1) 2 (2) (n)
1 2
det ( 1)
n
n N
n
n n nn
a a a
a a a
A a a a
a a a

  
  

Trong đó tổng lấy theo tất cả các hoán vị ( (1), (2), , ( ))
n
   
 .
* Định thức cấp 1
Cho ma trận vuông cấp 1,  
11 .
A a
 Khi đó 11
det .
A a

* Định thức cấp 2
Cho ma trận vuông cấp 2,
11 12
21 22
a a
A
a a
 
  
 
. Khi đó
15
11 12
11 22 12 21
21 22
det
a a
A a a a a
a a
   .
* Định thức cấp 3
Cho ma trận vuông cấp 3,
11 12 13
21 22 23
31 32 33
a a a
A a a a
a a a
 
 
  
 
 
. Khi đó
   
11 12 13
21 22 23
31 32 33
11 22 33 12 23 31 13 21 32 11 23 32 12 21 33 13 22 31
det
.
a a a
A a a a
a a a
a a a a a a a a a a a a a a a a a a

     
Để nhớ công thức trên người ta thường sử dụng quy tắc Sarrus như sau:
Ví dụ 1.15.
   
2 4 8
1 1 3 2.( 1).7 4.3.5 1.8.4 8.( 1).5 2.3.4 1.4.7 66
5 4 7
          .
1.3.3. Tính chất của định thức
Tính chất 1: Cho A là ma trận vuông, ta có    
det det
T
A A
 .
Chú ý: Từ tính chất chuyển vị, mọi tính chất của định thức đúng cho dòng thì cũng
đúng cho cột và ngược lại. Do đó, trong các tính chất của định thức, chỉ phát biểu cho các
dòng, các tính chất đó vẫn giữ nguyên giá trị khi thay chữ “dòng” bằng chữ “cột”.
Tính chất 2: Đổi chỗ hai dòng cho nhau và giữ nguyên vị trí các dòng còn lại thì định
thức đổi dấu.
Ví dụ 1.16. Ta có
3 6 7 1 5 2
1 5 2 3 6 7
4 8 10 4 8 10

  
 
(đổi chỗ dòng 1 và dòng 2 cho nhau).
Giữ nguyên dấu Đổi dấu
16
Tính chất 3: Thừa số chung của một dòng có thể đưa ra ngoài dấu định thức.
11 12 1 11 12 1
21 22 2 21 22 2
1 2 1 2
... ...
... ...
... ... ... ... ... ... ... ...
... ...
n n
n n
n n nn n n nn
a a a a a a
ka ka ka a a a
k
a a a a a a

Chú ý: Cho A là ma trận vuông cấp n và số thực  , ta có    
det det
n
A A
 
 .
Tính chất 4: Cho A là ma trận vuông cấp n. Giả sử dòng thứ i của ma trận A có thể
biểu diễn ' "
ij ij ij
a a a
  với 1,2,...,n.
j  Khi đó ta có:
' '' ' '' ' '' ' ' ' '' '' ''
1 1 2 2 1 2 1 2
... ... ... ... ... ... ... ... ... ... ... ...
det ... ... ... .
... ... ... ... ... ... ... ... ... ... ... ...
i i i i i n i n i i i n i i i n
A a a a a a a a a a a a a
     
Ví dụ 1.17.
3 6 7 1 ( 2) 5 1 7 0 1 5 7 2 1 0
1 5 2 1 5 2 1 5 2 1 5 2
4 8 10 4 8 10 4 8 10 4 8 10
       
  
   
.
Tính chất 5: Định thức của ma trận A bằng 0 nếu thoả một trong các điều kiện sau:
- Có một dòng mà tất cả các phần tử của dòng đó đều bằng 0.
- Có hai dòng bằng nhau hoặc tỉ lệ với nhau.
Tính chất 6: Nếu ta nhân một dòng của định thức với số  bất kì rồi cộng vào dòng
khác thì định thức không thay đổi.
Ví dụ 1.18. 2 1
3 6 7 1 16 11
1 5 2 2 1 5 2
4 8 10 4 8 10
d d
 

 
.
Tính chất 7: Định thức của ma trận tam giác, ma trận chéo bằng tích các phần tử nằm
trên đường chéo chính.
Tính chất 8: Nếu A, B là các ma trận vuông cấp n thì det( . ) det .det
A B A B
 .
1.3.4. Một số phương pháp tính định thức
* Phương pháp khai triển định thức theo dòng hoặc cột
Phần bù đại số
Cho A là ma trận vuông cấp n
17
11 12 1
21 22 2
1 2
n
n
n n nn
a a a
a a a
A
a a a
 
 
 

 
 
 
.
Gọi Mij
là ma trận nhận được từ A bằng cách bỏ đi dòng i và cột j. Khi đó số
( 1) det M
i j
ij

 gọi là phần bù đại số của phần tử ij
a , kí hiệu là Aij
.
Định lý Laplace (Công thức khai triển định thức)
Cho A là ma trận vuông cấp n. Khi đó
- 1 1 2 2
1
det ... , 1,
n
ij ij i i i i in in
j
A a A a A a A a A i n

     
 ( khai triển theo dòng i).
- 1 1 2 2
1
det ... , 1,
n
ij ij j j j j nj nj
i
A a A a A a A a A j n

     
 (khai triển theo cột j).
Ví dụ 1.19. Tính định thức của ma trận
2 1 3
1 3 4
2 1 2
A

 
 
  
 

 
.
Khai triển định thức theo dòng 1
11 12 13
2 1 3
det 1 3 4 2 1 3
2 1 2
A A A A

    

.
Trong đó
1 1 1 2
11 12
1 3
13
3 4 1 4
( 1) 10, ( 1) 6,
1 2 2 2
1 3
( 1) 7.
2 1
A A
A
 

     

   

Suy ra det 2.10 1.6 3.( 7) 35.
A       
Ví dụ 1.20. Tính định thức của ma trận
1 3 2 1
2 0 1 3
1 0 2 1
4 0 3 1
A

 
 
 

 

 
 
.
Khai triển định thức theo cột thứ 2:
18
3
12
1 3 2 1
2 1 3
2 0 1 3
det 3 3( 1) 1 2 1 3.( 10) 30.
1 0 2 1
4 3 1
4 0 3 1
A A

        

* Phương pháp biến đổi định thức về dạng tam giác
Các phép biển đổi sơ cấp trên ma trận
Ba phép biến đổi sau đây gọi là ba phép biến đổi sơ cấp trên dòng của ma trận
- Nhân một dòng với một số 0
 
i i
d d



- Cộng một dòng bởi một dòng khác đã được được nhân với 1 số 
i i j
d d d


 
- Đổi chỗ hai dòng cho nhau
i j
d d


Tương tự ta có ba phép biến đổi sơ cấp trên các cột của ma trận.
Phương pháp biến đổi định thức về dạng tam giác
Sử dụng các phép biến đổi tương đương trên dòng (cột) của ma trận và sử dụng các
tính chất của định thức để biến đổi ma trận của định thức về dạng tam giác. Định thức sau
cùng sẽ bằng tích các phần tử trên đường chéo chính.
Ví dụ 1.21. Tính
2 4 8
1 1 3 .
5 4 7
M  
Ta có
2 2 1
3 3 1
3 3 2
2 4 8 1 2 8 1 2 4
1 1 3 2 1 1 3 2 0 3 1
5
5 4 7 5 4 7 0 6 13
1 2 4
2 2 0 3 1 2.1.( 3).( 11) 66.
0 0 11
d d d
M
d d d
d d d
 
     
 
 
       

1.3.5. Định thức của ma trận tích
Nếu A, B là các ma trận vuông cấp n thì det( . ) det .det
A B A B
 . Đặc biệt, với số tự
nhiên k ta có  
det( ) det
k
k
A A
 .
19
Ví dụ 1.22. Tính định thức của ma trận
1 1 2 4 0 0
0 1 4 2 2 0
0 0 2 1 3 1
A
  
  
   
  
  
.
Ta có
1 1 2 4 0 0
det 0 1 4 2 2 0 2.8 16
0 0 2 1 3 1
A    .
Ví dụ. Tính định thức
1 1 1 2 1
2 1 2 2 2
1 2
1 1 ... 1
1 1 ... 1
... ... ... ...
1 1 ... 1
n
n
n n n n
x y x y x y
x y x y x y
A
x y x y x y
  
 
 
  
 

 
 
  
 
với 2
n  .
Ta có
1
1 2
2
1 1 ... 1
1 0 ... 0
...
1 0 ... 0
0 0 ... 0
... ... ... ... ...
... ... ... ...
1 0 ... 0
0 0 ... 0
n
n
x
y y y
x
A
x
 
  
  
  

  
  
  
 
Do đó
1
1 2
2
2 1 2 1
1 1 ... 1
1 0 ... 0
...
1 0 ... 0 0 khi 2
det 0 0 ... 0
... ... ... ... ... ( )(y ) khi 2
... ... ... ...
1 0 ... 0
0 0 ... 0
n
n
x
y y y
x n
A
x x y n
x


  
  

1.4. Hạng của ma trận
1.4.1. Định nghĩa
* Định thức con
Cho A là ma trận cấp m n
 . Chọn các phần tử nằm trên k dòng và k cột của A ta được
một trận vuông cấp k. Định thức của ma trận vuông cấp k trên ta gọi là định thức con cấp k
của A.
Ví dụ 1.23. Cho ma trận
1 0 1 2
0 1 2 1
1 1 3 3
A

 
 
 
 
 

 
.
20
Chọn các phần tử trên dòng 1 và cột 2 ta được định thức 0 là một định thức con cấp 1
của ma trận A.
Chọn các phần tử nằm trên dòng 1, dòng 3, cột 1 và cột 2 ta được định thức
1 2
1 3


là
một định thức con cấp 2 của ma trận A.
Chọn các phần tử nằm trên dòng 1, dòng 2, dòng 3, cột 1, cột 2 và cột 4 ta được định
thức
1 0 2
0 1 1
1 1 3



là một định thức con cấp 3 của ma trận A.
* Hạng của ma trận
Cho A là ma trận cấp m n
 khác 0. Hạng của ma trận A, kí hiệu rank( )
A hay r( )
A
chính là cấp cao nhất trong các định thức con khác 0 của ma trận A.
Vậy hạng của A là một số nguyên r thoả
Tồn tại ít nhất một định thức con cấp r khác 0 của A.
Mọi định thức con của A cấp lớn hơn r (nếu có) thì phải bằng 0.
Quy ước: Nếu 0
A  thì r( ) 0
A  .
Ví dụ 1.24. Tìm hạng của ma trận
1 2 3 0
3 2 1 0
0 0 5 0
4 4 4 0
A
 
 
 

 
 
 
.
Ma trận A có duy nhất một định thức con cấp 4 và nó bằng 0. Tồn tại định thức con
cấp 3 của A là
1 2 3
3 2 1 20 0.
0 0 5
  
Vậy r( ) 3
A  .
1.4.2. Một số tính chất của hạng ma trận
Tính chất 1: 0 r( ) min{m,n}
A
  .
Tính chất 2: Hạng của ma trận không đổi qua các phép biến đổi sau:
- Phép chuyển vị ma trận. Tức là r( ) r( )
T
A A
 .
- Các phép biển đổi sơ cấp dòng hoặc cột.
21
- Bỏ đi các dòng hoặc các cột có tất cả phần tử bằng 0.
- Bỏ đi các dòng hoặc các cột là tổ hợp tuyến tính của các dòng hay các cột khác.
Tính chất 3: Nếu A là ma trận vuông cấp n thì
- r( ) det 0
A n A
   . Khi đó ta gọi A là ma trận không suy biến.
- r( ) det 0
A n A
   . Khi đó ta gọi A là ma trận suy biến.
Tính chất 4: Nếu A, B là các ma trận cùng cấp thì r( ) r( ) r( )
A B A B
   .
Tính chất 5: Cho A, B là các ma trận sao cho ta có thể thực hiện tích AB. Khi đó
r( ) min{r( ),r( )}
AB A B
 .
1.4.3. Một số phương pháp tính hạng ma trận
* Ma trận bậc thang
Ma trận bậc thang là ma trận có dạng:
+ Các dòng bằng không (nếu có) thì nằm dưới cùng.
+ Phần tử khác không đầu tiên ở dòng dưới luôn nằm bên phải cột các phần tử khác
không đầu tiên của dòng trên.
Phần tử khác không đầu tiên này gọi là các phần tử đánh dấu của ma trận
Ví dụ 1.25.
2 1 4
0 2 1
0 0 0
A

 
 
  
 
 
là ma trận bậc thang. Các số 11 22
2, 2
a a
  là các phần tử đánh dấu.
1 2 5
0 2 1
0 1 0
B
 
 
  
 

 
không là ma trận bậc thang. Các số 11 22 32
1, 2, 1
b b b
    là các
phần tử đánh dấu.
* Phương pháp tìm hạng của ma trận bằng các phép biến đổi sơ cấp
Các phép biến đổi sơ cấp trên dòng (hoặc theo cột) không làm thay đổi hạng của ma
trận. Do đó muốn tìm hạng của ma trận A ta dùng các phép biến đổi sơ cấp để đưa ma trận
A về dạng ma trận bậc thang A’. Khi đó hạng của A bằng hạng của A’ và bằng số dòng
khác 0 của A’.
Ví dụ 1.26. Tìm hạng của ma trận
1 1 3 0
2 1 4 3
0 1 2 3
A

 
 
  
 
 
 
.
22
Ta có 3 3 2
2 2 1
2
1 1 3 0 1 1 3 0 1 1 3 0
2 1 4 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 0 0 0
d d d
d d d
A  
 
  
     
     
    

     
     
     
.
Vậy r( ) 2
A  .
Ví dụ 1.27. Tìm hạng của ma trận
1 1 1 2 1
2 3 1 4 5
3 2 3 7 4
1 1 2 3 1
B

 
 

 

 

 
 
 
.
Ta có
2 2 1
3 3 1
4 4 1
3 3 2
4 4 3
4 4 2
2
3
2
1 1 1 2 1 1 1 1 2 1
2 3 1 4 5 0 1 1 0 3
3 2 3 7 4 0 1 0 1 1
1 1 2 3 1 0 2 1 1 2
1 1 1 2 1 1 1 1 2 1
0 1 1 0 3 0 1 1 0 3
0 0 1 1 4 0 0 1 1 4
0 0 1 1 4 0 0 0 0 0
d d d
d d d
d d d
d d d
d d d
d d d
 
 
 
 
 
 
 
   
   

   

   
 
   
  
   
 
  
  
  
 

  
 
  
  




 

Vậy r( ) 3.
B 
* Phương pháp định thức bao quanh
Định thức bao quanh
Định thức con D cấp r 1
 của ma trận A là định thức bao quanh định thức con D
(cấp r ) của A khi và chỉ khi D được thành lập bằng cách bổ sung thêm một dòng và một
cột của A ngoài r dòng và r cột đã chọn để lập định mức D .
Định lý: Nếu ma trận A có định thức con 0
D  cấp r mà mọi định thức con cấp r+1
bao quanh nó (nếu có) đều bằng 0 thì hạng của ma trận A bằng r.
Do đó ta có thể tìm hạng của ma trận theo phương pháp lặp sau:
- Tìm một định thức con D khác 0 cấp s của ma trận A.
- Tính các định thức con cấp 1
s  bao quanh nó (nếu có)
+ Nếu tất cả các định thức con cấp 1
s  bao quanh D đều bằng 0 (hoặc ma
trận không có định thức con cấp 1)
s  thì hạng của ma trận bằng s.
+ Nếu tồn tại định thức con D cấp 1
s  bao quanh D khác không thì ta lặp
các bước trên. Sau một số bước hữu hạn ta sẽ tìm được hạng của ma trận.
23
Ví dụ 1.28. Tìm hạng của ma trận
1 2 3 4
2 0 4 5
3 0 0 6
A
 
 
  
 
 
.
Ta có 1212
1 2
4 0
2 0
D     . ( 1212
D là định thức con lấy từ dòng 1, dòng 2, cột 1 và
cột 2 của ma trận A).
Trong số các định thức bao quanh nó có
123123
1 2 3
2 0 4 24 0.
3 0 0
D   
Do ma trận A không có định thức bao quanh định thức 123123
D , do đó hạng của ma trận
A bằng 3.
1.5. Ma trận nghịch đảo
1.5.1. Định nghĩa
Cho A là ma trận vuông cấp n, A được gọi là ma trận khả nghịch nếu tồn tại ma trận
vuông B cấp n sao cho n
AB BA I
  , với n
I là ma trận đơn vị. Khi đó, B được gọi là ma
trận nghịch đảo của A, kí hiệu 1
A
.
Ví dụ 1.29. Cho ma trận
3 4 6
0 1 1
2 3 4
A

 
 
  
 
 
 
và
1 2 2
2 0 3
2 1 3
B
 
 
  
 
 
 
. Ta có thể kiểm tra
được 3
AB BA I
  . Do đó ma trận A khả nghịch và 1
B A
 .
1.5.2. Điều kiện tồn tại và duy nhất
Định lý: Cho A là ma trận vuông cấp n, ma trận A khả nghịch khi và chỉ khi det 0
A 
(ma trận A không suy biến). Hơn nữa, ma trận nghịch đảo của A là duy nhất.
Ví dụ 1.30. Tìm m để ma trận
3
0 1
m m
A
m
 
  

 
khả nghịch.
Ta có det ( 1)
A m m
  . A khả nghịch khi và chỉ khi
0
( 1) 0 .
1
m
m m
m


   


1.5.3. Một số phương pháp tìm ma trận nghịch đảo
* Phương pháp tìm ma trận nghịch đảo bằng cách sử dụng định thức
24
Nếu ma trận trận A khả nghịch thì 1 1
det
A
A P
A

 .
Trong đó
11 21 1
12 22 2
1 2
...
...
...
n
n
A
n n nn
A A A
A A A
P
A A A
 
 
 

 
 
 
là ma trận phụ hợp của A.
Ví dụ 1.31. Tìm ma trận nghịch đảo của
1 2 1
0 1 1
1 2 3
A
 
 
  
 
 
.
Ta có det 2
A  . Do đó A khả nghịch.
Tìm ma trận phụ hợp A
P của A.
1 1 1 2 1 3
11 12 13
1 1 0 1 0 1
( 1) 1, ( 1) , ( 1) 1,
2 3 1 3 1 2
A A A
  
        
2 1 2 2 2 3
21 22 23
2 1 1 1 1 2
( 1) 4, ( 1) 2, ( 1) 0,
2 3 1 3 1 2
A A A
  
         
3 1 3 2 3 3
31 32 33
2 1 1 1 1 2
( 1) 1, ( 1) 1, ( 1) 1.
1 1 0 1 0 1
A A A
  
         
Suy ra,
1 4 1
1 2 1
1 0 1
A
P

 
 
 
 
 

 
. Do đó
1
1 4 1 1/ 2 2 1/ 2
1
1 2 1 1/ 2 1 1/ 2 .
2
1 0 1 1/ 2 0 1/ 2
A
 
   
   
   
   
   
 
   
* Phương pháp tìm ma trận nghịch đảo dựa vào phép biến đổi sơ cấp
Để tìm ma trận nghịch đảo của ma trận vuông A cấp n ta lập ma trận có cấp 2
n n
 sau
đây:
 
11 12 1
21 22 2
1 2
1 0 0
0 1 0
|
0 0 1
n
n
n
n n nn
a a a
a a a
A I
a a a
 
 
 

 
 
 
 
25
Sau đó ta sử dụng các phép biến đổi sơ cấp trên dòng để đưa ma trận  
| n
A I về dạng
 
|
n
I B . Khi đó, ma trận B chính là ma trận nghịch đảo của ma trận A.
Chú ý: Nếu trong quá trình biến đổi nếu khối bên trái xuất hiện một dòng với tất cả
phần tử bằng 0 thì ma trận không khả nghịch.
Ví dụ 1.32. Tìm ma trận nghịch đảo (nếu có) của
1 1 1
1 2 2
1 2 3
A
 
 
  
 
 
.
Lập ma trận  
3
|
A I . Ta có
 
3
1 1 1 1 0 0
| 1 2 2 0 1 0
1 2 3 0 0 1
A I
 
 
  
 
 
Dùng các phép biến đổi sơ cấp trên dòng để đưa  
3
|
A I và dạng  
3 |
I B
2 2 1
3 3 1
1 1 1 1 0 0 1 1 1 1 0 0
1 2 2 0 1 0 0 1 1 1 1 0
1 2 3 0 0 1 0 1 2 1 0 1
d d d
d d d
 
 
   
   

 
   
   

   
1 1 2
3 3 2 2 2 3
1 0 0 2 1 0 1 0 0 2 1 0
0 1 1 1 1 0 0 1 0 1 2 1
0 0 1 0 1 1 0 0 1 0 1 1
d d d
d d d d d d
 
   
   
 
   

  
  
   
   
 
   
Do đó A khả nghịch và 1
2 1 0
1 2 1
0 1 1
A

 
 
  
 
 

 
.
* Dùng ma trận nghịch đảo giải phương trình ma trận
Xét phương trình ma trận AX B
 với A là ma trận vuông cấp n không suy biến. Khi
đó ta có
1 1 1
AX B A AX A B X A B
  
     .
Tương tự phương trình ma trận XA B
 cũng có nghiệm là 1
X BA
 .
Ví dụ 1.33. Giải phương trình AX B
 với
1 0 2 2
,
1 1 0 1
A B
   
 
   
   
.
Phương trình có nghiệm
1
1 1 0 2 2 1 0 2 2 2 2
1 1 0 1 1 1 0 1 2 1
X A B

         
   
        
  
        
.
26
27
BÀI TẬP CHƯƠNG 1
Bài 1. Cho các ma trận
1 3 1 2 2 5
1 2 , 3 7 , 0 3 .
3 4 5 4 4 2
A B C
     
     
   
     
     
     
a. Tìm các ma trận chuyển vị của A, B, C.
b. Tính 3 4
A B C
  .
Bài 2. Cho các ma trận
2 1 1
0 1 4
A

 
  

 
và
2 1 0
3 2 2
B

 
  

 
. Tính
a. 3 2
A B
 .4 3
b A B
 c. . , .
T T
A B B A
Bài 3. Tính các tích của các ma trận sau
a.
1 3 3 1 4 5
3 4 1 0 2 7
2 5 3 3 2 1

  
  

  
  

  
b.
7
5 0 2 3
3
4 1 5 3
2
3 1 1 2
1
 
  

  
  
 
  
 
 
Bài 4. Tính ( )
f A với 2
( ) 5 3
f x x x
   và
2 1 1
3 1 2
1 1 0
A
 
 
  
 

 
.
Bài 5. Tính n
A với n là số tự nhiên tuỳ ý và A là các ma trận sau
a.
2 1
3 2
A

 
  

 
b.
1
0 1
A

 
  
 
c.
1 1 1
0 1 1
0 0 1
A
 
 
  
 
 
Bài 6. Cho
1 0
0 1
0 0
a
A a
a
 
 
  
 
 
. Tìm 2020
A .
Bài 7. Tính các định thức sau
a.
0 1 1
1 0 1
1 1 0
b.
1 1 1
4 2 3
2 3 6
c.
1
1
1
a b c
b c a
c a b



d.
2 2
2 2
2 2
cos2 cos sin
cos2 cos sin
cos2 cos sin
  
  
  
28
e.
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
f.
2 1 0 2
3 2 1 0
1 0 1 3
1 2 1 3


g.
2 1 1
1 2 1
1 1 2
1 1 1
x
y
z
t
h.
0 1
0 1
1 0
1 0
a b
a b
a b
b a
Bài 8. Tính các định thức cấp n bằng cách đưa về dạng tam giác
a.
1 2 3
2 3 4
3 4 5
n
n
n
n n n n
b.
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3
Bài 9. Giải các phương trình
a.
1 2 1 1
1 1 1
0
3 1 1 1
0 2 0 2
x
x
 
 
 b.
2
1 1 1
1 1 1
0
0 1 1 1
0 2 0 2
x
x
 
 

c.
1
1 1 1
0
2 1
1 3
x x x
x
x x
x x
 d.
1 1 1
1 1 1
0
1 1 ( 1)
x
n x


 
Bài 10. Chứng minh các đẳng thức sau
a. 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
2
y z z x x y x y z
y z z x x y x y z
y z z x x y x y z
  
   
  
b.
3
3
3
1
1 ( )( )( )( )
1
a a
b b b a c b a b a b c
c c
     
Bài 11. Tìm hạng của các ma trận sau
a.
1 1 3
2 1 3
3 1 2

 
 

 
 
 
b.
1 10 8
2 3 5
3 7 3

 
 
 
 

 
c.
2 0 3 1
1 2 2 3
3 2 5 4
5 2 8 5

 
 

 
 
 
 

 
d.
2 1 3 2
4 2 5 1
2 1 1 8
 
 
 

 
 

 
29
e.
3 1 3 2 5
5 3 2 3 4
1 3 5 0 7
7 5 1 4 1

 
 

 
 

 

 
f.
2 1 1 1
1 3 1 1
1 1 4 1
1 1 1 5
1 2 3 4
1 1 1 1
 
 
 
 
 
 
 
 
 
 
Bài 12. Biện luận theo m hạng của các ma trận sau
1 2 1 4 2
2 1 1 1 1
1 7 4 11
A
m

 
 
 
 
 

 
, B=
1 1 2
2 3 1 2 4
4 5 1 4 2 7
2 2 2 4
m
m m
m m m
m
 
 
 
 
 
  
 
 
2 2 2
2 2 2
2 2 2
2 2 2
m
m
C
m
m
 
 

 

 
 
 
  
 
,
1 2 1 1 1
1 1 1 1
1 0 1 1
1 2 2 1 1
m
D
m
 
 
 
  
 

 
 
 
Bài 13. Tìm ma trận nghịch đảo (nếu có) của các ma trận sau
1 4 2 1 1 2
2 1 1 2
, , 3 6 5 , 0 1 2
3 3 3 6
2 2 3 0 0 1
A B C D

   
 
       
   
       
       
   
1 1 1 1 1 2 2 1
1 1 1 1 1 3 1 1
,
1 1 1 1 0 1 1 1
1 1 1 1 3 5 1 1
E F
 
   
   
  
   
 
   
 
   
  
   
Bài 14. Tìm m để các ma trận sau khả nghịch
a.
1 1 3
2 2 0
2 1 3
m
m
m

 
 

 
 
 
b. 1 1
1 1
m m m
m
m
 
 
 
 
 
Bài 15. Cho hai ma trận
1 2 3 7 3 2
2 5 6 , 1 2 7
3 5 12 8 9 3
A B

   
   
  
   
   
   
.
a. Tìm ma trận X thoả XA B
 .
b. Tìm ma trận X thoả AX B
 .
30
Bài 16. Cho
1 1 0 2 3 1
2 2 1 , 4 1 3
1 0 1 2 0 2
A B
   
   
 
   
   
   
. Tìm các ma trận X, Y sao cho
( )
( ) T T
A X Y B
X Y A B
 


 

31
CHƯƠNG 2: HỆ PHƯƠNG TRÌNH
TUYẾN TÍNH
2.1. Khái niệm cơ bản
2.1.1. Hệ phương trình tuyến tính tổng quát
Hệ phương trình tuyến tính (n ẩn, m phương trình) là hệ có dạng
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
n n
n n
m m mn n m
a x a x a x b
a x a x a x b
a x a x a x b
   

    



    

Trong đó , ( 1, , ; 1, , )
ij i
a b i m j n
    là các số thực cho trước và 1 2
, , , n
x x x gọi là
các ẩn số.
( 1, , ; 1, , )
ij
a i m j n
    gọi là các hệ số.
( 1, , )
i
b i m
  gọi là các hệ số tự do.
Ma trận
11 12 1
21 22 2
1 2
n
n
m m mn
a a a
a a a
A
a a a
 
 
 

 
 
 
gọi là ma trận hệ số của hệ (1).
Ma trận
1
2
m
b
b
B
b
 
 
 

 
 
 
gọi là ma trận hệ số tự do hay cột tự do của hệ (1).
Ma trận
11 12 1 1
21 22 2 2
1 2
n
n
m m mn m
a a a b
a a a b
A A B
a a a b
 
 
 
 
 
   
 
 
 
gọi là ma trận hệ số bổ sung hay ma
trận mở rộng của hệ (1).
32
Ma trận
1
2
n
x
x
X
x
 
 
 

 
 
 
gọi là ma trận ẩn số hay cột ẩn số.
Hệ (1) có thể viết dưới dạng ma trận AX B
 .
Hệ (1) gọi là hệ Cramer nếu nó có số phương trình bằng số ẩn (n=m) và ma trận hệ số
A không suy biến (det 0)
A  .
Hệ (1) gọi là hệ thuần nhất nếu cột tự do 0
i
b  với mọi 1,
i m
 .
Bộ n số 1 2
( , , , )
n
x x x gọi là nghiệm của hệ (1) nếu như khi ta thay chúng vào (1) ta
được các đẳng thức đúng.
Giải hệ phương trình tuyến tính tức là đi tìm nghiệm của hệ.
Hai hệ phương trình tuyến tính cùng số ẩn được gọi là tương đương nếu nghiệm của
chúng bằng nhau.
2.1.2. Điều kiện tồn tại nghiệm
Định lý Kronecker-Capelli: Hệ phương trình tuyến tính (1) có nghiệm khi và chỉ khi
( ) ( )
rank A rank A
 .
Hơn nữa giả sử  
( ) ( ) (0 min , ).
rank A rank A r r m n
    Khi đó
- Nếu r n
 (n là số ẩn) thì hệ (1) có nghiệm duy nhất.
- Nếu r n
 thì hệ (1) có vô số nghiệm phụ thuộc vào n r
 tham số.
Ví dụ 2.1. Các hệ phương trình sau có nghiệm hay không?
a.
1 2 3 4
1 2 3 4
1 2 3 4
1
2 2 2 2 1
3 3 5 3 3
x x x x
x x x x
x x x x
   


   

    

Ta tìm hạng của ma trận hệ số và ma trận hệ số mở rộng tương ứng.
Ta có
2 2 1
3 3 1
3 3 2
2
3
2
1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 0 0 4 0 1
3 3 5 3 3 0 0 8 0 0
1 1 1 1 1
0 0 4 0 1
0 0 0 0 2
d d d
d d d
d d d
A A B
 
 
 
   
 
   
 
   
     
   
   
 

 
 
 
 
 
33
Vậy    
2 3
r A r A
   nên hệ đã cho vô nghiệm.
b.
1 2 3 4
1 2 3 4
1 2 3 4
2 3 3 3 3
2 1
3 2 5 7 5
x x x x
x x x x
x x x x
   


   

    

Ta tìm hạng của ma trận hệ số và ma trận hệ số mở rộng tương ứng.
Ta có
1 2
3 3 1
3 3 2
2 2 1
3
2
2 3 3 3 3 1 1 1 2 1
1 1 1 2 1 2 3 3 3 3
3 2 5 7 5 3 2 5 7 5
1 1 1 2 1 1 1 1 2 1
0 1 1 1 1 0 1 1 11
0 1 2 3 2 0 0 3 2 3
d d
d d d
d d d
d d d
A A B 
 
 
 
   
 
   
 
   
 
     
   
 
   
   
 
   
   
  
   
   
  
   
Vì     3 4
r A r A
   nên hệ đã cho có vô số nghiệm phụ thuộc vào 1 tham số.
2.2. Phương pháp giải hệ Cramer
Xét hệ phương trình tuyến tính Cramer dạng ma trận AX B
 ( A là ma trận vuông,
det 0)
A  .
2.2.1. Phương pháp ma trận nghịch đảo
Hệ phương trình có nghiệm duy nhất 1
X A B

 .
Ví dụ 2.2. Giải hệ phương trình tuyến tính sau bằng phương pháp Cramer
1 2 3
1 2 3
1 2 3
2 12
2 3 3 4
3 2 5 8
x x x
x x x
x x x
  


  

    

Xác định các ma trận ,
A B
1 2 1 12
2 3 3 , 4
3 2 5 8
A B

   
   
  
   
   

   
Vì  
det 12 0
A    nên hệ có nghiệm duy nhất.
34
Tính 1
A
. Ta có 1
7 1
1
4 4
19 2 1
12 3 12
5 1 1
12 3 12
A
 

 
 
 
  
 
 
 

 
 
Suy ra 1
19
17
3
X A B


 
 
   
 
 
.
2.2.2. Phương pháp Cramer
Hệ Cramer n ẩn số có nghiệm duy nhất xác định bởi công thức
det
, 1,2, ,
det
i
i
A
x i n
A
 
trong đó i
A là ma trận nhận được từ ma trận A bằng cách thay đổi cột i bởi cột tự do
1
2
n
b
b
B
b
 
 
 

 
 
 
.
Ví dụ 2.3. Giải hệ phương trình tuyến tính
1 2 3
2 3
1 2 3
2 1
3 3
2 1
x x x
x x
x x x
  


 

    

Ta có
2 1 1 1
0 1 3 ; 3
2 1 1 1
A B

   
   
 
   
   

   
Tính các định thức
1
2 3
2 1 1 1 1 1
det 0 1 3 4;det 3 1 3 12
2 1 1 1 1 1
2 1 1 2 1 1
det 0 3 3 24; det 0 1 3 4
2 1 1 2 1 1
A A
A A
 
    


    
 
Nghiệm của hệ
35
3
1 2
1 2 3
det
det 12 det 24
3; 6; 1
det 4 det 4 det
A
A A
x x x
A A A

         
2.3. Phương pháp giải hệ tổng quát
2.3.1. Phương pháp định thức
Tìm hạng của A và A.
- Nếu ( ) ( )
rank A rank A
 thì hệ vô nghiệm.
- Nếu ( ) ( )
rank A rank A r
  . Khi đó tồn tại định thức con D cấp r của ma trận khác
không.
Ta bỏ đi tất cả các phương trình không dính đến (
r
D m r
 phương trình). Các ẩn ứng
với các cột có dính đến r
D giữ lại bên trái làm ẩn. Các ẩn ứng với cột không dính đến r
D
chuyển sang bên phải làm tham số. Khi đó ta có hệ Cramer.
Ví dụ 2.4. Giải hệ phương trình
1 2 3 4
1 2 3 4
1 2 3 4
2 3 4
1
2 3
3 2 2 2 4
1
x x x x
x x x x
x x x x
x x x
   

    


   

   

Xác định ,
A A
1 1 1 1 1 1 1 1 1
2 1 1 1 2 1 1 1 3
;
3 2 2 2 3 2 2 2 4
0 1 1 1 0 1 1 1 1
A A
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
   
Tìm    
,
r A r A
2 2 1
3 3 1
3 3 2
4 4 2
2
3
1 1 1 1 1 1 1 1 1 1
2 1 1 1 3 0 1 1 11
3 2 2 2 4 0 1 1 11
0 1 1 1 1 0 1 1 11
1 1 1 1 1
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
d d d
d d d
d d d
d d d
A
 
 
 
 
   
 
   
  
   
 
   
  
   
   
   
   
 

 
 
 


 
 
 
 
Suy ra     2 4
r A r A
   . Do đó tồn tại định thức con cấp 2,
36
1213
1 1
1 0
2 1
D

  

của A ( 1213
D là định thức con của ma trận A có được bằng cách lấy các phần tử ở các
dòng 1, dòng 2, cột 1 và cột 3). Ta giữ lại hai phương trình đầu. Giữ 1 3
,
x x làm ẩn và chuyển
2 4
,
x x sang vế phải làm tham số, ta được
1 3 2 4
1 3 2 4
1
2 3
x x x x
x x x x
   


   

Hệ cuối là hệ Cramer do có định thức của ma trận hệ số chính là
1 1
1 0
2 1

 

.
Áp dụng phương pháp Cramer ta được
2 4
2 4
1
1213
2 4
2 4
3 2 4
1213
1 1
3 1
2
1 1
2 3
1
x x
x x
x
D
x x
x x
x x x
D
  
  
 
 
 
   
Vậy nghiệm của hệ là
 
1
2
3
4
2
,
1
x
x a
a b
x a b
x b


 



  

 

2.3.2. Phương pháp Gauss
Lập ma trận A. Dùng các phép biến đổi sơ cấp trên dòng đưa A về dạng bậc thang.
Nếu trong quá trình biến đổi xuất hiện một dòng bên trái bằng 0, bên phải khác 0 thì hệ
vô nghiệm.
Nếu đưa A về dạng ma trận bậc thang thì các ẩn ứng với các cột chứa phần tử đánh
dấu giữ lại làm ẩn, các ẩn ứng với các cột không chứa phần tử đánh dấu chuyển sang bên
phải làm tham số, sau đó giải phương trình ngược từ dòng dưới cùng đến dòng 1.
Ví dụ 2.5. Giải hệ phương trình
37
1 2 3 4
1 2 3 4
1 2 3 4
2 1
2 3 3 3 3
3 2 5 7 5
x x x x
x x x x
x x x x
   


   

    

Lập ma trận hệ số mở rộng A
2 2 1
3 3 1
3 3 2
2
3
1 1 1 2 1 1 1 1 2 1
2 3 3 3 3 0 1 1 1 1
3 2 5 7 5 0 1 2 1 2
1 1 1 2 1
0 1 1 11
0 0 3 0 3
d d d
d d d
d d d
A A B
 
 
 
   
 
   
 
     
     
   
  
   
 

 

  
 
 

 
Vì     3 4
r A r A
   nên hệ có vô số nghiệm phụ thuộc vào 1 tham số.
Ta viết lại hệ
1 2 3 4
2 3 4
3
2 1
1
3 3
x x x x
x x x
x
   


  

 

Ta giữ 1 2 3
, ,
x x x làm ẩn chính và chuyển 4
x qua vế phải làm tham số. Khi đó
1 2 3 4 1 4
2 3 4 2 4
3
3
1 2 3
1
1
3 3
x x x x x x
x x x x x
x
x
     
 
 
    
 
   
  

Vậy nghiệm của hệ là
 
1
2
3
4
3
1
x a
x a
a
x
x a
 

 



 

 

2.4. Hệ phương trình tuyến tính thuần nhất
Hệ phương trình tuyến tính thuần nhất là hệ phương trình có dạng
11 1 12 2 1
21 1 22 2 2
1 1 2 2
0
0
0
n n
n n
m m mn n
a x a x a x
a x a x a x
a x a x a x
   

    



    

với dạng ma trận là 0
AX  (2).
38
Hệ luôn có nghiệm vì ( ) ( 0 ) ( )
rank A rank A rank A
 
 
  .
Bộ số (0,0,…,0) luôn là một nghiệm của hệ gọi là nghiệm tầm thường.
Các nghiệm khác không nếu có gọi là nghiệm không tầm thường của hệ.
Từ định lý Kronecker-Capelli ta có
- Nếu (A)
r n
 thì hệ (2) có nghiệm duy nhất, đó là nghiệm tầm thường.
- Nếu (A)
r r n
  thì hệ (2) có vô số nghiệm phụ thuộc n r
 tham số, trong đó ẩn
chính phụ thuộc tham số. Ta gọi đó là nghiệm tổng quát của của hệ phương trình (2).
- Cho các tham số những giá trị đặc biệt, lập nên một ma trận chéo, ta được nghiệm
cơ bản của hệ phương trình (2).
Ví dụ 2.6. Tìm nghiệm tổng quát và một hệ nghiệm cơ bản của hệ phương trình
1 2 3 4
1 2 3 4
1 2 3 4
2 0
2 3 3 3 0
3 5 5 4 0
x x x x
x x x x
x x x x
   


   

    

Ta có
2 2 1
3 3 1 3 3 2
2
3 2
1 1 1 2 0 1 1 1 2 0 1 1 1 2 0
2 3 3 3 0 0 1 1 1 0 0 1 1 1 0
3 5 5 4 0 0 2 2 2 0 0 0 0 0 0
d d d
d d d d d d
 
   
     
  
     
      
     
     
  
     
Vì     2 4
r A r A
   nên hệ có vô số nghiệm phụ thuộc vào 2 tham số.
Ta viết lại hệ
1 2 3 4
2 3 4
2 0
0
x x x x
x x x
   


  

Xem 1 2
,
x x là ẩn chính và 3 4
,
x x
 
  là tham số. Khi đó
 
1 2 1
2 2
3 3
4 4
2 0 3
0
,
x x x
x x
x x
x x
  
   
 
 
 
     
 
 
    
 
 
 
 
 
 
 
 
Vậy nghiệm tổng quát của hệ là  
3 , , ,
    
  với ,
   .
Một hệ nghiệm cơ bản của hệ là    
0,1,1,0 ; 3,1,0,1
 .
39
Chú ý
Hệ thuần nhất (2) có nghiệm không tầm thường khi và chỉ khi hạng của ma trận hệ số
nhỏ hơn số ẩn ( ( ) )
rank A n
 .
Hệ phương trình tuyến tính thuần nhất có số phương trình bằng số ẩn (m=n) thì ma
trận hệ số là ma trận vuông. Khi đó
- Hệ có nghiệm duy nhất tầm thường khi và chỉ khi det 0
A  .
- Hệ có nghiệm không tầm thường khi và chỉ khi det 0
A  .
40
BÀI TẬP CHƯƠNG 2
Bài 1. Giải các hệ phương trình tuyến tính sau:
a.
2 3 9
3 5 4
4 7 5
x y z
x y z
x y z
  


   

   

b.
3 2 4 8
2 4 5 11
4 3 2 1
x y z
x y z
x y z
  


  

   

c.
1 2 3
1 2 3
1 2 3
2 1
2 2 4
4 4 2
x x x
x x x
x x x
   


   

    

d.
1 2 3
1 2 3
1 2 3
2 2 19
2 4 31
4 6 9 2
x x x
x x x
x x x
  


  

    

e.
1 2 3
1 2 3
1 2 3
3 4 7
2 3 0
7 10 5 2
x x x
x x x
x x x
  


  

   

f.
2 0
2 2 4 0
5 5 10 0
x y z
x y z
x y z
  


  

   

g.
1 2 3
1 2 3
1 2 3
2 2 21
5 2 29
3 10
x x x
x x x
x x x
  


  

   

Bài 2. Giải các hệ phương trình sau
a.
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
2 3 2 6
2 2 3 8
3 2 2 4
2 3 2 8
x x x x
x x x x
x x x x
x x x x
   

    


   

     

b.
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
2 3 2 4
3 3 3 2 6
3 2 6
3 3 6
x x x x
x x x x
x x x x
x x x x
   

    


   

    

c.
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
2 2 4
4 3 2 6
8 5 3 4 12
3 3 11 5 6
x x x x
x x x x
x x x x
x x x x
   

    


   

    

d.
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
15
2 3 4 5 35
3 6 10 15 70
4 10 20 35 126
5 15 35 70 210
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
    

     


    

     

     

Bài 3. Giải và biện luận các hệ phương trình sau đây theo tham số thực m.
a.
1
1
1
mx y z
x my z
x y mz
  


  

   

b.    
2 1 1 1
1
mx y z m
x m y m z m
x y mz
  


     

   

c.
2 2
2 1
7 5
x y z t m
x y z t m
x y z t m
   


    

     

41
Bài 4. Giải và biện luận hệ phương trình sau
 
 
 
1 2 3
1 2 3
2
1 2 3
1 1
1
1
x x x
x x x
x x x

 
 
    

   


   

Bài 5. Cho hệ phương trình
 
   
2 1
2 5 2 4
3 1 3
x y z
x m y z
x m y m z m
   

   


     

a. Tìm m để hệ đã cho là hệ Cramer. Tìm nghiệm trong trường hợp đó.
b. Tìm m để hệ trên vô nghiệm.
Bài 6. Cho hệ phương trình
 
   
2 1
2 5 2 4
3 1 3
x y z
x m y z
x m y m z m
   

   


     

a. Tìm m để hệ phương trình vô nghiệm.
b. Tìm m để hệ phương trình có vô số nghiệm và tìm nghiệm trong trường hợp đó.
Bài 7. Giải các hệ phương trình thuần nhất sau
a.
1 2 3 4
1 2 4
1 2 3 4
0
2 0
3 0
x x x x
x x x
x x x x
   


  

    

b.
1 2 3
1 2 3
1 2 3
2 4 0
3 5 7 0
4 5 6 0
x x x
x x x
x x x
  


  

   

c.
1 2 3 4
1 2 4
1 2 3 4
0
2 0
3 0
x x x x
x x x
x x x x
   


  

    

d.
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
5 0
2 3 0
3 8 0
2 9 7 0
x x x x
x x x x
x x x x
x x x x
   

    


   

    

Bài 8. Giải hệ
a.
1 2 3 4
1 3 5
1 2 3 4 5
6 3 4 3 0
3 2 3 0
9 3 6 3 3 0
x x x x
x x x
x x x x x
   


  

     

b.
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
2 0
2 2 3 0
3 2 2 0
2 5 2 2 0
x x x x x
x x x x x
x x x x x
x x x x x
    

     


    

     

42
c.
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
3 6 9 3 6 0
2 0
2 5 3 0
2 4 2 2 2 0
x x x x x
x x x x x
x x x x x
x x x x x
    

     


    

     

Bài 9. Tìm a để các hệ sau có kinh nghiệm không tầm thường và xác định các nghiệm
không tầm thườn đó
a.
2 0
2 0
5 0
x y z
x y z
x y az
  


  

   

b.
2
3 2 0
0
8 4 0
a x y z
ax y z
x y z
   

  

   

43
CHƯƠNG 3: KHÔNG GIAN VÉCTƠ
3.1. Khái niệm
Cho V là một tập hợp tuỳ ý khác rỗng. V gọi là không gian véctơ trên (mỗi phần tử
của V gọi là một véctơ) nếu trong V có hai phép toán
 Phép cộng hai véctơ
 
,
V V V
   
 

 Phép nhân vô hướng một số thực a với một véctơ
 
,
V V
a a
 
 
Đồng thời phép cộng và phép nhân thoả 8 điều kiện sau
1. , :
V
     
    
2.    
, , :
V
        
      
3. Tồn tại V
  sao cho :
V

      
    . Mọi véctơ  có tính chất trên
gọi là véctơ không.
4. , ' V : '
V
    
      . Khi đó ta gọi '
 là véctơ đối của  .
5.  
, , :
V a a a a
     
      
6.  
, , :
V a b a b a b
   
      
7.    
, , :
V a b ab a b
  
    
8. :1.
V
  
  
Sau đây là các ví dụ cơ bản về không gian véctơ trên .
Ví dụ 3.1. Không gian tích Descartes  
 
1 2
, , , :
n
n i
V a a a a
   với phép toán
cộng và phép nhân với một số thực được định nghĩa như sau
Phép cộng: Với    
1 2 1 2
, , , , , , ,
n n
a a a b b b
 
    ta có
 
1 1 2 2
, , , n n
a b a b a b
 
    
Phép nhân với số thực: Với a ta có
 
1 2
, , , n
a aa aa aa
  
44
Khi đó n
cùng với hai phép toán cộng và phép nhân được định nghĩa như trên là
không gian véctơ trên .
Ví dụ 3.2. Xét m n
V M 
 là tập hợp các ma trận cấp m n
 . Khi đó V cùng với phép
cộng ma trận và phép nhân ma trận với một số thực là không gian véctơ trên .
3.2. Tính chất của không gian véctơ
Tính chất 1: Véctơ không của không gian véctơ là duy nhất. Ta kí hiệu véctơ không
của không gian V là 0V
hoặc 0. Ví dụ,    
2 3
0 0,0 , 0 0,0,0
 .
Tính chất 2: Véctơ đối của mỗi véctơ  là duy nhất. Khi đó ta kí hiệu 
 là phần tử
đối của  .
Tính chất 3: Phép cộng có luật giản ước. Tức là
, , :
V
        
      
Tính chất 4: Phép nhân có luật giản ước cho một số khác không. Tức là
 
, ,  0 :
V a a a
     
     
Tính chất 5: Phép trừ hai véctơ. Cho , V
   , ta định nghĩa
 
   
   
Khi đó  
:
a a a a
   
     .
Tính chất 6: Cho
0
, : 0
0
a
V a a
 



     

3.3. Mối quan hệ tuyến tính giữa các véctơ
3.3.1. Biểu thị tuyến tính
Cho hệ véctơ  
1 2
, , , n V
    . Khi đó véctơ V
  gọi là biểu thị tuyến tính được
qua các véctơ 1 2
, , , n
   nếu tồn tại các số 1 2
, , , n
a a a  sao cho
1 1 2 2 n n
a a a
   
    .
Khi đó ta cũng nói  là tổ hợp tuyến tính của các véctơ 1 2
, , , n
   .
Ví dụ 3.3. Trong 2
, xét 3 véctơ 1 2 3
( 3,0), (0; 2), (3,2)
  
     . Khi đó véctơ
không 0 (0,0)
 có thể biểu thị tuyến tính qua các véctơ 1 2 3
, ,
   như sau
1 2 3
0 0 0 0
  
  
1 2 3
0 1 1 1
  
  
45
Tổ hợp tuyến tính
1
n
i i
i
a

 của hệ véctơ  
1 2
, , , n
   gọi là tầm thường nếu
1 2 0
n
a a a
    . Ngược lại, nếu có ít nhất một hệ số 0(1 )
j
a j n
   thì tổ hợp tuyến
tính
1
n
i i
i
a

 gọi là không tầm thường.
Ví dụ 3.4. Trong 3
cho các véctơ    
1 2 3
5,2, 1 , 0,2, 2 , (1, 1,3)
  
      và
(2,1, 2)
   . Khi đó  có thể biểu thị tuyến tính qua 1 2 3
, ,
   được không?
3.3.2. Độc lập tuyến tính và phụ thuộc tuyến tính
Cho V là một không gian véctơ trên và    
1 2
, , , n V
   
  là một hệ véctơ.
Hệ  
 gọi là phụ thuộc tuyến tính nếu tồn tại các số 1 2
, , , n
a a a  không đồng thời
bằng 0 sao cho
1 1 2 2 0
n n
a a a
  
   
Hệ  
 gọi là độc lập tuyến tính nếu nó không phụ thuộc tuyến tính. Tức là
1 1 2 2 1 2
0 0
n n n
a a a a a a
  
        
Ví dụ 3.5. Xét sự độc lập tuyến tính, phụ thuộc tuyến tính của các hệ véctơ sau
a. 1 2 3
(1,0,3); (2,1, 1); (3,2, 2)
  
    
b. 1 2
(3,6); ( 1, 2)
 
   
Chú ý: Đặc biệt trong n
cho hệ véctơ    
1 2
, , , m
   
 với
 
 
 
1 11 12 1
2 21 22 2
1 2
, , ,
, , ,
, , ,
n
n
m m m mn
a a a
a a a
a a a






Xét A là ma trận lập từ hệ véctơ trên
11 12 1
21 22 2
1 2
n
n
m m mn
a a a
a a a
A
a a a
 
 
 

 
 
 
Hệ  
 độc lập tuyến tính khi và chỉ khi ( )
rank A m
 .
Hệ  
 phụ thuộc tuyến tính khi và chỉ khi ( )
rank A m
 .
Ví dụ 3.6. Xét tính độc lập tuyến tính hay phụ thuộc tuyến tính của các hệ véctơ sau
46
a. 1 2 3
(1,1,1); (2,3,2); (0,2,1)
  
  
b. 1 2 3
(1,1,0,0); (0,1,1,0); (2,3,1,0)
  
  
Định lý: Cho hệ véctơ  
1 2
, , , m
   độc lập tuyến tính. Khi đó hệ véctơ
 
1 2
, , , ,
m
    độc lập tuyến tính khi và chỉ khi  không biểu thị tuyến tính được qua
1 2
, , , m
   .
3.4. Hạng của hệ véctơ và số chiều của không gian véctơ
3.4.1. Hạng của hệ véctơ
*Hệ con độc lập tuyến tính tối đại
Cho hệ véctơ    
1 2
, , , n V
   
  . Hệ con của hệ véctơ  
 là hệ véctơ gồm một
số (hoặc tất cả) các véctơ của hệ. Hệ con  
1 2
, , ,
i i ik
   của hệ  
 được gọi là hệ con
độc lập tuyến tính tối đại nếu thoã hai điều kiện sau
(i) Hệ  
1 2
, , ,
i i ik
   độc lập tuyến tính.
(ii) Mọi véctơ của hệ  
 đều biểu thị tuyến tính được qua hệ con 1 2
, , ,
i i ik
  
Nhận xét: Một hệ véctơ có thể có nhiều hệ con độc lập tuyến tính tối đại khác nhau
nhưng số véctơ của các hệ con độc lập tuyến tính tối đại thì luôn bằng nhau. Số đó ta gọi là
hạng của hệ  
 , kí hiệu  
rank  .
*Cách tìm hệ con độc lập tuyến tính tối đại, hạng của một hệ véctơ trong n
Trong n
cho một hệ véctơ    
1 2
, , , m
   
 . Để tìm hệ con độc lập tuyến tính tối
đại của hệ  
 ta làm như sau
Bước 1: Lập ma trận A với các dòng là các véctơ .
i

Bước 2: Dùng các phép biến đổi sơ cấp trên dòng đưa A về dạng ma trận bậc thang.
Bước 3: Khi đó hạng của hệ  
 chính bằng hạng của ma trận A và hệ con độc lập
tuyến tính tối đại của  
 gồm các véctơ ứng với các dòng khác không của ma trận A.
Ví dụ 3.7. Trong 4
cho các véctơ 1 2 3
(1,1,1,0); (1,1, 1,1); (3,4,0,2)
  
    và
4 (3,4,0,2)
  . Tìm hạng và chỉ ra một hệ con độc lập tuyến tính tối đại của hệ
 
1 2 3 4
, , ,
    .
Chú ý
47
- Ta cũng có thể lập ma trận B, với các cột của B là các véc tơ i
 . Khi đó T
B A
 .
Dùng các phép biến đổi sơ cấp trên dòng đưa B về dạng ma trận bậc thang. Khi đó
   
rank rank B
  . Hệ con độc lập tuyến tính tối đại bao gồm các véctơ i
 ứng với các
cột chứa phần tử đánh dấu của ma trận bậc thang.
- Trong không gian véctơ V cho hệ    
1 2
, , , m
   
 . Nếu hệ  
 độc lập tuyến
tính thì  
rank m
  và hệ con độc lập tuyến tính của tối đại của  
 cũng chính là hệ  

. Ngược lại nếu  
 phụ thuộc tuyến tính thì  
rank m
  và hệ con độc lập tuyến tính tối
đại của  
 có ít hơn m phần tử.
3.4.2. Cơ sở, số chiều, toạ độ
* Cơ sở
Hệ véctơ    
1 2
, , , m
   
 trong không gian véctơ V gọi là một cơ sở của V nếu
 
 độc lập tuyến tính và mọi véctơ của V đều biểu thị tuyến tính qua  
 .
Ví dụ 3.8. Trong n
xét hệ véctơ
1 2
(1,0, ,0); (0,1, ,0), , (0,0, ,1)
n
e e e
   .
Dễ dàng kiểm tra hệ này độc lập tuyến tính và với mọi véctơ  
1 2
, , , n
x x x x
 ta có
1 1 2 2 n n
x x e x e x e
   
Hệ véctơ  
1 2
, , , n
e e e
 là một cơ sở của n
và được gọi là cơ sở chính tắc của không
gian n
, kí hiệu  
n
C .
* Số chiều
Cho V là một không gian véctơ, V gọi là không gian n chiều nếu trong V có ít nhất
một hệ n véctơ độc lập tuyến tính và mọi hệ n+1 véctơ đều phụ thuộc tuyến tính. Kí hiệu
dim .
V n

Không gian không (chỉ gồm một véctơ không) được xem là có số chiều 0
n  .
Ví dụ 3.9. dim n
n
 .
Định lý: Trong mỗi không gian véctơ n chiều
(i) Mọi hệ gồm nhiều hơn n véctơ đều phụ thuộc tuyến tính
(ii) Mọi cơ sở đều gồm đúng n véctơ. Mọi hệ độc lập tuyến tính gồm n véctơ đều là cơ
sở.
48
(iii) Mọi hệ độc lập tuyến tính gồm ít hơn n véctơ đều có thể bổ sung thành một một
cơ sở.
Đặc biệt, trong n
, hệ véctơ
1 11 12 1
( , , , )
n
a a a
 
2 21 22 2
( , , , )
n
a a a
 
…
1 2
( , , , )
n n n nn
a a a
 
là một cơ sở của n
khi và chỉ khi nó độc lập tuyến tính, nói cách khác
11 12 1
21 22 2
1 2
0
n
n
n n nn
a a a
a a a
a a a

Ví dụ 3.10. Chứng minh hệ véc tớ 1 2 3
(1,2,3), (2,0,4), (1,6,7)
u u u
   là một cơ sở
của 3
.
* Toạ độ véctơ
Cho V là một không gian véctơ n chiều với    
1 2
, , , n
   
 là một cơ sở của V.
Khi đó mọi véctơ x V
 đều có thể viết được duy nhất dưới dạng
1 1 2 2 n n
x a a a
  
  
trong đó 1 2
, , , n
a a a  . Ta gọi bộ số 1 2
( , , , )
n
a a a là toạ độ của véctơ x trong cơ sở
 
 . Kí hiệu    
1 2
/ , , , n
x a a a
  .
Ta cũng kí hiệu    
1
2
/
...
n
a
a
x
a

 
 
 

 
 
 
. Khi cơ sở  
 đã chỉ rõ ta viết  
x thay cho
   
/
x  .
Ví dụ 3.11. Trong 3
cho hệ 3 véctơ    
1 2 3
(1,1,0), (0,1,1), (1,0,1)
u u u
     .
a. Chứng tỏ rằng  
 là một cơ sở của không gian 3
.
b. Tìm toạ độ của các véctơ 1 2 3
(1,0,0), (0,1,0), (0,0,1)
e e e
   và (4,3,5)
u  trong
cơ sở  
 .
* Ma trận cơ sở, công thức đổi toạ độ
49
Trong không gian véctơ V cho hai cơ sở
   
1 2
, , , n
   

   
1 2
, , , n
   

Ta có
1 11 1 12 2 1n n
a a a
   
  
2 21 1 22 2 2n n
a a a
   
  
…
1 1 2 2
n n n nn n
a a a
   
  
Khi đó ma trận
11 21 1
12 22 2
1 2
n
n
n n nn
a a a
a a a
T
a a a

 
 
 

 
 
 
gọi là ma trạn đổi cơ sở từ  sang  .
Công thức đổi toạ độ
Trong không gian véctơ V cho hai cơ sở
   
1 2
, , , n
   

   
1 2
, , , n
   

Lấy một véctơ x thuộc V và giả sử toạ độ của x trong hai cơ sở là
   
   
1 2
1 2
, , ,
, , ,
n
n
x x x x
x y y y


 
 
Khi đó ta có
       
/ . /
x T x

 

Chú ý: 1
T T
 

 .
Ví dụ 3.12. Trong 3
cho hai cơ sở:
   
1 2 3
(1, 1,1), (2,3,1), (1,2,1)
   
    
và cơ sở chính tắc 3
(C ) .
a. Tìm ma trận đổi cơ sở từ 3
( )
C sang  
 .
50
b. Tìm ma trận đổi cơ sở từ  
 sang 3
( )
C .
c. Cho 3
(1,2,3)
   . Tìm toạ độ  
/
  .
d. Tìm véctơ 3
  biết toạ độ của nó trong  
 là  
2,3,5 .
3.5. Không gian véctơ con
3.5.1. Định nghĩa không gian véctơ con
Cho V là không gian véctơ trên . U là một tập con khác rỗng của V. Tập con U  
của V gọi là không gian véctơ con của V nếu nó thoả 2 điều kiện
(i) , :
U U
   
   
(ii) , :
a U a U
 
   
Ví dụ 3.13. Trong không gian véctơ 3
cho tập con
 
 
1 2 1 2
,0, : ,
U x x x x x
   .
Khi đó U có phải là không gian véctơ con của 3
không?
Ví dụ 3.14. Tập nào sao đây là không gian con của 2
a.  
2
1 : (3 ,2 ),
U x x a a a
   
b.  
2
1 : (1 ,2 3 ),
U x x a a a
     
3.5.2. Không gian con sinh bởi một hệ véctơ
Trong không gian véctơ V, cho hệ véctơ  
1 2
, ,..., m
   . Khi đó tập hợp các tổ hợp
tuyến tính của các véctơ 1 2
, ,..., m
   , kí hiệu 1 2
, ,..., m
   là không gian véctơ con của V.
Không gian này ta gọi là không gian con của V sinh bởi hệ véctơ  
1 2
, ,..., m
   (còn gọi là
bao tuyến tính của hệ véctơ  
1 2
, ,..., m
   ). Ta gọi  
1 2
, ,..., m
   là một hệ sinh của
1 2
, ,..., m
   .
Chú ý: cơ sở của 1 2
, ,..., m
   chính là hệ con độc lập tuyến tính tối đại của
 
1 2
, ,..., .
m
  
Ví dụ 3.15. Trong 3
, tìm một cơ sở, số chiều và bao tuyến tính của hệ
 
1 2 3
(1,1,1), (2,3,4), (4,5,6)
  
  
51
BÀI TẬP CHƯƠNG 3
Bài 1. Trong không gian 3
xét xem u có phải là tổ hợp tuyến tính của 1 2 3
, ,
u u u hay không.
a.        
1 2 3
2,1,0 ; 3; 1;1 ; 2,0, 2 ; 1,1,1
u u u u
      
b.        
1 2 3
2,4,3 ; 1, 1,0 ; 3,3,3 ; 1,2,0
u u u u
     
Bài 2. Xác định số  để u là tổ hợp tuyến tính của 1 2 3
, ,
u u u .
a.        
1 2 3
1,2, 1 ; 2;1;3 ; 0,1, 1 ; 1, ,2
u u u u 
      
b.        
1 2 3
1, 2,3 ; 0, 1, ; 1,0,1 ; 3, 1,2
u u u u

      
Bài 3. Các hệ véctơ dưới đây là độc lập tuyến tính hay phụ thuộc tuyến tính trong không
gian tương ứng.
a.      
 
2, 3,1 ; 3, 1,5 ; 1, 4,3
   trong 3
b.      
 
5,4,3 ; 3,3,2 ; 8,1,3 trong 3
c.        
 
4, 5,2,6 ; 2, 2,1,3 ; 6, 3,3,9 ; 4, 1,5,6
    trong 4
d.      
 
1,0,0,0 ; 0,1,0,0 ; 0,0, ,0
a ; a trong 4
Bài 4. Tuỳ theo  xét sự phụ thuộc tuyến tính của hệ véctơ sau trong trong 3
1 2 3
1 1 1 1 1 1
, , ; , , ; , ,
2 2 2 2 2 2
v v v
  
 
     
        
 
     
     
 
Bài 5. Tìm một hệ con độc lập tuyến tính tối đại và hạng của các hệ véctơ sau:
a.      
 
1 2 3
2,1,0 , 0, 2,1 ; 2, 1,2
u u u
    
b.        
 
1 2 3 4
1, 1,0 ; 2, 1, 1 ; 0,1, 1 ; 2,0, 2
u u u u
        
Bài 6. Hệ véctơ nào là cơ sở của 3
. Tìm toạ độ của véctơ  
7,14,3
u  trong cơ sở vừa tìm
được.
a.    
 
1 2
2,1,3 ; 1,1,0
u u
  
b.      
 
1 2 3
2,1,3 ; 1,1,0 ; 1,3,1
u u u
   
c.        
 
1 2 3 4
2,1,3 ; 1,1,0 ; 1,1, 1 ; 0,0,4
u u u u
     
d.      
 
1 2 3
2, 3,1 ; 4,1,1 ; 0, 7,1
u u u
    
e.      
 
1 2 3
1,6,4 ; 2,4, 1 ; 1,2,5
u u u
    
52
Bài 7. Trong không gian 3
cho các cơ sở  
1 2 3
, ,
B u u u
 ;  
1 2 3
' , ,
B u u u
  
 và véctơ u.
Tìm ma trận đổi cơ sở ( )
B sang ( ')
B và toạ độ của u trong từng cơ sở.
a.            
1 2 3 1 2 3
1,1, 1 ; 1,1,0 ; 2,2,0 ; 1, 1,0 ; 2, 1,0 ; ' 1,1, 1 ;
u u u u u u
 
          
 
3,4,5
u 
b.            
1 2 3 1 2 3
3,2,1 ; 1, 2,1 ; 2,2,3 ; 1, 1,0 ; 1,0, 1 ; ' 1,1,1 ;
u u u u u u
 
        
 
1, 3,7
u  
Bài 8. Trong không gian 3
cho
       
 
1 2 3
7, 10, 12 ; 12, 19,24 ; 6, 10, 13
B m u m u m u m
          
Tìm m để  
B m là một cơ sở của 3
. Trong trường hợp đó hãy tính toạ độ của
 
,2 ,0
u m m
 trong cơ sở  
B m .
Bài 9. Trong không gian 3
cho các hệ véctơ sau
       
 
1 2 3
2,1,3 ; 1,1,0 ; 1, 1,1
B u u u
     
       
 
1 2 3
' 2,1,1 ; 2, 1,1 ; 1,2,1
B u u u
  
    
a. Chứng tỏ  
B và  
B là cơ sở của 3
.
b. Cho
   
3,5,7
u
B
 . Tìm toạ độ của u trong cơ sở  
'
B và cơ sở chính tắc.
Bài 10. Các tập sau đây, tập nào là không gian con của các không gian tương ứng.
a.  
 
3
1 2 3 1 2 3
, , 2 0
L x x x x x x x
     
b.  
 
4
1 2 3 4 1 3 2 4
, , , ;
L x x x x x x x x x
    
c.  
 
2
1 2 2 1
, ,..., n
n
L x x x x x x
   
d.  
 
3 2 2
1 2 3 1 2
, , 0
L x x x x x x
    
e.  
 
3
1 2 3 1
, ,
L x x x x x
   
Bài 11. Tìm một cơ sở, số chiều của không gian con sinh bởi các véctơ sau trong không
gian tương ứng.
a.      
1 2 3
1, 1,2 ; 2,1,3 ; 1,5,0
u u u
     trong 3
53
b.    
1 2 3
1
2,4,1 ; 3,6, 2 ; 1,2,
2
u u u
 
     
 
 
trong 3
c.        
1 2 3 4
1,0,1, 2 ; 1,1,3, 2 ; 2,1,5, 1 ; 1, 1,1,4
u u u u
        trong 4
d.          
1 2 3 4 5
1,0,0, 1 ; 2,1,1,0 ; 1,1,1,1 ; 1,2,3,4 ; 0,1,2,3
u u u u u
      trong 4
Bài 12. Trong 5
cho hệ véctơ
     
1 1 3
1,1, 2,1,4 ; 0,1, 1,2,3 ; 1, 1,0, 3,0
u u u
      
a. Tìm cơ sở và số chiều của 1 2 3
, ,
u u u
b. Cho  
1, ,1, , 3, 5
u m m
   . Tìm m để 1 2 3
, ,
u u u u

Bài 13. Trong 3
cho    
1 3
2, 2,3 ; 0,2, 3
v v
   
a.  
1, 4,6
v   có biểu thị tuyến tính được qua 1 2
,
v v không.
b. Tìm a sao cho   1 2
2,3, ,
v a v v
  
Bài 14. Trong 3
cho        
1 2 3 4
2, 1,0,1 ; 1,1,3,2 ; 3, 1,1,2 ; 1, 1, 1,0
v v v v
        . Chứng
minh rằng 1 2 3 4
, ,
v v v v
 .
Bài 15. Trong 4
xét các véctơ sau
     
1 2 3
1,2,2,1 , 1,1,3,5 , 0, 1,1,4
v v v
  
Tìm số chiều và cơ sở của không gian con 1 2 3
, ,
V v v v
 .
Bài 16. Trong 4
cho các véctơ
       
1 2 3 4
1,1,2,4 , 2, 1, 5,2 , 1, 1,4,0 , 2,1,1,6
v v v v
       . Chứng tỏ các véctơ trên phụ
thuộc tuyến tính. Tìm một cơ sở của không gian véctơ con của 4
sinh bởi các véctơ này.
Bài 17. Tìm một cơ sở và số chiều của không gian nghiệm của hệ phương trình
a.
1 2 3
1 2 3
1 2 3
2 4 0
3 5 7 0
4 5 6 0
x x x
x x x
x x x
  


  

   

b.
1 2 3 4
1 2 3 4
1 2 3 4
2 4 5 3 0
3 6 4 2 0
4 8 17 11 0
x x x x
x x x x
x x x x
   


   

    

c.
1 3 5
2 4 6
1 2 3 6
1 4 5
0
0
0
0
x x x
x x x
x x x x
x x x
  

   


   

   

Bài 18. Tìm một cơ sở và số chiều của không gian con các nghiệm của hệ phương trình
54
a.
1 2 3 4
1 3
1 3 4
1 2 3
2 0
3 2 0
3 4 0
5 3 0
x x x x
x x
x x x
x x x
   

  


  

   

b.
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
3 6 9 3 6 0
2 0
2 5 3 0
2 4 2 2 2 0
x x x x x
x x x x x
x x x x x
x x x x x
    

     


    

     

Bài 19. Cho  
 
3
1 2 3 1 2 3
, , 2 0
W x x x x x x
     . Chứng minh W là không gian con của
3
. Tìm một cơ sở và số chiều của W .
Bài 20. Cho hệ phương trình
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
2 2 5 6 0
3 2 2 0
3 8 10 0
5 11 12 0
x x x x
x x x x
x x x x
x x mx x
   

    


   

    

a. Tìm một cơ sở và số chiều của không gian nghiệm của hệ phương trình khi 11
m  .
b. Biện luận số chiều của không gian nghiệm theo m.
Bài 21. Cho hệ phương trình
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
3 4 3 0
5 2 6 9 0
2 2 6 0
4 6 0
x x x x
x x x x
x x x x
x x x mx
   

    


   

    

a. Tìm một cơ sở và số chiều của không gian nghiệm của hệ khi 0
m  .
b. Tìm m để không gian nghiệm có chiều bằng 1.
c. Tìm một cơ sở của không gian nghiệm khi m khác 0.
55
CHƯƠNG 4: MỘT SỐ MÔ HÌNH TUYẾN
TÍNH DÙNG TRONG PHÂN TÍCH KINH TẾ
4.1. Mô hình cân đối liên ngành
Trong một nền kinh tế hiện đại, việc sản xuất một loại hàng hoá nào đó (output) đòi
hỏi phải sử dụng các loại hàng hoá khác nhau để làm nguyên liệu đầu vào (input) của quá
trình sản xuất và việc xác định tổng cầu đối với sản phẩm của mỗi ngành sản xuất trong nền
kinh tế là quan trọng. Trong khuôn khổ của mô hình, khái niệm ngành được xem xét theo
nghĩa thuần túy sản xuất. Các giả thiết sau được đặt ra:
(i) Mỗi ngành sản xuất một loại sản phẩm hàng hóa thuần nhất hoặc sản xuất một số
hàng hóa phối hợp theo một tỷ lệ nhất định. Trong trường hợp thứ hai ta coi mỗi tổ hợp
hàng hóa theo tỉ lệ cố định đó là một mặt hàng.
(ii) Các yếu tố đầu vào của sản xuất trong phạm vi một ngành được sử dụng theo một
tỷ lệ cố định.
Tổng cầu đối với sản phẩm của mỗi ngành bao gồm:
+ Cầu trung gian từ phía các nhà sản xuất sử dụng loại sản phẩm đó cho quá trình sản
xuất
+ Cầu cuối cùng từ phía người sử dụng sử dụng loại sản phẩm để tiêu dùng hoặc xuất
khẩu, bao gồm các hộ gia đình, nhà nước, các hang xuất khẩu.
Giả sử một nền kinh tế ngành gồm n ngành: ngành 1, ngành 2, …, ngành n và ngoài ra
còn có một phần khác của nền kinh tế (gọi là ngành kinh tế mở), nó không sản xuất hàng
hóa như n ngành trên mà chỉ tiêu dùng sản phẩm của n ngành kinh tế này. Để thuận tiện cho
việc tính chi phí cho các yếu tố sản xuất, ta biểu diễn lượng cầu của tất cả các hàng hóa ở
dạng giá trị, tức là đo bằng tiền (với giả thiết thị trường ổn định). Tổng cầu về sản phẩm
hàng hóa của ngành i được tính theo công thức:
1 2 ... , 1,2,..., (1)
i i i in i
x x x x b i n
     
Trong đó
:
i
x là tổng cầu hàng hoá của ngành i.
56
:
ik
x là giá trị hàng hoá của ngành i mà ngành k cần sử dụng cho việc sản xuất (cầu
trung gian).
:
i
b là giá trị hàng hoá của ngành i cần tiêu dùng và xuất khẩu (cầu cuối cùng).
Biến đổi phương trình (1)
1 2
1 2
1 2
... , 1,2,..., (2)
i i in
i n i
n
x x x
x x x x b i n
x x x
     
Đặt ; , 1,2,...,
ik
ik
k
x
a i k n
x
  . Ta có hệ phương trình (mô hình Input-Output Liontief)
sau đây:
1 11 1 12 2 1 1 11 1 12 2 1 1
2 21 1 22 2 2 2 21 1 22 2 2 2
1 1 2 2 1 1 2 2
... (1 ) ...
... (1 ) ...
... ... (1 )
n n n n
n n n n
n n n nn n n n n nn n n
x a x a x a x b a x a x a x b
x a x a x a x b a x a x a x b
x a x a x a x b a x a x a x b
         
 
 
          
 

 

           
 


(3)
Trong đó ij
a là giá trị hàng hoá của ngành i (đầu vào) để sản xuất một đơn vị hàng hoá
của ngành j (đầu ra). Nếu hàng hoá của ngành i không cần để sản xuất cho ngành j thì
0
ij
a  . Trong nền kinh tế bình thường thì 1 ( 1,2,..., )
ij
a j n
 
 .
Hệ phương trình (3) có dạng ma trận là X AX B
  hay  
I A X B
  .
Với
11 12 1 1 1
21 22 2 2 2
1 2
, ,
n
n
n n nn n n
a a a x b
a a a x b
A X B
a a a x b
     
     
     
  
     
     
     
A: gọi là ma trận hệ số đầu vào hay ma trận hệ số kỹ thuật.
X: là ma trận tổng cầu (hay véctơ sản xuất).
B: là ma trận cuối cùng.
Nếu  
det 0
I A
  thì tồn tại ma trận nghịch đảo của I A
 . Do đó
1
( )
X I A B

 
Ma trận  
I A
 có tên là ma trận Leontief.
Ví dụ 4.1. Cho ba ngành kinh tế với ma trận hệ số đầu vào là
0,2 0,3 0,2
0,4 0,1 0,3
0,3 0,5 0,2
A
 
 
  
 
 
57
Biết nhu cầu cuối cùng của các ngành lần lượt là 150, 200, 210 (triệu USD).
a. Hãy giải thích ý nghĩa của con số 0,5 trong ma trận A.
Số 0,5 ở dòng thứ 3 và cột thứ 2 có nghĩa là: để sản xuất 1$ hàng hoá của mình, ngành
2 cần sử dụng 0,4$ hàng hoá của ngành 3.
b. Tìm tổng cầu cho mỗi ngành.
Ta có
1 0 0 0,2 0,3 0,2 0,8 0,3 0,2
0 1 0 0,4 0,1 0,3 0,4 0,9 0,2
0 0 1 0,3 0,5 0,2 0,1 0,3 0,8
I A
 
     
     
     
     
     
 
     
Tìm ma trận nghịch đảo
 
1
21 12 3
1
19 8 1
12
5 4 1
I A

 
 
  
  
 
 
 
 
Ma trận tổng cầu là
 
1
21 12 3 150 18
1
19 8 1 200 78
12
5 4 1 210 93
X I A B

 
     
      
    
     
     
 
     
Vậy tổng cầu đối với hàng hoá của ngành 1 là 18; tổng cầu đối với hàng hoá của ngành
2 là 78; tổng cầu đối với hàng hoá của ngành 3 là 93 (triệu USD).
4.2. Mô hình cân bằng thị trường n hàng hoá có liên quan
* Thị trường một hàng hoá
Khi phân tích hoạt động của thị trường hàng hoá, các nhà kinh tế học sử dụng hàm
cung S
Q và hàm cầu D
Q để biểu diễn sự phụ thuộc của lượng cung và lượng cầu vào giá
hàng hoá p (với giả thiết các yếu tố khác không thay đổi).
Dạng tuyến tính của hàm cung và hàm cầu có dạng như sau:
Hàm cung: S
Q a bp
   ,
Hàm cầu: D
Q c dp
  .
Mô hình cân bằng thị trường có dạng:
S D
Q Q a bp c dp
      (1)
Giải phương trình (1) ta sẽ xác định xác cân bằng thị trường p , sau đó thay vào hàm
cung (hoặc hàm cầu) để xác định lượng cân bằng S D
Q Q
 . Cụ thể, ta có
58
Giá cân bằng:
a c
p
b d



,
Lượng cân bằng: S D
bc ad
Q Q
b d

 

.
* Thị trường nhiều hàng hoá
Trong thị trường nhiều hàng hoá liên quan giá của hàng hoá này có thể ảnh hưởng đến
lượng cung và lượng cầu của các hàng hoá khác. Để xét mô hình cân bằng thị trường n hàng
hoá liên qua ta kí hiệu biến số như sau:
i
S
Q là lượng cung hàng hoá thứ i,
i
D
Q là lượng cầu hàng hoá thứ i,
i
p là giá hàng hoá thứ i.
Khi đó dạng tuyến tính của hàm cung và hàm cầu có dạng:
Hàm cung hàng hoá thứ i:
0 1 1 2 2 ... ( 1,2,...,n)
i
S i i i in n
Q a a p a p a p i
      .
Hàm cầu đối với hàng hoá thứ i:
0 1 1 2 2 ... ( 1,2,...,n)
i
D i i i in n
Q b b p b p b p i
      .
Mô hình cân bằng thị trường n hàng hoá có dạng hệ phương trình:
1,2,...,
i i
S D
Q Q
i n







Thay phương trình biểu diễn hàm cung và hàm cầu vào các đẳng thức ta có hệ
10 11 1 12 2 1 10 11 1 12 2 1
20 21 1 22 2 2 20 21 1 22 2 2
0 1 1 2 2 0 1 1 2 2
... ...
... ...
... ...
n n n n
n n n n
n n n nn n n n n nn n
a a p a p a p b b p b p b p
a a p a p a p b b p b p b p
a a p a p a p b b p b p b p
        

         



         

Đặt ij ij ij
c a b
  , ta được hệ phương trình
10 11 1 12 2 1
20 21 1 22 2 2
0 1 1 2 2
... 0
... 0
... 0
n n
n n
n n n nn n
c c p c p c p
c c p c p c p
c c p c p c p
    

     



     

(2)
59
Giải hệ phương trình tuyến tính (2), ta xác định được giá cân bằng các mặt hàng i
p ,
sau đó thay vào hàm cung (hoặc hàm cầu) ta xác định được lượng cân bằng i i
S D
Q Q
 .
Ví dụ 4.2. Giả sử thị trường gồm 2 mặt hàng: hàng hoá 1 và hàng hoá 2, với hàm cung
và hàm cầu như sau
Hàng hoá 1: 1 1
1 1 2
2 3 ; 10 2
S D
Q p Q p p
      .
Hàng hoá 2: 2 2
2 1 2
1 2 ; 15
S D
Q p Q p p
      .
Hãy xác định giá cân bằng và lượng cân bằng của các mặt hàng?
Ta có hệ phương trình xác định giá cân bằng là:
1 1
2 2
1 1 2 1 2
2 1 2 1 2
2 3 10 2 5 12
1 2 15 3 16
S D
S D
Q Q p p p p p
Q Q p p p p p

       
 

 
  
        
 


Giải hệ phương trình này xác định giá cân bằng là:
1 2
26 46
;
7 7
p p
 
Thay giá cân bằng vào các biểu thức hàm cung ta xác định được lượng cân bằng
1 1 2 2
64 85
2 3 ; 1 2
7 7
Q p Q p
       
4.3. Mô hình cân bằng thu nhập quốc dân
Xét mô hình cho dưới dạng
   
 
0 0
0,0 1
0,0 1
Y C I G
C a b Y T a b
T d tY d t
   

     


    

(1)
trong đó
:
Y là tổng thu nhập quốc dân
:
C là tiêu dùng của dân cư
:
T là thuế
0
I : là mức đầu tư cố định theo kế hoạch
0 :
G là mức chi tiêu cố định của chính phủ
Xem Y,C, T là các biến số và 0 0 0
, , , , ,
C a d t I G là các số cho trước, biến đổi (1) ta được
hệ phương trình
60
0 0
(2)
Y C I G
bY C bT a
tT T d
  


   

  

Giải hệ (2) ta xác định được mức thu nhập quốc dân, mức tiêu dùng và mức thuế cân
bằng.
Ví dụ 4.3. Cho tổng thu nhập quốc dân Y, mức tiêu dùng C và mức thuế T được xác
định bởi
 
0 0
15 0,4
36 0,1
Y C I G
C Y T
T Y
  
  
 
Trong đó 0 500
I  là mức đầu tư cố định, 0 20
G  là mức chi tiêu cố định. Hãy xác
định mức thu nhập quốc dân, mức tiêu dùng và mức thuế cân bằng.
4.4. Mô hình cân bằng thị trường hàng hoá và tiền tệ (mô hình IS-LM)
Mô hình IS-LM được dùng để phân tích trạng thái cân bằng của nền kinh tế trong cả
hai thị trường: thị trường hàng hoá và thị trường tiền tệ. Mô hình này được mô tả như sau.
Khi có mặt thị trường tiền tệ, mức đầu tư I phụ thuộc vào lãi suất r theo công thức:
1 1 1 1
( , 0)
I a br a b
  
Xét mô hình cân bằng thu nhập và tiêu dùng:
 
 
0 0
1 1 1 1
, 0
0,0 1
Y C I G
I a b r a b
C a bY a b
   

  


    

Thay phương trình của I, C vào Y ta được
 
1 1 0
1 1 0 1 (2)
Y a bY a b r G
b r a a G b Y
    
     
Phương trình (2) biểu diễn mối quan hệ giữa lãi suất và thu nhập khi thị trường hàng
hoá cân bằng và được gọi là phương trình IS.
Trong thị trường tiền tệ, lượng cầu tiền L phụ thuộc vào thu nhập Y và lãi suất r. Giả
sử lượng cung tiền cố định và 0
M và L có công thức
 
2 2 2 2
, 0
L a Y b r a b
  
Điều kiện cân bằng tiền tệ là
0 2 2 0 2 2 0 (3)
L M a Y b r M b r a Y M
      
61
Phương trình (3) biểu diễn điều kiện cân bằng của thị trường tiền tệ và được gọi là
phương trình LM.
Mô hình IS-LM là mô hình gộp IS và LM thành một hệ phương trình
 
1 1 0
2 2 0
1
b r a a G b Y
b r a Y M
     


 


Từ mô hình này ta xác định được mức thu nhập Y và lãi suất r đảm bảo cân bằng trong
cả hai thị trường: hàng hoá và tiền tệ.
Ví dụ 4.4. Cho mô hình
0 0
250; 4500; 34 15
10 0,3 ; 22 200
G M I r
C Y L Y r
   
   
a. Lập phương trình IS
b. Lập phương trình LM
c. Tìm mức thu nhập và lãi suất cân bằng của hai thị trường hàng hoá và tiền tệ.
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf
Đại-số-tuyến-tính.pdf

More Related Content

What's hot

đề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánđề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánHọc Huỳnh Bá
 
Hướng dẫn giải bài tập chuỗi - Toán cao cấp
Hướng dẫn giải bài tập chuỗi - Toán cao cấpHướng dẫn giải bài tập chuỗi - Toán cao cấp
Hướng dẫn giải bài tập chuỗi - Toán cao cấpVan-Duyet Le
 
74774655 chuỗi-ham
74774655 chuỗi-ham74774655 chuỗi-ham
74774655 chuỗi-hamVinh Phan
 
chuong 3. quan he
chuong 3. quan hechuong 3. quan he
chuong 3. quan hekikihoho
 
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7Bồi dưỡng Toán lớp 6
 
Khong gian vecto (chuong 3)
Khong gian vecto (chuong 3)Khong gian vecto (chuong 3)
Khong gian vecto (chuong 3)Nguyễn Phụng
 
Ví dụ cấu thành vi phạm pháp luật
Ví dụ cấu thành vi phạm pháp luậtVí dụ cấu thành vi phạm pháp luật
Ví dụ cấu thành vi phạm pháp luậtthaithanhthuong
 
30 bài toán phương pháp tính
30 bài toán phương pháp tính30 bài toán phương pháp tính
30 bài toán phương pháp tínhPham Huy
 
Toán rời rạc-Dành cho sinh viên,người thi cao học
Toán rời rạc-Dành cho sinh viên,người thi cao họcToán rời rạc-Dành cho sinh viên,người thi cao học
Toán rời rạc-Dành cho sinh viên,người thi cao họcducmanhkthd
 
Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6Bồi dưỡng Toán lớp 6
 
Xác Suất Thống Kê của Tống Đình Quỳ
Xác Suất Thống Kê của Tống Đình QuỳXác Suất Thống Kê của Tống Đình Quỳ
Xác Suất Thống Kê của Tống Đình Quỳhiendoanht
 
Đại số boolean và mạch logic
Đại số boolean và mạch logicĐại số boolean và mạch logic
Đại số boolean và mạch logicwww. mientayvn.com
 
Chuong 04 mach logic
Chuong 04 mach logicChuong 04 mach logic
Chuong 04 mach logicAnh Ngoc Phan
 
Công thức tính nhanh điện xoay chiều
Công thức tính nhanh điện xoay chiềuCông thức tính nhanh điện xoay chiều
Công thức tính nhanh điện xoay chiềutuituhoc
 
Bài tập có lời giải chương 1
Bài tập có lời giải chương 1Bài tập có lời giải chương 1
Bài tập có lời giải chương 1TheSPDM
 
Bảng giá trị hàm Laplace
Bảng giá trị hàm LaplaceBảng giá trị hàm Laplace
Bảng giá trị hàm Laplacehiendoanht
 
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụng
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụngChuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụng
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụngThắng Nguyễn
 
201-bai-tap-phuong-trinh-vi-phan
 201-bai-tap-phuong-trinh-vi-phan 201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phanSơn DC
 
Bai tap-dai-so-tuyen-tinh-co-giai
Bai tap-dai-so-tuyen-tinh-co-giaiBai tap-dai-so-tuyen-tinh-co-giai
Bai tap-dai-so-tuyen-tinh-co-giaigiaoduc0123
 

What's hot (20)

đề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánđề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp án
 
Hướng dẫn giải bài tập chuỗi - Toán cao cấp
Hướng dẫn giải bài tập chuỗi - Toán cao cấpHướng dẫn giải bài tập chuỗi - Toán cao cấp
Hướng dẫn giải bài tập chuỗi - Toán cao cấp
 
74774655 chuỗi-ham
74774655 chuỗi-ham74774655 chuỗi-ham
74774655 chuỗi-ham
 
bai tap co loi giai xac suat thong ke
bai tap co loi giai xac suat thong kebai tap co loi giai xac suat thong ke
bai tap co loi giai xac suat thong ke
 
chuong 3. quan he
chuong 3. quan hechuong 3. quan he
chuong 3. quan he
 
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7
Tổng hợp lý thuyết Toán lớp 7 cơ bản bao gồm Đại số 7 và Hình học 7
 
Khong gian vecto (chuong 3)
Khong gian vecto (chuong 3)Khong gian vecto (chuong 3)
Khong gian vecto (chuong 3)
 
Ví dụ cấu thành vi phạm pháp luật
Ví dụ cấu thành vi phạm pháp luậtVí dụ cấu thành vi phạm pháp luật
Ví dụ cấu thành vi phạm pháp luật
 
30 bài toán phương pháp tính
30 bài toán phương pháp tính30 bài toán phương pháp tính
30 bài toán phương pháp tính
 
Toán rời rạc-Dành cho sinh viên,người thi cao học
Toán rời rạc-Dành cho sinh viên,người thi cao họcToán rời rạc-Dành cho sinh viên,người thi cao học
Toán rời rạc-Dành cho sinh viên,người thi cao học
 
Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6
 
Xác Suất Thống Kê của Tống Đình Quỳ
Xác Suất Thống Kê của Tống Đình QuỳXác Suất Thống Kê của Tống Đình Quỳ
Xác Suất Thống Kê của Tống Đình Quỳ
 
Đại số boolean và mạch logic
Đại số boolean và mạch logicĐại số boolean và mạch logic
Đại số boolean và mạch logic
 
Chuong 04 mach logic
Chuong 04 mach logicChuong 04 mach logic
Chuong 04 mach logic
 
Công thức tính nhanh điện xoay chiều
Công thức tính nhanh điện xoay chiềuCông thức tính nhanh điện xoay chiều
Công thức tính nhanh điện xoay chiều
 
Bài tập có lời giải chương 1
Bài tập có lời giải chương 1Bài tập có lời giải chương 1
Bài tập có lời giải chương 1
 
Bảng giá trị hàm Laplace
Bảng giá trị hàm LaplaceBảng giá trị hàm Laplace
Bảng giá trị hàm Laplace
 
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụng
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụngChuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụng
Chuong2: ƯỚC LƯỢNG THAM SỐ, môn thống kê ứng dụng
 
201-bai-tap-phuong-trinh-vi-phan
 201-bai-tap-phuong-trinh-vi-phan 201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phan
 
Bai tap-dai-so-tuyen-tinh-co-giai
Bai tap-dai-so-tuyen-tinh-co-giaiBai tap-dai-so-tuyen-tinh-co-giai
Bai tap-dai-so-tuyen-tinh-co-giai
 

Similar to Đại-số-tuyến-tính.pdf

chuong 2. phep dem
chuong 2. phep demchuong 2. phep dem
chuong 2. phep demkikihoho
 
Chuong+1 ______
Chuong+1  ______Chuong+1  ______
Chuong+1 ______Phi Phi
 
Chuong+1 ______
Chuong+1  ______Chuong+1  ______
Chuong+1 ______Phi Phi
 
Bài giảng chuyên đề - Lê Minh Hoàng
Bài giảng chuyên đề - Lê Minh HoàngBài giảng chuyên đề - Lê Minh Hoàng
Bài giảng chuyên đề - Lê Minh HoàngBình Trọng Án
 
Toan cao cap a1
Toan cao cap a1Toan cao cap a1
Toan cao cap a1Huynh ICT
 
giao_trinh_ham_phuc.pdf
giao_trinh_ham_phuc.pdfgiao_trinh_ham_phuc.pdf
giao_trinh_ham_phuc.pdfNguynHuyn173
 
10 mat102-bai 7-v1.0
10 mat102-bai 7-v1.010 mat102-bai 7-v1.0
10 mat102-bai 7-v1.0Yen Dang
 
04 mat102-bai 1-v1.0
04 mat102-bai 1-v1.004 mat102-bai 1-v1.0
04 mat102-bai 1-v1.0Yen Dang
 
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10mcbooksjsc
 
[Phongmath] 10 chuongi menh de tap hop
[Phongmath] 10 chuongi menh de tap hop[Phongmath] 10 chuongi menh de tap hop
[Phongmath] 10 chuongi menh de tap hopphongmathbmt
 
05 mat101 bai1_v2.3013101225
 05 mat101 bai1_v2.3013101225 05 mat101 bai1_v2.3013101225
05 mat101 bai1_v2.3013101225Yen Dang
 
Le minh hoang_-_bai_giang_cac_chuyen_de
Le minh hoang_-_bai_giang_cac_chuyen_deLe minh hoang_-_bai_giang_cac_chuyen_de
Le minh hoang_-_bai_giang_cac_chuyen_deDong Pham The
 
51_55.pdf
51_55.pdf51_55.pdf
51_55.pdfHoaon4
 
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...Viết thuê trọn gói ZALO 0934573149
 
DSTT Lecture 1.pptx
DSTT Lecture 1.pptxDSTT Lecture 1.pptx
DSTT Lecture 1.pptxDiNgu2
 
05 mat102-bai 2-v1.0
05 mat102-bai 2-v1.005 mat102-bai 2-v1.0
05 mat102-bai 2-v1.0Yen Dang
 
Do do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergralDo do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergralBui Loi
 

Similar to Đại-số-tuyến-tính.pdf (20)

chuong 2. phep dem
chuong 2. phep demchuong 2. phep dem
chuong 2. phep dem
 
Chuong+1 ______
Chuong+1  ______Chuong+1  ______
Chuong+1 ______
 
Chuong+1 ______
Chuong+1  ______Chuong+1  ______
Chuong+1 ______
 
Bài giảng chuyên đề - Lê Minh Hoàng
Bài giảng chuyên đề - Lê Minh HoàngBài giảng chuyên đề - Lê Minh Hoàng
Bài giảng chuyên đề - Lê Minh Hoàng
 
Toan cao cap a1
Toan cao cap a1Toan cao cap a1
Toan cao cap a1
 
giao_trinh_ham_phuc.pdf
giao_trinh_ham_phuc.pdfgiao_trinh_ham_phuc.pdf
giao_trinh_ham_phuc.pdf
 
10 mat102-bai 7-v1.0
10 mat102-bai 7-v1.010 mat102-bai 7-v1.0
10 mat102-bai 7-v1.0
 
Bài tập số phức
Bài tập số phứcBài tập số phức
Bài tập số phức
 
04 mat102-bai 1-v1.0
04 mat102-bai 1-v1.004 mat102-bai 1-v1.0
04 mat102-bai 1-v1.0
 
Nguyen ham
Nguyen hamNguyen ham
Nguyen ham
 
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10
Tổng hợp kiến thức lớp 9 ôn tập vào lớp 10
 
[Phongmath] 10 chuongi menh de tap hop
[Phongmath] 10 chuongi menh de tap hop[Phongmath] 10 chuongi menh de tap hop
[Phongmath] 10 chuongi menh de tap hop
 
Số phức
Số phứcSố phức
Số phức
 
05 mat101 bai1_v2.3013101225
 05 mat101 bai1_v2.3013101225 05 mat101 bai1_v2.3013101225
05 mat101 bai1_v2.3013101225
 
Le minh hoang_-_bai_giang_cac_chuyen_de
Le minh hoang_-_bai_giang_cac_chuyen_deLe minh hoang_-_bai_giang_cac_chuyen_de
Le minh hoang_-_bai_giang_cac_chuyen_de
 
51_55.pdf
51_55.pdf51_55.pdf
51_55.pdf
 
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...
Luận văn: Một số bài toán phân hoạch xích đối xứng trên các xích đối xứng trê...
 
DSTT Lecture 1.pptx
DSTT Lecture 1.pptxDSTT Lecture 1.pptx
DSTT Lecture 1.pptx
 
05 mat102-bai 2-v1.0
05 mat102-bai 2-v1.005 mat102-bai 2-v1.0
05 mat102-bai 2-v1.0
 
Do do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergralDo do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergral
 

Đại-số-tuyến-tính.pdf

  • 1. TRƯỜNG ĐẠI HỌC NGOẠI THƯƠNG CƠ SỞ II BỘ MÔN CƠ SỞ - CƠ BẢN TỔ TOÁN TIN BÀI GIẢNG TOÁN CAO CẤP PHẦN 1: ĐẠI SỐ TUYẾN TÍNH
  • 2. 2 MỞ ĐẦU 0.1. Tập hợp * Khái niệm cơ bản Tập hợp có thể hiểu tổng quát là nhóm các đối tượng có chung một đặc trưng nào đó. Người ta thường dùng các chữ cái in hoa A, B, C,… để ký hiệu một tập hợp. Nếu x là phần tử của A kí hiệu x A  . Ngược lại kí hiệu x A  ( x không thuộc A). Tập hợp không có phần tử nào gọi là tập rỗng. Kí hiệu: . * Cách biểu diễn tập hợp Có ba cách biểu diễn một tập hợp: - Liệt kê: Liệt kê tất cả phần tử trong dấu { }. Ví dụ 0.1. Cho tập hợp A gồm các phần tử 0,1,2, , a b . {0,1,2, , } A a b  - Theo tính chất đặc trưng: { B x  | x có tính chất đặc trưng Q} . Ví dụ 0.2. 2 { | 4 0} B x x     đọc là “B là tập hợp các số x sao cho 2 4 0 x   ”. - Giản đồ Ven. Ví dụ 0.3. Cho , ,2 a b A  ; , 3 c A   , ta biểu diễn bằng giản đồ Ven như sau * Tập hợp con, tập hợp bằng nhau - Tập hợp con: A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B. Kí hiệu: A B  ( A chứa trong B) " , " A B x x A x B       Nhận xét: ta có A   và A A  với mọi tập hợp A. - Tập hợp bằng nhau: A B A B    và " , " B A x x A x B       * Các phép toán trên tập hợp - Phép giao: { , A B x x A    và } x B  . - Phép hợp: { , A B x x A    hay } x B  . a b 2 c -3
  • 3. 3 - Phép hiệu: { , A B x x A    và } x B  . - Phần bù: Cho A E  , phần bù của A đối với E là một tập hợp có tính chất { , C E A A C A E A x x E      và }. x A  - Hiệu đối xứng: Cho A, B là hai tập hợp. Hiệu đối xứng của A và B, kí hiệu A B  là một tập hợp được xác định như sau ( ) ( ) A B A B B A    . - Tích Descartes: Cho A, B là hai tập hợp. Tích Descartes của A và B, kí hiệu A B  là một tập hợp được xác định như sau     , | , . A B a b a A b B     Ví dụ 0.4. Cho   1,2,3 A  ,   0,1 B  . Khi đó               1,0 , 1,1 , 2,0 , 2,1 , 3,0 , 3,1 . A B   0.2. Ánh xạ * Định nghĩa Cho hai tập hợp , X Y  , một phép liên kết f tương ứng mỗi phần tử x X  với duy nhất một phần tử y Y  được gọi là ánh xạ từ X vào Y . Kí hiệu: : f X Y   ( ) x y f x  X gọi là tập hợp nguồn (miền xác định). Y gọi là tập hợp đích (miền giá trị). Ví dụ 0.5. 2 : , ( ) f f x x   là một ánh xạ. * Ảnh và tạo ảnh Cho ánh xạ : f X Y  và các tập hợp , C X D Y   . - Ảnh của tập C qua ánh xạ f , kí hiệu (C) f là tập hợp tất cả ảnh của các phần tử x C  . (C) { ( ) | } f f x Y x C    . Đặc biệt, ( ) f X là tập ảnh của ánh xạ f . - Tạo ảnh của D qua ánh xạ f , kí hiệu 1 ( ) f D  là tập tất cả các phần tử x X  có ảnh thuộc D. 1 ( ) { | ( ) } f D x X f x D     .
  • 4. 4 * Đơn ánh, toàn ánh, song ánh Cho ánh xạ : X Y f  . - Ánh xạ f được gọi là đơn ánh khi và chỉ khi 1 2 , x x X   và 1 2 1 2 ( ) ( ) f x f x x x    . Ví dụ 0.6. Cho ánh xạ : f  xác định bởi 3 ( ) 1 f x x   . Nếu 1 2 ( ) ( ) f x f x  hay 3 3 1 2 1 1 x x    , ta suy ra 3 3 1 2 x x  do đó 1 2 x x  . Vậy f là đơn ánh. - Ánh xạ f được gọi là toàn ánh khi và chỉ khi với mỗi phần tử y Y  tồn tại một phần tử x X  sao cho ( ) f x y  . Ví dụ 0.7. Cho ánh xạ : f  xác định bởi 3 ( ) 1 f x x   . Lấy bất kì y , phương trình 3 1 y x   luôn có nghiệm 3 1 x y   . Nghĩa là 3 , 1 y x y     sao cho 3 3 3 ( ) ( 1) ( 1) 1 f x f y y y       . Do đó f là toàn ánh. - Ánh xạ f được gọi là song ánh khi và chỉ khi f vừa là toàn ánh vừa là đơn ánh. Ví dụ 0.8. Cho ánh xạ : f  xác định bởi 3 ( ) 1 f x x   vừa là toàn ánh vừa là đơn ánh. Do đó f là song ánh. * Ánh xạ ngược Cho ánh xạ : X Y f  là một song ánh. Khi đó, mỗi phần tử x đều có một ảnh xác định ( ) f x Y  . Ngược lại, mỗi phần tử y Y  có một và chỉ một nghịch ảnh . x X  Khi đó, ta gọi ánh xạ biến y Y  thành x X  sao cho ( ) f x y  gọi là ánh xạ ngược của song ánh f , kí hiệu 1 f  . Vậy 1 f  là ánh xạ từ Y vào X, nó cũng là song ánh. * Tích của hai ánh xạ Cho ba tập hợp , , X Y Z và hai ánh xạ : , : f X Y g Y Z   . Ánh xạ từ X vào Z được xác định bởi   ( ) x X z g f x Z     được gọi là tích (hợp) của ánh xạ f và g , kí hiệu . o g f Ví dụ 0.9. Cho : f  , ( ) cos f x x  và : g  , ( ) x g x e  . Khi đó, ta có     cos ( ) ( ) ; x o g f x g f x e       ( ) ( ) sin . x o f g x f g x e   0.3. Trường số thực
  • 5. 5 * Khái niệm số thực Tập hợp các số hữu tỉ bao gồm các số thập phân hữu hạn và các số thập phân vô hạn tuần hoàn. Ngoài các số hữu tỉ, ta còn gặp các số thập phân vô hạn không tuần hoàn còn gọi là số vô tỉ. Tập hợp các số hữu tỉ và vô tỉ gọi là tập hợp số thực, kí hiệu . * Các phép toán và tính chất Trong tập số thực có các phép toán số học: cộng, trừ, nhân và chia có một số tính chất cơ bản sau: Với mọi , , a b c thì Giao hoán: ; . a b b a ab ba     Kết hợp: ( ) ( ); ( ) ( ). a b c a b c ab c a bc       Phân phối: ( ) . a b c ab ac    Quan hệ thứ tự: a b  nếu a nhỏ hơn hoặc bằng b . Tính trù mật của trong : , a b   nếu a b  thì tồn tại q sao cho . a q b   Giá trị tuyệt đối khi 0 khi 0 x x x x x        * Tiên đề cận trên đúng - Tập con A gọi là bị chặn trên (chặn dưới) nếu tồn tại số ( ) M m sao cho ( ) a M a m   với mọi . a A  - Tập con A gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới. Nghĩa là tồn tại các số , m M  sao cho [ ; ] A m M  . Hay tập A bị chặn nếu tồn tại số 0   sao cho a   với mọi . a A  - Số M gọi là một cận trên của A. Số bé nhất trong tất cả các cận trên của A gọi là cận trên đúng của A, kí hiệu sup A. Đặc biệt, nếu sup A A  thì sup A là phần tử lớn nhất của A, kí hiệu max A. - Số m gọi là một cận dưới của A. Số lớn nhất trong tất cả các cận dưới của A gọi là cận dưới đúng của A, kí hiệu inf . A Đặc biệt, nếu inf A A  thì inf A là phần tử nhỏ nhất của A, kí hiệu min A.
  • 6. 6 Tiên đề cận trên đúng: Mọi tập hợp A không rỗng, bị chặn trên đều có cận trên đúng thuộc . Suy ra mọi tập hợp A không rỗng, bị chặn dưới đều có cận dưới đúng thuộc . 0.4. Trường số phức * Khái niệm số phức Số phức là một số có dạng z a bi   . Trong đó , a b là các số thực; i là một kí hiệu thoả 2 1 i   mà ta gọi là đơn vị ảo. Hơn nữa, a gọi là phần thực của z , kí hiệu Rez ; b gọi là phần ảo của z , kí hiệu Imz . Môđun của số phức z , kí hiệu z xác định bởi 2 2 z a b   . Hai số phức , z a bi w c di     ( , , , ) a b c d  được gọi là bằng nhau nếu và chỉ nếu , a c b d   . Tập hợp các số phức được kí hiệu là . * Các phép toán trên trường số phức Cho hai số phức , z a bi w c di     ( , , , ) a b c d  . - Phép cộng trừ: ( ) ( ) ( ) ( ) z w a c b d i z w a c b d i           - Phép nhân: . ( )( ) ( ) ( ) z w a bi c di ac bd ad bc i        - Phép chia: 2 2 2 2 2 2 ( )( ) z a bi a bi c di ac bd bc ad i w c di c d c d c d              * Dạng lượng giác của số phức Cho số phức z a bi   ( , ) a b với môđun r z  . Argument của z , kí hiệu Arg z là tập hợp các góc  thoả cos (*) sin a r b r            Nếu  là một nghiệm của (*) thì Arg 2 , . z k k      Argument chính của , z kí hiệu arg z là một Argument của z thoả 0 arg 2 . z   
  • 7. 7 Nếu z a bi   thì 2 2 2 2 2 2 (cos sin )(**) a b z a b i r i a b a b                Trong đó , Arg . r z z    Ví dụ 0.10. Cho số phức 1 3 z i   . Tìm môđun, Arg , arg z z và dạng lượng giác của z. Ta có 2 2 1 ( 3) 2 z     và 1 cos 2 (*) 3 sin 2             . Một nghiệm của (*) là 3     suy ra Arg 2 , 3 z k k       và 5 arg . 3 z   Dạng lượng giác: 2 cos 2 sin 2 , . 3 3 z k i k k                              * Công thức Moivre Giả sử (cos sin ), '(cos ' sin ). z r i w r i         Khi đó ta có (cos sin ) n n z r n i n       . . ' cos( ') isin( ') z w r r         Ví dụ 0.11. Tính 2020 (1 3i)  . Ta có 1 3 2 cos 2 sin 2 , . 3 3 i k i k k                               Suy ra 2020 2020 2020 2019 2019 2020 2020 (1 3) 2 cos 2 sin 2 , 3 3 1 3 2 2 2 3. 2 2 k i k k i i                                           * Khai căn số phức Cho z là số phức. Số phức w gọi là một căn bậc n của z nếu như n w z  . Khai căn bậc n của z tức là đi tìm tất cả các căn bậc n của z . Cho   cos( 2 ) sin( 2 ) z r k i k          . Giả sử   cos sin w s i     là căn bậc n của . z Khi đó
  • 8. 8     cosn sin n cos( 2 ) sin( 2 ) 2 2 n n n n w z s i r k i k s r s r k n k n n                                     Vậy tập các căn bậc n của z là 2 2 cos sin , 0,1,..., 1 (*) n n k k k z w r i k n n n                        Căn bậc n của z là n số phức khác nhau tính bằng công thức (*). Ví dụ 0.12. Tìm tất cả căn bậc n của 1. Ta có 1 1 0. 1(cos 2 sin ), . i k i k        Căn bậc n của 1 là 2 2 1 cos sin , 0,1,..., 1 . n k k k i k n n n               * Giải phương trình Phương trình bậc 2: 2 0 ax bx c    luôn có hai nghiệm. Phương trình bậc n trong tập số phức luôn có n nghiệm. Ví dụ 0.13. Giải phương trình 2 4 7 0 x x    . Ta có 2 1 2 12 12 4 2 3 2 3 2 4 2 3 2 3 . 2 i i x i i x i                
  • 9. 9 CHƯƠNG 1: MA TRẬN VÀ ĐỊNH THỨC 1.1. Khái niệm cơ bản về ma trận 1.1.1. Ma trận Ma trận là một bảng số xếp theo dòng và theo cột. Một ma trận có m dòng và n cột được gọi là ma trận cấp m n  . Ma trận cấp m n  có dạng tổng quát như sau 11 12 13 1 21 22 23 2 1 2 3 n n m m m mn a a a a a a a a A a a a a              trong đó ( 1, ; 1, ) ij a i m j n    . Số ij a nằm trên dòng i và cột j của ma trận A gọi là phần tử của ma trận A. Phần tử nằm trên dòng i và cột j còn được kí hiệu là ( )ij A . Để viết ngắn gọn ma trận A, ta dùng kí hiệu ( ) ij m n A a   . Tập hợp các ma trận cấp m n  với ij a  được kí hiệu   m n M  . Ví dụ 1.1. 2 0 1 4 8 9 A         là ma trận cấp 2 3  , có 13 22 1; 8 a a    . 1 2 3 4 6 3 5 3 7 B             là ma trận cấp 3 3  , có 12 21 32 2, 4, 3 b b b     . 1.1.2. Các dạng ma trận * Ma trận không Cho ma trận A cấp m n  . A được gọi là ma trận không nếu tất các phần tử ma trận đều bằng 0,   0, , . ij A i j   Kí hiệu 0m n  . * Ma trận dòng, ma trận cột - Ma trận cấp 1 m gọi là ma trận cột (ma trận có 1 cột). - Ma trận cấp 1 n  gọi là ma trận dòng (ma trận có 1 dòng). Ví dụ 1.2.   4 1 2 5 C   là ma trận dòng.
  • 10. 10 2 4 1 D             là ma trận cột. * Ma trận chuyển vị Ma trận chuyển vị của A là ma trận thu được bằng cách đổi dòng thành cột tương ứng của ma trận A. Ma trận chuyển vị của A được kí hiệu là T A . Nếu A là ma trận cấp m n  thì T A là ma trận cấp n m  . Ví dụ 1.3. 1 1 1 3 5 3 2 1 2 7 5 7 T A A                      . Chú ý:   T T A A  . * Ma trận vuông Ma trận có số dòng và số cột bằng n được gọi là ma trận vuông cấp n. Kí hiệu   ij n n A a   hay   ij n a . Tập hợp tất cả các ma trận vuông cấp n được kí hiệu   Mn . Các phần tử có dạng ii a được gọi là phần tử chéo của ma trận. Đường thẳng chứa các phần tử chéo gọi là đường chéo chính của A. Ví dụ 1.4. 3 2 1 2 1 6 1 3 2 A             là ma trận vuông cấp 3. Các phần tử 3, 1, 2 là phần tử chéo của A. * Ma trận tam giác Cho A là ma trận vuông cấp n. - Ma trận A là ma trận tam giác trên nếu tất cả phần tử nằm bên dưới đường chéo chính đều bằng 0, tức là 0, ; 1,...,n; 1,..., . ij a i j i j n      - Ma trận A là ma trận tam giác dưới nếu tất cả các phần tử nằm bên trên đường chéo chính đều bằng 0, tức là 0, ; 1,...,n; 1,..., . ij a i j i j n      Ví dụ 1.5.
  • 11. 11 3 2 1 0 1 6 0 0 3 A             là ma trận tam giác trên. 2 0 0 0 8 0 0 0 2 4 1 0 1 2 4 1 B               là ma trận tam giác dưới. * Ma trận chéo Ma trận vuông A cấp n được gọi là ma trận chéo nếu các phần tử nằm ngoài đường chéo chính bằng 0, tức là 0, ij a i j    . Ví dụ 1.6. 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 A                là ma trận chéo. * Ma trận đơn vị Ma trận đơn vị là ma trận chéo mà các phần tử trên đường chéo chính bằng 1. Kí hiệu I hay n I (nếu là ma trân vuông cấp n). Ví dụ 1.7. 3 1 0 0 0 1 0 0 0 1 I            là ma trận đơn vị cấp 3. 1.1.3. Các phép biển đổi sơ cấp trên ma trận Ba phép biến đổi sau đây gọi là ba phép biến đổi sơ cấp trên dòng của ma trận - Nhân một dòng với một số 0   i i d d    - Cộng một dòng bởi một dòng khác đã được được nhân với 1 số  i i j d d d     - Đổi chỗ hai dòng cho nhau i j d d   Tương tự ta có ba phép biến đổi sơ cấp trên các cột của ma trận.
  • 12. 12 Ví dụ. 2 2 1 3 3 1 3 3 2 5 2 1 2 8 1 2 4 1 2 4 1 1 3 0 3 1 0 3 1 5 4 7 0 6 13 0 0 11 d d d d d d d d d                                                1.2. Phép toán cơ bản trên ma trận 1.2.1. Phép cộng hai ma trận Cho hai ma trận A và B cùng cấp m n  . Tổng hai ma trận, kí hiệu A+B là ma trận cấp m n  xác định bởi       ij ij ij A B A B    với mọi , . i j Ví dụ 1.8. 1 2 3 7 8 9 1 7 2 8 3 9 8 10 12 4 5 6 10 11 12 4 10 5 11 6 12 14 16 18                                  . Ví dụ 1.9. Cho 2 1 1 3 5 4 A             và 1 5 4 2 x B y            . Ta có 2 1 1 2 0 1 3 5 4 6 7 5 4 2 5 6 x x A B y y                                      . Chú ý: Hai ma trận chỉ cộng được với nhau khi chúng có cùng cấp. 1.2.2. Phép nhân vô hướng của ma trận với một số thực Tích của ma trận A cấp m n  với số thực  , kí hiệu A  , là ma trận cấp m n  xác định bởi     ij ij A A    với mọi i,j. Ví dụ 1.10. 3 1 4 6 2 8 2 2 1 5 4 2 10                . Chú ý: Khi 1    , ta sẽ viết A  thay cho ( 1)A  và gọi là ma trận đối của A. Ta định nghĩa ( ) A B A B     là phép trừ hai ma trận. 1.2.3. Tích của hai ma trận Cho hai ma trận     , ij ij m p p n A a B b     . Ta gọi tích của hai ma trận A và B, kí hiệu . A B, là ma trận cấp m n  được xác định như sau   1 1 2 2 1 ... p i j i j ip pj ik kj ij k AB a b a b a b a b        .
  • 13. 13 Ví dụ 1.11. 1 3 1 2 1 1.1 2.2 ( 1).3 1.3 2.1 ( 1)( 1) 2 6 . 2 1 . 3 1 2 3.1 1.2 2.3 3.3 1.1 2.( 1) 11 8 3 1                                             Chú ý: - Để tính tích hai ma trận A và B thì số cột của A phải bằng số dòng của B. - Phần tử ( . )ij A B bằng tổng các tích từng phần tử trên dòng i của A với phần tử tương ứng ở cột j của B. Với mỗi ma trận vuông A và số tự nhiên 1 n  , ta định nghĩa: 0 A I  , 1 . n n A A A   Ta gọi n A là luỹ thừa bậc n của A. Ví dụ 1.12. Cho 1 1 0 1 A         . Tính 2 3 , . A A Ta có 2 1 1 1 1 1 2 0 1 0 1 0 1 A                     . 3 2 1 2 1 1 1 3 . 0 1 0 1 0 1 A A A                      . 1.2.4. Tính chất Giả sử các phép toán dưới đây đều thực hiện được. Khi đó ta có các tính chất sau đây: i. A B B A    ii.     A B C A B C      iii. 0 A A   iv.   0 A A    v.     A B A B         vi.     , A A A           vii.       , A A        viii. 1. ; A A AI IA A    . 1.3. Định thức 1.3.1. Hoán vị
  • 14. 14 * Hoán vị Xét tập n số tự nhiên đầu tiên   1,2, ,n . Mỗi các sắp xếp có thứ tự được gọi là một hoán vị từ n số đã cho. Số các hoán vị khác nhau từ n phần tử đã cho là ! 1.2.3 n n  . Mỗi hoán vị của tập   1,2, ,n được kí hiệu là ( (1), (2), , ( )) n      với   ( ) 1,2,..., i n   và ( ) ( ) i j    . Ví dụ 1.13. Tập   1,2,3 có 3! 6  hoán vị là 1 2 3 4 5 6 (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).             * Nghịch thế Trong một hoán vị, mỗi cặp số liên tiếp có số lớn đứng trước số bé gọi là một nghịch thế của hoán vị. Số nghịch thế của hoán vị  được kí hiệu là ( ) N  . Ví dụ 1.14. Với các hoán vị của 3 phần tử trên, ta có 1 2 3 4 5 6 ( ) 0, ( ) ( ) 1, ( ) ( ) 2, ( ) 3. N N N N N N             1.3.2. Định thức của ma trận vuông * Định thức cấp n Cho ma trận vuông A cấp n 11 12 1 21 22 2 1 2 n n n n nn a a a a a a A a a a              Định thức của ma trận A được kí hiệu là det A hoặc A xác định như sau 11 12 1 21 22 2 ( ) 1 (1) 2 (2) (n) 1 2 det ( 1) n n N n n n nn a a a a a a A a a a a a a         Trong đó tổng lấy theo tất cả các hoán vị ( (1), (2), , ( )) n      . * Định thức cấp 1 Cho ma trận vuông cấp 1,   11 . A a  Khi đó 11 det . A a  * Định thức cấp 2 Cho ma trận vuông cấp 2, 11 12 21 22 a a A a a        . Khi đó
  • 15. 15 11 12 11 22 12 21 21 22 det a a A a a a a a a    . * Định thức cấp 3 Cho ma trận vuông cấp 3, 11 12 13 21 22 23 31 32 33 a a a A a a a a a a            . Khi đó     11 12 13 21 22 23 31 32 33 11 22 33 12 23 31 13 21 32 11 23 32 12 21 33 13 22 31 det . a a a A a a a a a a a a a a a a a a a a a a a a a a a a        Để nhớ công thức trên người ta thường sử dụng quy tắc Sarrus như sau: Ví dụ 1.15.     2 4 8 1 1 3 2.( 1).7 4.3.5 1.8.4 8.( 1).5 2.3.4 1.4.7 66 5 4 7           . 1.3.3. Tính chất của định thức Tính chất 1: Cho A là ma trận vuông, ta có     det det T A A  . Chú ý: Từ tính chất chuyển vị, mọi tính chất của định thức đúng cho dòng thì cũng đúng cho cột và ngược lại. Do đó, trong các tính chất của định thức, chỉ phát biểu cho các dòng, các tính chất đó vẫn giữ nguyên giá trị khi thay chữ “dòng” bằng chữ “cột”. Tính chất 2: Đổi chỗ hai dòng cho nhau và giữ nguyên vị trí các dòng còn lại thì định thức đổi dấu. Ví dụ 1.16. Ta có 3 6 7 1 5 2 1 5 2 3 6 7 4 8 10 4 8 10       (đổi chỗ dòng 1 và dòng 2 cho nhau). Giữ nguyên dấu Đổi dấu
  • 16. 16 Tính chất 3: Thừa số chung của một dòng có thể đưa ra ngoài dấu định thức. 11 12 1 11 12 1 21 22 2 21 22 2 1 2 1 2 ... ... ... ... ... ... ... ... ... ... ... ... ... ... n n n n n n nn n n nn a a a a a a ka ka ka a a a k a a a a a a  Chú ý: Cho A là ma trận vuông cấp n và số thực  , ta có     det det n A A    . Tính chất 4: Cho A là ma trận vuông cấp n. Giả sử dòng thứ i của ma trận A có thể biểu diễn ' " ij ij ij a a a   với 1,2,...,n. j  Khi đó ta có: ' '' ' '' ' '' ' ' ' '' '' '' 1 1 2 2 1 2 1 2 ... ... ... ... ... ... ... ... ... ... ... ... det ... ... ... . ... ... ... ... ... ... ... ... ... ... ... ... i i i i i n i n i i i n i i i n A a a a a a a a a a a a a       Ví dụ 1.17. 3 6 7 1 ( 2) 5 1 7 0 1 5 7 2 1 0 1 5 2 1 5 2 1 5 2 1 5 2 4 8 10 4 8 10 4 8 10 4 8 10                . Tính chất 5: Định thức của ma trận A bằng 0 nếu thoả một trong các điều kiện sau: - Có một dòng mà tất cả các phần tử của dòng đó đều bằng 0. - Có hai dòng bằng nhau hoặc tỉ lệ với nhau. Tính chất 6: Nếu ta nhân một dòng của định thức với số  bất kì rồi cộng vào dòng khác thì định thức không thay đổi. Ví dụ 1.18. 2 1 3 6 7 1 16 11 1 5 2 2 1 5 2 4 8 10 4 8 10 d d      . Tính chất 7: Định thức của ma trận tam giác, ma trận chéo bằng tích các phần tử nằm trên đường chéo chính. Tính chất 8: Nếu A, B là các ma trận vuông cấp n thì det( . ) det .det A B A B  . 1.3.4. Một số phương pháp tính định thức * Phương pháp khai triển định thức theo dòng hoặc cột Phần bù đại số Cho A là ma trận vuông cấp n
  • 17. 17 11 12 1 21 22 2 1 2 n n n n nn a a a a a a A a a a              . Gọi Mij là ma trận nhận được từ A bằng cách bỏ đi dòng i và cột j. Khi đó số ( 1) det M i j ij   gọi là phần bù đại số của phần tử ij a , kí hiệu là Aij . Định lý Laplace (Công thức khai triển định thức) Cho A là ma trận vuông cấp n. Khi đó - 1 1 2 2 1 det ... , 1, n ij ij i i i i in in j A a A a A a A a A i n         ( khai triển theo dòng i). - 1 1 2 2 1 det ... , 1, n ij ij j j j j nj nj i A a A a A a A a A j n         (khai triển theo cột j). Ví dụ 1.19. Tính định thức của ma trận 2 1 3 1 3 4 2 1 2 A              . Khai triển định thức theo dòng 1 11 12 13 2 1 3 det 1 3 4 2 1 3 2 1 2 A A A A        . Trong đó 1 1 1 2 11 12 1 3 13 3 4 1 4 ( 1) 10, ( 1) 6, 1 2 2 2 1 3 ( 1) 7. 2 1 A A A                Suy ra det 2.10 1.6 3.( 7) 35. A        Ví dụ 1.20. Tính định thức của ma trận 1 3 2 1 2 0 1 3 1 0 2 1 4 0 3 1 A                . Khai triển định thức theo cột thứ 2:
  • 18. 18 3 12 1 3 2 1 2 1 3 2 0 1 3 det 3 3( 1) 1 2 1 3.( 10) 30. 1 0 2 1 4 3 1 4 0 3 1 A A            * Phương pháp biến đổi định thức về dạng tam giác Các phép biển đổi sơ cấp trên ma trận Ba phép biến đổi sau đây gọi là ba phép biến đổi sơ cấp trên dòng của ma trận - Nhân một dòng với một số 0   i i d d    - Cộng một dòng bởi một dòng khác đã được được nhân với 1 số  i i j d d d     - Đổi chỗ hai dòng cho nhau i j d d   Tương tự ta có ba phép biến đổi sơ cấp trên các cột của ma trận. Phương pháp biến đổi định thức về dạng tam giác Sử dụng các phép biến đổi tương đương trên dòng (cột) của ma trận và sử dụng các tính chất của định thức để biến đổi ma trận của định thức về dạng tam giác. Định thức sau cùng sẽ bằng tích các phần tử trên đường chéo chính. Ví dụ 1.21. Tính 2 4 8 1 1 3 . 5 4 7 M   Ta có 2 2 1 3 3 1 3 3 2 2 4 8 1 2 8 1 2 4 1 1 3 2 1 1 3 2 0 3 1 5 5 4 7 5 4 7 0 6 13 1 2 4 2 2 0 3 1 2.1.( 3).( 11) 66. 0 0 11 d d d M d d d d d d                      1.3.5. Định thức của ma trận tích Nếu A, B là các ma trận vuông cấp n thì det( . ) det .det A B A B  . Đặc biệt, với số tự nhiên k ta có   det( ) det k k A A  .
  • 19. 19 Ví dụ 1.22. Tính định thức của ma trận 1 1 2 4 0 0 0 1 4 2 2 0 0 0 2 1 3 1 A                 . Ta có 1 1 2 4 0 0 det 0 1 4 2 2 0 2.8 16 0 0 2 1 3 1 A    . Ví dụ. Tính định thức 1 1 1 2 1 2 1 2 2 2 1 2 1 1 ... 1 1 1 ... 1 ... ... ... ... 1 1 ... 1 n n n n n n x y x y x y x y x y x y A x y x y x y                       với 2 n  . Ta có 1 1 2 2 1 1 ... 1 1 0 ... 0 ... 1 0 ... 0 0 0 ... 0 ... ... ... ... ... ... ... ... ... 1 0 ... 0 0 0 ... 0 n n x y y y x A x                        Do đó 1 1 2 2 2 1 2 1 1 1 ... 1 1 0 ... 0 ... 1 0 ... 0 0 khi 2 det 0 0 ... 0 ... ... ... ... ... ( )(y ) khi 2 ... ... ... ... 1 0 ... 0 0 0 ... 0 n n x y y y x n A x x y n x          1.4. Hạng của ma trận 1.4.1. Định nghĩa * Định thức con Cho A là ma trận cấp m n  . Chọn các phần tử nằm trên k dòng và k cột của A ta được một trận vuông cấp k. Định thức của ma trận vuông cấp k trên ta gọi là định thức con cấp k của A. Ví dụ 1.23. Cho ma trận 1 0 1 2 0 1 2 1 1 1 3 3 A               .
  • 20. 20 Chọn các phần tử trên dòng 1 và cột 2 ta được định thức 0 là một định thức con cấp 1 của ma trận A. Chọn các phần tử nằm trên dòng 1, dòng 3, cột 1 và cột 2 ta được định thức 1 2 1 3   là một định thức con cấp 2 của ma trận A. Chọn các phần tử nằm trên dòng 1, dòng 2, dòng 3, cột 1, cột 2 và cột 4 ta được định thức 1 0 2 0 1 1 1 1 3    là một định thức con cấp 3 của ma trận A. * Hạng của ma trận Cho A là ma trận cấp m n  khác 0. Hạng của ma trận A, kí hiệu rank( ) A hay r( ) A chính là cấp cao nhất trong các định thức con khác 0 của ma trận A. Vậy hạng của A là một số nguyên r thoả Tồn tại ít nhất một định thức con cấp r khác 0 của A. Mọi định thức con của A cấp lớn hơn r (nếu có) thì phải bằng 0. Quy ước: Nếu 0 A  thì r( ) 0 A  . Ví dụ 1.24. Tìm hạng của ma trận 1 2 3 0 3 2 1 0 0 0 5 0 4 4 4 0 A              . Ma trận A có duy nhất một định thức con cấp 4 và nó bằng 0. Tồn tại định thức con cấp 3 của A là 1 2 3 3 2 1 20 0. 0 0 5    Vậy r( ) 3 A  . 1.4.2. Một số tính chất của hạng ma trận Tính chất 1: 0 r( ) min{m,n} A   . Tính chất 2: Hạng của ma trận không đổi qua các phép biến đổi sau: - Phép chuyển vị ma trận. Tức là r( ) r( ) T A A  . - Các phép biển đổi sơ cấp dòng hoặc cột.
  • 21. 21 - Bỏ đi các dòng hoặc các cột có tất cả phần tử bằng 0. - Bỏ đi các dòng hoặc các cột là tổ hợp tuyến tính của các dòng hay các cột khác. Tính chất 3: Nếu A là ma trận vuông cấp n thì - r( ) det 0 A n A    . Khi đó ta gọi A là ma trận không suy biến. - r( ) det 0 A n A    . Khi đó ta gọi A là ma trận suy biến. Tính chất 4: Nếu A, B là các ma trận cùng cấp thì r( ) r( ) r( ) A B A B    . Tính chất 5: Cho A, B là các ma trận sao cho ta có thể thực hiện tích AB. Khi đó r( ) min{r( ),r( )} AB A B  . 1.4.3. Một số phương pháp tính hạng ma trận * Ma trận bậc thang Ma trận bậc thang là ma trận có dạng: + Các dòng bằng không (nếu có) thì nằm dưới cùng. + Phần tử khác không đầu tiên ở dòng dưới luôn nằm bên phải cột các phần tử khác không đầu tiên của dòng trên. Phần tử khác không đầu tiên này gọi là các phần tử đánh dấu của ma trận Ví dụ 1.25. 2 1 4 0 2 1 0 0 0 A             là ma trận bậc thang. Các số 11 22 2, 2 a a   là các phần tử đánh dấu. 1 2 5 0 2 1 0 1 0 B             không là ma trận bậc thang. Các số 11 22 32 1, 2, 1 b b b     là các phần tử đánh dấu. * Phương pháp tìm hạng của ma trận bằng các phép biến đổi sơ cấp Các phép biến đổi sơ cấp trên dòng (hoặc theo cột) không làm thay đổi hạng của ma trận. Do đó muốn tìm hạng của ma trận A ta dùng các phép biến đổi sơ cấp để đưa ma trận A về dạng ma trận bậc thang A’. Khi đó hạng của A bằng hạng của A’ và bằng số dòng khác 0 của A’. Ví dụ 1.26. Tìm hạng của ma trận 1 1 3 0 2 1 4 3 0 1 2 3 A               .
  • 22. 22 Ta có 3 3 2 2 2 1 2 1 1 3 0 1 1 3 0 1 1 3 0 2 1 4 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 0 0 0 d d d d d d A                                            . Vậy r( ) 2 A  . Ví dụ 1.27. Tìm hạng của ma trận 1 1 1 2 1 2 3 1 4 5 3 2 3 7 4 1 1 2 3 1 B                   . Ta có 2 2 1 3 3 1 4 4 1 3 3 2 4 4 3 4 4 2 2 3 2 1 1 1 2 1 1 1 1 2 1 2 3 1 4 5 0 1 1 0 3 3 2 3 7 4 0 1 0 1 1 1 1 2 3 1 0 2 1 1 2 1 1 1 2 1 1 1 1 2 1 0 1 1 0 3 0 1 1 0 3 0 0 1 1 4 0 0 1 1 4 0 0 1 1 4 0 0 0 0 0 d d d d d d d d d d d d d d d d d d                                                                              Vậy r( ) 3. B  * Phương pháp định thức bao quanh Định thức bao quanh Định thức con D cấp r 1  của ma trận A là định thức bao quanh định thức con D (cấp r ) của A khi và chỉ khi D được thành lập bằng cách bổ sung thêm một dòng và một cột của A ngoài r dòng và r cột đã chọn để lập định mức D . Định lý: Nếu ma trận A có định thức con 0 D  cấp r mà mọi định thức con cấp r+1 bao quanh nó (nếu có) đều bằng 0 thì hạng của ma trận A bằng r. Do đó ta có thể tìm hạng của ma trận theo phương pháp lặp sau: - Tìm một định thức con D khác 0 cấp s của ma trận A. - Tính các định thức con cấp 1 s  bao quanh nó (nếu có) + Nếu tất cả các định thức con cấp 1 s  bao quanh D đều bằng 0 (hoặc ma trận không có định thức con cấp 1) s  thì hạng của ma trận bằng s. + Nếu tồn tại định thức con D cấp 1 s  bao quanh D khác không thì ta lặp các bước trên. Sau một số bước hữu hạn ta sẽ tìm được hạng của ma trận.
  • 23. 23 Ví dụ 1.28. Tìm hạng của ma trận 1 2 3 4 2 0 4 5 3 0 0 6 A            . Ta có 1212 1 2 4 0 2 0 D     . ( 1212 D là định thức con lấy từ dòng 1, dòng 2, cột 1 và cột 2 của ma trận A). Trong số các định thức bao quanh nó có 123123 1 2 3 2 0 4 24 0. 3 0 0 D    Do ma trận A không có định thức bao quanh định thức 123123 D , do đó hạng của ma trận A bằng 3. 1.5. Ma trận nghịch đảo 1.5.1. Định nghĩa Cho A là ma trận vuông cấp n, A được gọi là ma trận khả nghịch nếu tồn tại ma trận vuông B cấp n sao cho n AB BA I   , với n I là ma trận đơn vị. Khi đó, B được gọi là ma trận nghịch đảo của A, kí hiệu 1 A . Ví dụ 1.29. Cho ma trận 3 4 6 0 1 1 2 3 4 A               và 1 2 2 2 0 3 2 1 3 B              . Ta có thể kiểm tra được 3 AB BA I   . Do đó ma trận A khả nghịch và 1 B A  . 1.5.2. Điều kiện tồn tại và duy nhất Định lý: Cho A là ma trận vuông cấp n, ma trận A khả nghịch khi và chỉ khi det 0 A  (ma trận A không suy biến). Hơn nữa, ma trận nghịch đảo của A là duy nhất. Ví dụ 1.30. Tìm m để ma trận 3 0 1 m m A m         khả nghịch. Ta có det ( 1) A m m   . A khả nghịch khi và chỉ khi 0 ( 1) 0 . 1 m m m m         1.5.3. Một số phương pháp tìm ma trận nghịch đảo * Phương pháp tìm ma trận nghịch đảo bằng cách sử dụng định thức
  • 24. 24 Nếu ma trận trận A khả nghịch thì 1 1 det A A P A   . Trong đó 11 21 1 12 22 2 1 2 ... ... ... n n A n n nn A A A A A A P A A A              là ma trận phụ hợp của A. Ví dụ 1.31. Tìm ma trận nghịch đảo của 1 2 1 0 1 1 1 2 3 A            . Ta có det 2 A  . Do đó A khả nghịch. Tìm ma trận phụ hợp A P của A. 1 1 1 2 1 3 11 12 13 1 1 0 1 0 1 ( 1) 1, ( 1) , ( 1) 1, 2 3 1 3 1 2 A A A             2 1 2 2 2 3 21 22 23 2 1 1 1 1 2 ( 1) 4, ( 1) 2, ( 1) 0, 2 3 1 3 1 2 A A A              3 1 3 2 3 3 31 32 33 2 1 1 1 1 2 ( 1) 1, ( 1) 1, ( 1) 1. 1 1 0 1 0 1 A A A              Suy ra, 1 4 1 1 2 1 1 0 1 A P               . Do đó 1 1 4 1 1/ 2 2 1/ 2 1 1 2 1 1/ 2 1 1/ 2 . 2 1 0 1 1/ 2 0 1/ 2 A                             * Phương pháp tìm ma trận nghịch đảo dựa vào phép biến đổi sơ cấp Để tìm ma trận nghịch đảo của ma trận vuông A cấp n ta lập ma trận có cấp 2 n n  sau đây:   11 12 1 21 22 2 1 2 1 0 0 0 1 0 | 0 0 1 n n n n n nn a a a a a a A I a a a               
  • 25. 25 Sau đó ta sử dụng các phép biến đổi sơ cấp trên dòng để đưa ma trận   | n A I về dạng   | n I B . Khi đó, ma trận B chính là ma trận nghịch đảo của ma trận A. Chú ý: Nếu trong quá trình biến đổi nếu khối bên trái xuất hiện một dòng với tất cả phần tử bằng 0 thì ma trận không khả nghịch. Ví dụ 1.32. Tìm ma trận nghịch đảo (nếu có) của 1 1 1 1 2 2 1 2 3 A            . Lập ma trận   3 | A I . Ta có   3 1 1 1 1 0 0 | 1 2 2 0 1 0 1 2 3 0 0 1 A I            Dùng các phép biến đổi sơ cấp trên dòng để đưa   3 | A I và dạng   3 | I B 2 2 1 3 3 1 1 1 1 1 0 0 1 1 1 1 0 0 1 2 2 0 1 0 0 1 1 1 1 0 1 2 3 0 0 1 0 1 2 1 0 1 d d d d d d                             1 1 2 3 3 2 2 2 3 1 0 0 2 1 0 1 0 0 2 1 0 0 1 1 1 1 0 0 1 0 1 2 1 0 0 1 0 1 1 0 0 1 0 1 1 d d d d d d d d d                                      Do đó A khả nghịch và 1 2 1 0 1 2 1 0 1 1 A                . * Dùng ma trận nghịch đảo giải phương trình ma trận Xét phương trình ma trận AX B  với A là ma trận vuông cấp n không suy biến. Khi đó ta có 1 1 1 AX B A AX A B X A B         . Tương tự phương trình ma trận XA B  cũng có nghiệm là 1 X BA  . Ví dụ 1.33. Giải phương trình AX B  với 1 0 2 2 , 1 1 0 1 A B               . Phương trình có nghiệm 1 1 1 0 2 2 1 0 2 2 2 2 1 1 0 1 1 1 0 1 2 1 X A B                                     .
  • 26. 26
  • 27. 27 BÀI TẬP CHƯƠNG 1 Bài 1. Cho các ma trận 1 3 1 2 2 5 1 2 , 3 7 , 0 3 . 3 4 5 4 4 2 A B C                                   a. Tìm các ma trận chuyển vị của A, B, C. b. Tính 3 4 A B C   . Bài 2. Cho các ma trận 2 1 1 0 1 4 A          và 2 1 0 3 2 2 B          . Tính a. 3 2 A B  .4 3 b A B  c. . , . T T A B B A Bài 3. Tính các tích của các ma trận sau a. 1 3 3 1 4 5 3 4 1 0 2 7 2 5 3 3 2 1                   b. 7 5 0 2 3 3 4 1 5 3 2 3 1 1 2 1                      Bài 4. Tính ( ) f A với 2 ( ) 5 3 f x x x    và 2 1 1 3 1 2 1 1 0 A             . Bài 5. Tính n A với n là số tự nhiên tuỳ ý và A là các ma trận sau a. 2 1 3 2 A          b. 1 0 1 A         c. 1 1 1 0 1 1 0 0 1 A            Bài 6. Cho 1 0 0 1 0 0 a A a a            . Tìm 2020 A . Bài 7. Tính các định thức sau a. 0 1 1 1 0 1 1 1 0 b. 1 1 1 4 2 3 2 3 6 c. 1 1 1 a b c b c a c a b    d. 2 2 2 2 2 2 cos2 cos sin cos2 cos sin cos2 cos sin         
  • 28. 28 e. 1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 f. 2 1 0 2 3 2 1 0 1 0 1 3 1 2 1 3   g. 2 1 1 1 2 1 1 1 2 1 1 1 x y z t h. 0 1 0 1 1 0 1 0 a b a b a b b a Bài 8. Tính các định thức cấp n bằng cách đưa về dạng tam giác a. 1 2 3 2 3 4 3 4 5 n n n n n n n b. 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 Bài 9. Giải các phương trình a. 1 2 1 1 1 1 1 0 3 1 1 1 0 2 0 2 x x      b. 2 1 1 1 1 1 1 0 0 1 1 1 0 2 0 2 x x      c. 1 1 1 1 0 2 1 1 3 x x x x x x x x  d. 1 1 1 1 1 1 0 1 1 ( 1) x n x     Bài 10. Chứng minh các đẳng thức sau a. 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 y z z x x y x y z y z z x x y x y z y z z x x y x y z           b. 3 3 3 1 1 ( )( )( )( ) 1 a a b b b a c b a b a b c c c       Bài 11. Tìm hạng của các ma trận sau a. 1 1 3 2 1 3 3 1 2             b. 1 10 8 2 3 5 3 7 3             c. 2 0 3 1 1 2 2 3 3 2 5 4 5 2 8 5                  d. 2 1 3 2 4 2 5 1 2 1 1 8              
  • 29. 29 e. 3 1 3 2 5 5 3 2 3 4 1 3 5 0 7 7 5 1 4 1                 f. 2 1 1 1 1 3 1 1 1 1 4 1 1 1 1 5 1 2 3 4 1 1 1 1                     Bài 12. Biện luận theo m hạng của các ma trận sau 1 2 1 4 2 2 1 1 1 1 1 7 4 11 A m               , B= 1 1 2 2 3 1 2 4 4 5 1 4 2 7 2 2 2 4 m m m m m m m                  2 2 2 2 2 2 2 2 2 2 2 2 m m C m m                    , 1 2 1 1 1 1 1 1 1 1 0 1 1 1 2 2 1 1 m D m                   Bài 13. Tìm ma trận nghịch đảo (nếu có) của các ma trận sau 1 4 2 1 1 2 2 1 1 2 , , 3 6 5 , 0 1 2 3 3 3 6 2 2 3 0 0 1 A B C D                                        1 1 1 1 1 2 2 1 1 1 1 1 1 3 1 1 , 1 1 1 1 0 1 1 1 1 1 1 1 3 5 1 1 E F                                     Bài 14. Tìm m để các ma trận sau khả nghịch a. 1 1 3 2 2 0 2 1 3 m m m             b. 1 1 1 1 m m m m m           Bài 15. Cho hai ma trận 1 2 3 7 3 2 2 5 6 , 1 2 7 3 5 12 8 9 3 A B                         . a. Tìm ma trận X thoả XA B  . b. Tìm ma trận X thoả AX B  .
  • 30. 30 Bài 16. Cho 1 1 0 2 3 1 2 2 1 , 4 1 3 1 0 1 2 0 2 A B                       . Tìm các ma trận X, Y sao cho ( ) ( ) T T A X Y B X Y A B       
  • 31. 31 CHƯƠNG 2: HỆ PHƯƠNG TRÌNH TUYẾN TÍNH 2.1. Khái niệm cơ bản 2.1.1. Hệ phương trình tuyến tính tổng quát Hệ phương trình tuyến tính (n ẩn, m phương trình) là hệ có dạng 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b                    Trong đó , ( 1, , ; 1, , ) ij i a b i m j n     là các số thực cho trước và 1 2 , , , n x x x gọi là các ẩn số. ( 1, , ; 1, , ) ij a i m j n     gọi là các hệ số. ( 1, , ) i b i m   gọi là các hệ số tự do. Ma trận 11 12 1 21 22 2 1 2 n n m m mn a a a a a a A a a a              gọi là ma trận hệ số của hệ (1). Ma trận 1 2 m b b B b              gọi là ma trận hệ số tự do hay cột tự do của hệ (1). Ma trận 11 12 1 1 21 22 2 2 1 2 n n m m mn m a a a b a a a b A A B a a a b                     gọi là ma trận hệ số bổ sung hay ma trận mở rộng của hệ (1).
  • 32. 32 Ma trận 1 2 n x x X x              gọi là ma trận ẩn số hay cột ẩn số. Hệ (1) có thể viết dưới dạng ma trận AX B  . Hệ (1) gọi là hệ Cramer nếu nó có số phương trình bằng số ẩn (n=m) và ma trận hệ số A không suy biến (det 0) A  . Hệ (1) gọi là hệ thuần nhất nếu cột tự do 0 i b  với mọi 1, i m  . Bộ n số 1 2 ( , , , ) n x x x gọi là nghiệm của hệ (1) nếu như khi ta thay chúng vào (1) ta được các đẳng thức đúng. Giải hệ phương trình tuyến tính tức là đi tìm nghiệm của hệ. Hai hệ phương trình tuyến tính cùng số ẩn được gọi là tương đương nếu nghiệm của chúng bằng nhau. 2.1.2. Điều kiện tồn tại nghiệm Định lý Kronecker-Capelli: Hệ phương trình tuyến tính (1) có nghiệm khi và chỉ khi ( ) ( ) rank A rank A  . Hơn nữa giả sử   ( ) ( ) (0 min , ). rank A rank A r r m n     Khi đó - Nếu r n  (n là số ẩn) thì hệ (1) có nghiệm duy nhất. - Nếu r n  thì hệ (1) có vô số nghiệm phụ thuộc vào n r  tham số. Ví dụ 2.1. Các hệ phương trình sau có nghiệm hay không? a. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 2 2 1 3 3 5 3 3 x x x x x x x x x x x x                  Ta tìm hạng của ma trận hệ số và ma trận hệ số mở rộng tương ứng. Ta có 2 2 1 3 3 1 3 3 2 2 3 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 0 0 4 0 1 3 3 5 3 3 0 0 8 0 0 1 1 1 1 1 0 0 4 0 1 0 0 0 0 2 d d d d d d d d d A A B                                                 
  • 33. 33 Vậy     2 3 r A r A    nên hệ đã cho vô nghiệm. b. 1 2 3 4 1 2 3 4 1 2 3 4 2 3 3 3 3 2 1 3 2 5 7 5 x x x x x x x x x x x x                  Ta tìm hạng của ma trận hệ số và ma trận hệ số mở rộng tương ứng. Ta có 1 2 3 3 1 3 3 2 2 2 1 3 2 2 3 3 3 3 1 1 1 2 1 1 1 1 2 1 2 3 3 3 3 3 2 5 7 5 3 2 5 7 5 1 1 1 2 1 1 1 1 2 1 0 1 1 1 1 0 1 1 11 0 1 2 3 2 0 0 3 2 3 d d d d d d d d d d d A A B                                                                          Vì     3 4 r A r A    nên hệ đã cho có vô số nghiệm phụ thuộc vào 1 tham số. 2.2. Phương pháp giải hệ Cramer Xét hệ phương trình tuyến tính Cramer dạng ma trận AX B  ( A là ma trận vuông, det 0) A  . 2.2.1. Phương pháp ma trận nghịch đảo Hệ phương trình có nghiệm duy nhất 1 X A B   . Ví dụ 2.2. Giải hệ phương trình tuyến tính sau bằng phương pháp Cramer 1 2 3 1 2 3 1 2 3 2 12 2 3 3 4 3 2 5 8 x x x x x x x x x                Xác định các ma trận , A B 1 2 1 12 2 3 3 , 4 3 2 5 8 A B                          Vì   det 12 0 A    nên hệ có nghiệm duy nhất.
  • 34. 34 Tính 1 A . Ta có 1 7 1 1 4 4 19 2 1 12 3 12 5 1 1 12 3 12 A                        Suy ra 1 19 17 3 X A B               . 2.2.2. Phương pháp Cramer Hệ Cramer n ẩn số có nghiệm duy nhất xác định bởi công thức det , 1,2, , det i i A x i n A   trong đó i A là ma trận nhận được từ ma trận A bằng cách thay đổi cột i bởi cột tự do 1 2 n b b B b              . Ví dụ 2.3. Giải hệ phương trình tuyến tính 1 2 3 2 3 1 2 3 2 1 3 3 2 1 x x x x x x x x               Ta có 2 1 1 1 0 1 3 ; 3 2 1 1 1 A B                         Tính các định thức 1 2 3 2 1 1 1 1 1 det 0 1 3 4;det 3 1 3 12 2 1 1 1 1 1 2 1 1 2 1 1 det 0 3 3 24; det 0 1 3 4 2 1 1 2 1 1 A A A A                 Nghiệm của hệ
  • 35. 35 3 1 2 1 2 3 det det 12 det 24 3; 6; 1 det 4 det 4 det A A A x x x A A A            2.3. Phương pháp giải hệ tổng quát 2.3.1. Phương pháp định thức Tìm hạng của A và A. - Nếu ( ) ( ) rank A rank A  thì hệ vô nghiệm. - Nếu ( ) ( ) rank A rank A r   . Khi đó tồn tại định thức con D cấp r của ma trận khác không. Ta bỏ đi tất cả các phương trình không dính đến ( r D m r  phương trình). Các ẩn ứng với các cột có dính đến r D giữ lại bên trái làm ẩn. Các ẩn ứng với cột không dính đến r D chuyển sang bên phải làm tham số. Khi đó ta có hệ Cramer. Ví dụ 2.4. Giải hệ phương trình 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 1 2 3 3 2 2 2 4 1 x x x x x x x x x x x x x x x                       Xác định , A A 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 3 ; 3 2 2 2 3 2 2 2 4 0 1 1 1 0 1 1 1 1 A A                                       Tìm     , r A r A 2 2 1 3 3 1 3 3 2 4 4 2 2 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 0 1 1 11 3 2 2 2 4 0 1 1 11 0 1 1 1 1 0 1 1 11 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 d d d d d d d d d d d d A                                                                      Suy ra     2 4 r A r A    . Do đó tồn tại định thức con cấp 2,
  • 36. 36 1213 1 1 1 0 2 1 D      của A ( 1213 D là định thức con của ma trận A có được bằng cách lấy các phần tử ở các dòng 1, dòng 2, cột 1 và cột 3). Ta giữ lại hai phương trình đầu. Giữ 1 3 , x x làm ẩn và chuyển 2 4 , x x sang vế phải làm tham số, ta được 1 3 2 4 1 3 2 4 1 2 3 x x x x x x x x            Hệ cuối là hệ Cramer do có định thức của ma trận hệ số chính là 1 1 1 0 2 1     . Áp dụng phương pháp Cramer ta được 2 4 2 4 1 1213 2 4 2 4 3 2 4 1213 1 1 3 1 2 1 1 2 3 1 x x x x x D x x x x x x x D                 Vậy nghiệm của hệ là   1 2 3 4 2 , 1 x x a a b x a b x b               2.3.2. Phương pháp Gauss Lập ma trận A. Dùng các phép biến đổi sơ cấp trên dòng đưa A về dạng bậc thang. Nếu trong quá trình biến đổi xuất hiện một dòng bên trái bằng 0, bên phải khác 0 thì hệ vô nghiệm. Nếu đưa A về dạng ma trận bậc thang thì các ẩn ứng với các cột chứa phần tử đánh dấu giữ lại làm ẩn, các ẩn ứng với các cột không chứa phần tử đánh dấu chuyển sang bên phải làm tham số, sau đó giải phương trình ngược từ dòng dưới cùng đến dòng 1. Ví dụ 2.5. Giải hệ phương trình
  • 37. 37 1 2 3 4 1 2 3 4 1 2 3 4 2 1 2 3 3 3 3 3 2 5 7 5 x x x x x x x x x x x x                  Lập ma trận hệ số mở rộng A 2 2 1 3 3 1 3 3 2 2 3 1 1 1 2 1 1 1 1 2 1 2 3 3 3 3 0 1 1 1 1 3 2 5 7 5 0 1 2 1 2 1 1 1 2 1 0 1 1 11 0 0 3 0 3 d d d d d d d d d A A B                                                          Vì     3 4 r A r A    nên hệ có vô số nghiệm phụ thuộc vào 1 tham số. Ta viết lại hệ 1 2 3 4 2 3 4 3 2 1 1 3 3 x x x x x x x x              Ta giữ 1 2 3 , , x x x làm ẩn chính và chuyển 4 x qua vế phải làm tham số. Khi đó 1 2 3 4 1 4 2 3 4 2 4 3 3 1 2 3 1 1 3 3 x x x x x x x x x x x x x                          Vậy nghiệm của hệ là   1 2 3 4 3 1 x a x a a x x a               2.4. Hệ phương trình tuyến tính thuần nhất Hệ phương trình tuyến tính thuần nhất là hệ phương trình có dạng 11 1 12 2 1 21 1 22 2 2 1 1 2 2 0 0 0 n n n n m m mn n a x a x a x a x a x a x a x a x a x                    với dạng ma trận là 0 AX  (2).
  • 38. 38 Hệ luôn có nghiệm vì ( ) ( 0 ) ( ) rank A rank A rank A       . Bộ số (0,0,…,0) luôn là một nghiệm của hệ gọi là nghiệm tầm thường. Các nghiệm khác không nếu có gọi là nghiệm không tầm thường của hệ. Từ định lý Kronecker-Capelli ta có - Nếu (A) r n  thì hệ (2) có nghiệm duy nhất, đó là nghiệm tầm thường. - Nếu (A) r r n   thì hệ (2) có vô số nghiệm phụ thuộc n r  tham số, trong đó ẩn chính phụ thuộc tham số. Ta gọi đó là nghiệm tổng quát của của hệ phương trình (2). - Cho các tham số những giá trị đặc biệt, lập nên một ma trận chéo, ta được nghiệm cơ bản của hệ phương trình (2). Ví dụ 2.6. Tìm nghiệm tổng quát và một hệ nghiệm cơ bản của hệ phương trình 1 2 3 4 1 2 3 4 1 2 3 4 2 0 2 3 3 3 0 3 5 5 4 0 x x x x x x x x x x x x                  Ta có 2 2 1 3 3 1 3 3 2 2 3 2 1 1 1 2 0 1 1 1 2 0 1 1 1 2 0 2 3 3 3 0 0 1 1 1 0 0 1 1 1 0 3 5 5 4 0 0 2 2 2 0 0 0 0 0 0 d d d d d d d d d                                                  Vì     2 4 r A r A    nên hệ có vô số nghiệm phụ thuộc vào 2 tham số. Ta viết lại hệ 1 2 3 4 2 3 4 2 0 0 x x x x x x x           Xem 1 2 , x x là ẩn chính và 3 4 , x x     là tham số. Khi đó   1 2 1 2 2 3 3 4 4 2 0 3 0 , x x x x x x x x x                                             Vậy nghiệm tổng quát của hệ là   3 , , ,        với ,    . Một hệ nghiệm cơ bản của hệ là     0,1,1,0 ; 3,1,0,1  .
  • 39. 39 Chú ý Hệ thuần nhất (2) có nghiệm không tầm thường khi và chỉ khi hạng của ma trận hệ số nhỏ hơn số ẩn ( ( ) ) rank A n  . Hệ phương trình tuyến tính thuần nhất có số phương trình bằng số ẩn (m=n) thì ma trận hệ số là ma trận vuông. Khi đó - Hệ có nghiệm duy nhất tầm thường khi và chỉ khi det 0 A  . - Hệ có nghiệm không tầm thường khi và chỉ khi det 0 A  .
  • 40. 40 BÀI TẬP CHƯƠNG 2 Bài 1. Giải các hệ phương trình tuyến tính sau: a. 2 3 9 3 5 4 4 7 5 x y z x y z x y z                b. 3 2 4 8 2 4 5 11 4 3 2 1 x y z x y z x y z               c. 1 2 3 1 2 3 1 2 3 2 1 2 2 4 4 4 2 x x x x x x x x x                  d. 1 2 3 1 2 3 1 2 3 2 2 19 2 4 31 4 6 9 2 x x x x x x x x x                e. 1 2 3 1 2 3 1 2 3 3 4 7 2 3 0 7 10 5 2 x x x x x x x x x               f. 2 0 2 2 4 0 5 5 10 0 x y z x y z x y z               g. 1 2 3 1 2 3 1 2 3 2 2 21 5 2 29 3 10 x x x x x x x x x               Bài 2. Giải các hệ phương trình sau a. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 2 6 2 2 3 8 3 2 2 4 2 3 2 8 x x x x x x x x x x x x x x x x                         b. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 2 4 3 3 3 2 6 3 2 6 3 3 6 x x x x x x x x x x x x x x x x                        c. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 2 4 4 3 2 6 8 5 3 4 12 3 3 11 5 6 x x x x x x x x x x x x x x x x                        d. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 15 2 3 4 5 35 3 6 10 15 70 4 10 20 35 126 5 15 35 70 210 x x x x x x x x x x x x x x x x x x x x x x x x x                                   Bài 3. Giải và biện luận các hệ phương trình sau đây theo tham số thực m. a. 1 1 1 mx y z x my z x y mz               b.     2 1 1 1 1 mx y z m x m y m z m x y mz                  c. 2 2 2 1 7 5 x y z t m x y z t m x y z t m                   
  • 41. 41 Bài 4. Giải và biện luận hệ phương trình sau       1 2 3 1 2 3 2 1 2 3 1 1 1 1 x x x x x x x x x                       Bài 5. Cho hệ phương trình       2 1 2 5 2 4 3 1 3 x y z x m y z x m y m z m                   a. Tìm m để hệ đã cho là hệ Cramer. Tìm nghiệm trong trường hợp đó. b. Tìm m để hệ trên vô nghiệm. Bài 6. Cho hệ phương trình       2 1 2 5 2 4 3 1 3 x y z x m y z x m y m z m                   a. Tìm m để hệ phương trình vô nghiệm. b. Tìm m để hệ phương trình có vô số nghiệm và tìm nghiệm trong trường hợp đó. Bài 7. Giải các hệ phương trình thuần nhất sau a. 1 2 3 4 1 2 4 1 2 3 4 0 2 0 3 0 x x x x x x x x x x x                 b. 1 2 3 1 2 3 1 2 3 2 4 0 3 5 7 0 4 5 6 0 x x x x x x x x x               c. 1 2 3 4 1 2 4 1 2 3 4 0 2 0 3 0 x x x x x x x x x x x                 d. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 0 2 3 0 3 8 0 2 9 7 0 x x x x x x x x x x x x x x x x                        Bài 8. Giải hệ a. 1 2 3 4 1 3 5 1 2 3 4 5 6 3 4 3 0 3 2 3 0 9 3 6 3 3 0 x x x x x x x x x x x x                  b. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 2 0 2 2 3 0 3 2 2 0 2 5 2 2 0 x x x x x x x x x x x x x x x x x x x x                           
  • 42. 42 c. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 6 9 3 6 0 2 0 2 5 3 0 2 4 2 2 2 0 x x x x x x x x x x x x x x x x x x x x                            Bài 9. Tìm a để các hệ sau có kinh nghiệm không tầm thường và xác định các nghiệm không tầm thườn đó a. 2 0 2 0 5 0 x y z x y z x y az               b. 2 3 2 0 0 8 4 0 a x y z ax y z x y z              
  • 43. 43 CHƯƠNG 3: KHÔNG GIAN VÉCTƠ 3.1. Khái niệm Cho V là một tập hợp tuỳ ý khác rỗng. V gọi là không gian véctơ trên (mỗi phần tử của V gọi là một véctơ) nếu trong V có hai phép toán  Phép cộng hai véctơ   , V V V         Phép nhân vô hướng một số thực a với một véctơ   , V V a a     Đồng thời phép cộng và phép nhân thoả 8 điều kiện sau 1. , : V            2.     , , : V                 3. Tồn tại V   sao cho : V             . Mọi véctơ  có tính chất trên gọi là véctơ không. 4. , ' V : ' V            . Khi đó ta gọi '  là véctơ đối của  . 5.   , , : V a a a a              6.   , , : V a b a b a b            7.     , , : V a b ab a b         8. :1. V       Sau đây là các ví dụ cơ bản về không gian véctơ trên . Ví dụ 3.1. Không gian tích Descartes     1 2 , , , : n n i V a a a a    với phép toán cộng và phép nhân với một số thực được định nghĩa như sau Phép cộng: Với     1 2 1 2 , , , , , , , n n a a a b b b       ta có   1 1 2 2 , , , n n a b a b a b        Phép nhân với số thực: Với a ta có   1 2 , , , n a aa aa aa   
  • 44. 44 Khi đó n cùng với hai phép toán cộng và phép nhân được định nghĩa như trên là không gian véctơ trên . Ví dụ 3.2. Xét m n V M   là tập hợp các ma trận cấp m n  . Khi đó V cùng với phép cộng ma trận và phép nhân ma trận với một số thực là không gian véctơ trên . 3.2. Tính chất của không gian véctơ Tính chất 1: Véctơ không của không gian véctơ là duy nhất. Ta kí hiệu véctơ không của không gian V là 0V hoặc 0. Ví dụ,     2 3 0 0,0 , 0 0,0,0  . Tính chất 2: Véctơ đối của mỗi véctơ  là duy nhất. Khi đó ta kí hiệu   là phần tử đối của  . Tính chất 3: Phép cộng có luật giản ước. Tức là , , : V                 Tính chất 4: Phép nhân có luật giản ước cho một số khác không. Tức là   , , 0 : V a a a             Tính chất 5: Phép trừ hai véctơ. Cho , V    , ta định nghĩa           Khi đó   : a a a a          . Tính chất 6: Cho 0 , : 0 0 a V a a             3.3. Mối quan hệ tuyến tính giữa các véctơ 3.3.1. Biểu thị tuyến tính Cho hệ véctơ   1 2 , , , n V     . Khi đó véctơ V   gọi là biểu thị tuyến tính được qua các véctơ 1 2 , , , n    nếu tồn tại các số 1 2 , , , n a a a  sao cho 1 1 2 2 n n a a a         . Khi đó ta cũng nói  là tổ hợp tuyến tính của các véctơ 1 2 , , , n    . Ví dụ 3.3. Trong 2 , xét 3 véctơ 1 2 3 ( 3,0), (0; 2), (3,2)         . Khi đó véctơ không 0 (0,0)  có thể biểu thị tuyến tính qua các véctơ 1 2 3 , ,    như sau 1 2 3 0 0 0 0       1 2 3 0 1 1 1      
  • 45. 45 Tổ hợp tuyến tính 1 n i i i a   của hệ véctơ   1 2 , , , n    gọi là tầm thường nếu 1 2 0 n a a a     . Ngược lại, nếu có ít nhất một hệ số 0(1 ) j a j n    thì tổ hợp tuyến tính 1 n i i i a   gọi là không tầm thường. Ví dụ 3.4. Trong 3 cho các véctơ     1 2 3 5,2, 1 , 0,2, 2 , (1, 1,3)          và (2,1, 2)    . Khi đó  có thể biểu thị tuyến tính qua 1 2 3 , ,    được không? 3.3.2. Độc lập tuyến tính và phụ thuộc tuyến tính Cho V là một không gian véctơ trên và     1 2 , , , n V       là một hệ véctơ. Hệ    gọi là phụ thuộc tuyến tính nếu tồn tại các số 1 2 , , , n a a a  không đồng thời bằng 0 sao cho 1 1 2 2 0 n n a a a        Hệ    gọi là độc lập tuyến tính nếu nó không phụ thuộc tuyến tính. Tức là 1 1 2 2 1 2 0 0 n n n a a a a a a             Ví dụ 3.5. Xét sự độc lập tuyến tính, phụ thuộc tuyến tính của các hệ véctơ sau a. 1 2 3 (1,0,3); (2,1, 1); (3,2, 2)         b. 1 2 (3,6); ( 1, 2)       Chú ý: Đặc biệt trong n cho hệ véctơ     1 2 , , , m      với       1 11 12 1 2 21 22 2 1 2 , , , , , , , , , n n m m m mn a a a a a a a a a       Xét A là ma trận lập từ hệ véctơ trên 11 12 1 21 22 2 1 2 n n m m mn a a a a a a A a a a              Hệ    độc lập tuyến tính khi và chỉ khi ( ) rank A m  . Hệ    phụ thuộc tuyến tính khi và chỉ khi ( ) rank A m  . Ví dụ 3.6. Xét tính độc lập tuyến tính hay phụ thuộc tuyến tính của các hệ véctơ sau
  • 46. 46 a. 1 2 3 (1,1,1); (2,3,2); (0,2,1)       b. 1 2 3 (1,1,0,0); (0,1,1,0); (2,3,1,0)       Định lý: Cho hệ véctơ   1 2 , , , m    độc lập tuyến tính. Khi đó hệ véctơ   1 2 , , , , m     độc lập tuyến tính khi và chỉ khi  không biểu thị tuyến tính được qua 1 2 , , , m    . 3.4. Hạng của hệ véctơ và số chiều của không gian véctơ 3.4.1. Hạng của hệ véctơ *Hệ con độc lập tuyến tính tối đại Cho hệ véctơ     1 2 , , , n V       . Hệ con của hệ véctơ    là hệ véctơ gồm một số (hoặc tất cả) các véctơ của hệ. Hệ con   1 2 , , , i i ik    của hệ    được gọi là hệ con độc lập tuyến tính tối đại nếu thoã hai điều kiện sau (i) Hệ   1 2 , , , i i ik    độc lập tuyến tính. (ii) Mọi véctơ của hệ    đều biểu thị tuyến tính được qua hệ con 1 2 , , , i i ik    Nhận xét: Một hệ véctơ có thể có nhiều hệ con độc lập tuyến tính tối đại khác nhau nhưng số véctơ của các hệ con độc lập tuyến tính tối đại thì luôn bằng nhau. Số đó ta gọi là hạng của hệ    , kí hiệu   rank  . *Cách tìm hệ con độc lập tuyến tính tối đại, hạng của một hệ véctơ trong n Trong n cho một hệ véctơ     1 2 , , , m      . Để tìm hệ con độc lập tuyến tính tối đại của hệ    ta làm như sau Bước 1: Lập ma trận A với các dòng là các véctơ . i  Bước 2: Dùng các phép biến đổi sơ cấp trên dòng đưa A về dạng ma trận bậc thang. Bước 3: Khi đó hạng của hệ    chính bằng hạng của ma trận A và hệ con độc lập tuyến tính tối đại của    gồm các véctơ ứng với các dòng khác không của ma trận A. Ví dụ 3.7. Trong 4 cho các véctơ 1 2 3 (1,1,1,0); (1,1, 1,1); (3,4,0,2)        và 4 (3,4,0,2)   . Tìm hạng và chỉ ra một hệ con độc lập tuyến tính tối đại của hệ   1 2 3 4 , , ,     . Chú ý
  • 47. 47 - Ta cũng có thể lập ma trận B, với các cột của B là các véc tơ i  . Khi đó T B A  . Dùng các phép biến đổi sơ cấp trên dòng đưa B về dạng ma trận bậc thang. Khi đó     rank rank B   . Hệ con độc lập tuyến tính tối đại bao gồm các véctơ i  ứng với các cột chứa phần tử đánh dấu của ma trận bậc thang. - Trong không gian véctơ V cho hệ     1 2 , , , m      . Nếu hệ    độc lập tuyến tính thì   rank m   và hệ con độc lập tuyến tính của tối đại của    cũng chính là hệ    . Ngược lại nếu    phụ thuộc tuyến tính thì   rank m   và hệ con độc lập tuyến tính tối đại của    có ít hơn m phần tử. 3.4.2. Cơ sở, số chiều, toạ độ * Cơ sở Hệ véctơ     1 2 , , , m      trong không gian véctơ V gọi là một cơ sở của V nếu    độc lập tuyến tính và mọi véctơ của V đều biểu thị tuyến tính qua    . Ví dụ 3.8. Trong n xét hệ véctơ 1 2 (1,0, ,0); (0,1, ,0), , (0,0, ,1) n e e e    . Dễ dàng kiểm tra hệ này độc lập tuyến tính và với mọi véctơ   1 2 , , , n x x x x  ta có 1 1 2 2 n n x x e x e x e     Hệ véctơ   1 2 , , , n e e e  là một cơ sở của n và được gọi là cơ sở chính tắc của không gian n , kí hiệu   n C . * Số chiều Cho V là một không gian véctơ, V gọi là không gian n chiều nếu trong V có ít nhất một hệ n véctơ độc lập tuyến tính và mọi hệ n+1 véctơ đều phụ thuộc tuyến tính. Kí hiệu dim . V n  Không gian không (chỉ gồm một véctơ không) được xem là có số chiều 0 n  . Ví dụ 3.9. dim n n  . Định lý: Trong mỗi không gian véctơ n chiều (i) Mọi hệ gồm nhiều hơn n véctơ đều phụ thuộc tuyến tính (ii) Mọi cơ sở đều gồm đúng n véctơ. Mọi hệ độc lập tuyến tính gồm n véctơ đều là cơ sở.
  • 48. 48 (iii) Mọi hệ độc lập tuyến tính gồm ít hơn n véctơ đều có thể bổ sung thành một một cơ sở. Đặc biệt, trong n , hệ véctơ 1 11 12 1 ( , , , ) n a a a   2 21 22 2 ( , , , ) n a a a   … 1 2 ( , , , ) n n n nn a a a   là một cơ sở của n khi và chỉ khi nó độc lập tuyến tính, nói cách khác 11 12 1 21 22 2 1 2 0 n n n n nn a a a a a a a a a  Ví dụ 3.10. Chứng minh hệ véc tớ 1 2 3 (1,2,3), (2,0,4), (1,6,7) u u u    là một cơ sở của 3 . * Toạ độ véctơ Cho V là một không gian véctơ n chiều với     1 2 , , , n      là một cơ sở của V. Khi đó mọi véctơ x V  đều có thể viết được duy nhất dưới dạng 1 1 2 2 n n x a a a       trong đó 1 2 , , , n a a a  . Ta gọi bộ số 1 2 ( , , , ) n a a a là toạ độ của véctơ x trong cơ sở    . Kí hiệu     1 2 / , , , n x a a a   . Ta cũng kí hiệu     1 2 / ... n a a x a               . Khi cơ sở    đã chỉ rõ ta viết   x thay cho     / x  . Ví dụ 3.11. Trong 3 cho hệ 3 véctơ     1 2 3 (1,1,0), (0,1,1), (1,0,1) u u u      . a. Chứng tỏ rằng    là một cơ sở của không gian 3 . b. Tìm toạ độ của các véctơ 1 2 3 (1,0,0), (0,1,0), (0,0,1) e e e    và (4,3,5) u  trong cơ sở    . * Ma trận cơ sở, công thức đổi toạ độ
  • 49. 49 Trong không gian véctơ V cho hai cơ sở     1 2 , , , n          1 2 , , , n      Ta có 1 11 1 12 2 1n n a a a        2 21 1 22 2 2n n a a a        … 1 1 2 2 n n n nn n a a a        Khi đó ma trận 11 21 1 12 22 2 1 2 n n n n nn a a a a a a T a a a               gọi là ma trạn đổi cơ sở từ  sang  . Công thức đổi toạ độ Trong không gian véctơ V cho hai cơ sở     1 2 , , , n          1 2 , , , n      Lấy một véctơ x thuộc V và giả sử toạ độ của x trong hai cơ sở là         1 2 1 2 , , , , , , n n x x x x x y y y       Khi đó ta có         / . / x T x     Chú ý: 1 T T     . Ví dụ 3.12. Trong 3 cho hai cơ sở:     1 2 3 (1, 1,1), (2,3,1), (1,2,1)          và cơ sở chính tắc 3 (C ) . a. Tìm ma trận đổi cơ sở từ 3 ( ) C sang    .
  • 50. 50 b. Tìm ma trận đổi cơ sở từ    sang 3 ( ) C . c. Cho 3 (1,2,3)    . Tìm toạ độ   /   . d. Tìm véctơ 3   biết toạ độ của nó trong    là   2,3,5 . 3.5. Không gian véctơ con 3.5.1. Định nghĩa không gian véctơ con Cho V là không gian véctơ trên . U là một tập con khác rỗng của V. Tập con U   của V gọi là không gian véctơ con của V nếu nó thoả 2 điều kiện (i) , : U U         (ii) , : a U a U       Ví dụ 3.13. Trong không gian véctơ 3 cho tập con     1 2 1 2 ,0, : , U x x x x x    . Khi đó U có phải là không gian véctơ con của 3 không? Ví dụ 3.14. Tập nào sao đây là không gian con của 2 a.   2 1 : (3 ,2 ), U x x a a a     b.   2 1 : (1 ,2 3 ), U x x a a a       3.5.2. Không gian con sinh bởi một hệ véctơ Trong không gian véctơ V, cho hệ véctơ   1 2 , ,..., m    . Khi đó tập hợp các tổ hợp tuyến tính của các véctơ 1 2 , ,..., m    , kí hiệu 1 2 , ,..., m    là không gian véctơ con của V. Không gian này ta gọi là không gian con của V sinh bởi hệ véctơ   1 2 , ,..., m    (còn gọi là bao tuyến tính của hệ véctơ   1 2 , ,..., m    ). Ta gọi   1 2 , ,..., m    là một hệ sinh của 1 2 , ,..., m    . Chú ý: cơ sở của 1 2 , ,..., m    chính là hệ con độc lập tuyến tính tối đại của   1 2 , ,..., . m    Ví dụ 3.15. Trong 3 , tìm một cơ sở, số chiều và bao tuyến tính của hệ   1 2 3 (1,1,1), (2,3,4), (4,5,6)      
  • 51. 51 BÀI TẬP CHƯƠNG 3 Bài 1. Trong không gian 3 xét xem u có phải là tổ hợp tuyến tính của 1 2 3 , , u u u hay không. a.         1 2 3 2,1,0 ; 3; 1;1 ; 2,0, 2 ; 1,1,1 u u u u        b.         1 2 3 2,4,3 ; 1, 1,0 ; 3,3,3 ; 1,2,0 u u u u       Bài 2. Xác định số  để u là tổ hợp tuyến tính của 1 2 3 , , u u u . a.         1 2 3 1,2, 1 ; 2;1;3 ; 0,1, 1 ; 1, ,2 u u u u         b.         1 2 3 1, 2,3 ; 0, 1, ; 1,0,1 ; 3, 1,2 u u u u         Bài 3. Các hệ véctơ dưới đây là độc lập tuyến tính hay phụ thuộc tuyến tính trong không gian tương ứng. a.         2, 3,1 ; 3, 1,5 ; 1, 4,3    trong 3 b.         5,4,3 ; 3,3,2 ; 8,1,3 trong 3 c.           4, 5,2,6 ; 2, 2,1,3 ; 6, 3,3,9 ; 4, 1,5,6     trong 4 d.         1,0,0,0 ; 0,1,0,0 ; 0,0, ,0 a ; a trong 4 Bài 4. Tuỳ theo  xét sự phụ thuộc tuyến tính của hệ véctơ sau trong trong 3 1 2 3 1 1 1 1 1 1 , , ; , , ; , , 2 2 2 2 2 2 v v v                                     Bài 5. Tìm một hệ con độc lập tuyến tính tối đại và hạng của các hệ véctơ sau: a.         1 2 3 2,1,0 , 0, 2,1 ; 2, 1,2 u u u      b.           1 2 3 4 1, 1,0 ; 2, 1, 1 ; 0,1, 1 ; 2,0, 2 u u u u          Bài 6. Hệ véctơ nào là cơ sở của 3 . Tìm toạ độ của véctơ   7,14,3 u  trong cơ sở vừa tìm được. a.       1 2 2,1,3 ; 1,1,0 u u    b.         1 2 3 2,1,3 ; 1,1,0 ; 1,3,1 u u u     c.           1 2 3 4 2,1,3 ; 1,1,0 ; 1,1, 1 ; 0,0,4 u u u u       d.         1 2 3 2, 3,1 ; 4,1,1 ; 0, 7,1 u u u      e.         1 2 3 1,6,4 ; 2,4, 1 ; 1,2,5 u u u     
  • 52. 52 Bài 7. Trong không gian 3 cho các cơ sở   1 2 3 , , B u u u  ;   1 2 3 ' , , B u u u     và véctơ u. Tìm ma trận đổi cơ sở ( ) B sang ( ') B và toạ độ của u trong từng cơ sở. a.             1 2 3 1 2 3 1,1, 1 ; 1,1,0 ; 2,2,0 ; 1, 1,0 ; 2, 1,0 ; ' 1,1, 1 ; u u u u u u                3,4,5 u  b.             1 2 3 1 2 3 3,2,1 ; 1, 2,1 ; 2,2,3 ; 1, 1,0 ; 1,0, 1 ; ' 1,1,1 ; u u u u u u              1, 3,7 u   Bài 8. Trong không gian 3 cho           1 2 3 7, 10, 12 ; 12, 19,24 ; 6, 10, 13 B m u m u m u m            Tìm m để   B m là một cơ sở của 3 . Trong trường hợp đó hãy tính toạ độ của   ,2 ,0 u m m  trong cơ sở   B m . Bài 9. Trong không gian 3 cho các hệ véctơ sau           1 2 3 2,1,3 ; 1,1,0 ; 1, 1,1 B u u u                 1 2 3 ' 2,1,1 ; 2, 1,1 ; 1,2,1 B u u u         a. Chứng tỏ   B và   B là cơ sở của 3 . b. Cho     3,5,7 u B  . Tìm toạ độ của u trong cơ sở   ' B và cơ sở chính tắc. Bài 10. Các tập sau đây, tập nào là không gian con của các không gian tương ứng. a.     3 1 2 3 1 2 3 , , 2 0 L x x x x x x x       b.     4 1 2 3 4 1 3 2 4 , , , ; L x x x x x x x x x      c.     2 1 2 2 1 , ,..., n n L x x x x x x     d.     3 2 2 1 2 3 1 2 , , 0 L x x x x x x      e.     3 1 2 3 1 , , L x x x x x     Bài 11. Tìm một cơ sở, số chiều của không gian con sinh bởi các véctơ sau trong không gian tương ứng. a.       1 2 3 1, 1,2 ; 2,1,3 ; 1,5,0 u u u      trong 3
  • 53. 53 b.     1 2 3 1 2,4,1 ; 3,6, 2 ; 1,2, 2 u u u             trong 3 c.         1 2 3 4 1,0,1, 2 ; 1,1,3, 2 ; 2,1,5, 1 ; 1, 1,1,4 u u u u         trong 4 d.           1 2 3 4 5 1,0,0, 1 ; 2,1,1,0 ; 1,1,1,1 ; 1,2,3,4 ; 0,1,2,3 u u u u u       trong 4 Bài 12. Trong 5 cho hệ véctơ       1 1 3 1,1, 2,1,4 ; 0,1, 1,2,3 ; 1, 1,0, 3,0 u u u        a. Tìm cơ sở và số chiều của 1 2 3 , , u u u b. Cho   1, ,1, , 3, 5 u m m    . Tìm m để 1 2 3 , , u u u u  Bài 13. Trong 3 cho     1 3 2, 2,3 ; 0,2, 3 v v     a.   1, 4,6 v   có biểu thị tuyến tính được qua 1 2 , v v không. b. Tìm a sao cho   1 2 2,3, , v a v v    Bài 14. Trong 3 cho         1 2 3 4 2, 1,0,1 ; 1,1,3,2 ; 3, 1,1,2 ; 1, 1, 1,0 v v v v         . Chứng minh rằng 1 2 3 4 , , v v v v  . Bài 15. Trong 4 xét các véctơ sau       1 2 3 1,2,2,1 , 1,1,3,5 , 0, 1,1,4 v v v    Tìm số chiều và cơ sở của không gian con 1 2 3 , , V v v v  . Bài 16. Trong 4 cho các véctơ         1 2 3 4 1,1,2,4 , 2, 1, 5,2 , 1, 1,4,0 , 2,1,1,6 v v v v        . Chứng tỏ các véctơ trên phụ thuộc tuyến tính. Tìm một cơ sở của không gian véctơ con của 4 sinh bởi các véctơ này. Bài 17. Tìm một cơ sở và số chiều của không gian nghiệm của hệ phương trình a. 1 2 3 1 2 3 1 2 3 2 4 0 3 5 7 0 4 5 6 0 x x x x x x x x x               b. 1 2 3 4 1 2 3 4 1 2 3 4 2 4 5 3 0 3 6 4 2 0 4 8 17 11 0 x x x x x x x x x x x x                  c. 1 3 5 2 4 6 1 2 3 6 1 4 5 0 0 0 0 x x x x x x x x x x x x x                     Bài 18. Tìm một cơ sở và số chiều của không gian con các nghiệm của hệ phương trình
  • 54. 54 a. 1 2 3 4 1 3 1 3 4 1 2 3 2 0 3 2 0 3 4 0 5 3 0 x x x x x x x x x x x x                    b. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 6 9 3 6 0 2 0 2 5 3 0 2 4 2 2 2 0 x x x x x x x x x x x x x x x x x x x x                            Bài 19. Cho     3 1 2 3 1 2 3 , , 2 0 W x x x x x x      . Chứng minh W là không gian con của 3 . Tìm một cơ sở và số chiều của W . Bài 20. Cho hệ phương trình 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 2 5 6 0 3 2 2 0 3 8 10 0 5 11 12 0 x x x x x x x x x x x x x x mx x                        a. Tìm một cơ sở và số chiều của không gian nghiệm của hệ phương trình khi 11 m  . b. Biện luận số chiều của không gian nghiệm theo m. Bài 21. Cho hệ phương trình 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 3 4 3 0 5 2 6 9 0 2 2 6 0 4 6 0 x x x x x x x x x x x x x x x mx                        a. Tìm một cơ sở và số chiều của không gian nghiệm của hệ khi 0 m  . b. Tìm m để không gian nghiệm có chiều bằng 1. c. Tìm một cơ sở của không gian nghiệm khi m khác 0.
  • 55. 55 CHƯƠNG 4: MỘT SỐ MÔ HÌNH TUYẾN TÍNH DÙNG TRONG PHÂN TÍCH KINH TẾ 4.1. Mô hình cân đối liên ngành Trong một nền kinh tế hiện đại, việc sản xuất một loại hàng hoá nào đó (output) đòi hỏi phải sử dụng các loại hàng hoá khác nhau để làm nguyên liệu đầu vào (input) của quá trình sản xuất và việc xác định tổng cầu đối với sản phẩm của mỗi ngành sản xuất trong nền kinh tế là quan trọng. Trong khuôn khổ của mô hình, khái niệm ngành được xem xét theo nghĩa thuần túy sản xuất. Các giả thiết sau được đặt ra: (i) Mỗi ngành sản xuất một loại sản phẩm hàng hóa thuần nhất hoặc sản xuất một số hàng hóa phối hợp theo một tỷ lệ nhất định. Trong trường hợp thứ hai ta coi mỗi tổ hợp hàng hóa theo tỉ lệ cố định đó là một mặt hàng. (ii) Các yếu tố đầu vào của sản xuất trong phạm vi một ngành được sử dụng theo một tỷ lệ cố định. Tổng cầu đối với sản phẩm của mỗi ngành bao gồm: + Cầu trung gian từ phía các nhà sản xuất sử dụng loại sản phẩm đó cho quá trình sản xuất + Cầu cuối cùng từ phía người sử dụng sử dụng loại sản phẩm để tiêu dùng hoặc xuất khẩu, bao gồm các hộ gia đình, nhà nước, các hang xuất khẩu. Giả sử một nền kinh tế ngành gồm n ngành: ngành 1, ngành 2, …, ngành n và ngoài ra còn có một phần khác của nền kinh tế (gọi là ngành kinh tế mở), nó không sản xuất hàng hóa như n ngành trên mà chỉ tiêu dùng sản phẩm của n ngành kinh tế này. Để thuận tiện cho việc tính chi phí cho các yếu tố sản xuất, ta biểu diễn lượng cầu của tất cả các hàng hóa ở dạng giá trị, tức là đo bằng tiền (với giả thiết thị trường ổn định). Tổng cầu về sản phẩm hàng hóa của ngành i được tính theo công thức: 1 2 ... , 1,2,..., (1) i i i in i x x x x b i n       Trong đó : i x là tổng cầu hàng hoá của ngành i.
  • 56. 56 : ik x là giá trị hàng hoá của ngành i mà ngành k cần sử dụng cho việc sản xuất (cầu trung gian). : i b là giá trị hàng hoá của ngành i cần tiêu dùng và xuất khẩu (cầu cuối cùng). Biến đổi phương trình (1) 1 2 1 2 1 2 ... , 1,2,..., (2) i i in i n i n x x x x x x x b i n x x x       Đặt ; , 1,2,..., ik ik k x a i k n x   . Ta có hệ phương trình (mô hình Input-Output Liontief) sau đây: 1 11 1 12 2 1 1 11 1 12 2 1 1 2 21 1 22 2 2 2 21 1 22 2 2 2 1 1 2 2 1 1 2 2 ... (1 ) ... ... (1 ) ... ... ... (1 ) n n n n n n n n n n n nn n n n n nn n n x a x a x a x b a x a x a x b x a x a x a x b a x a x a x b x a x a x a x b a x a x a x b                                                (3) Trong đó ij a là giá trị hàng hoá của ngành i (đầu vào) để sản xuất một đơn vị hàng hoá của ngành j (đầu ra). Nếu hàng hoá của ngành i không cần để sản xuất cho ngành j thì 0 ij a  . Trong nền kinh tế bình thường thì 1 ( 1,2,..., ) ij a j n    . Hệ phương trình (3) có dạng ma trận là X AX B   hay   I A X B   . Với 11 12 1 1 1 21 22 2 2 2 1 2 , , n n n n nn n n a a a x b a a a x b A X B a a a x b                                        A: gọi là ma trận hệ số đầu vào hay ma trận hệ số kỹ thuật. X: là ma trận tổng cầu (hay véctơ sản xuất). B: là ma trận cuối cùng. Nếu   det 0 I A   thì tồn tại ma trận nghịch đảo của I A  . Do đó 1 ( ) X I A B    Ma trận   I A  có tên là ma trận Leontief. Ví dụ 4.1. Cho ba ngành kinh tế với ma trận hệ số đầu vào là 0,2 0,3 0,2 0,4 0,1 0,3 0,3 0,5 0,2 A           
  • 57. 57 Biết nhu cầu cuối cùng của các ngành lần lượt là 150, 200, 210 (triệu USD). a. Hãy giải thích ý nghĩa của con số 0,5 trong ma trận A. Số 0,5 ở dòng thứ 3 và cột thứ 2 có nghĩa là: để sản xuất 1$ hàng hoá của mình, ngành 2 cần sử dụng 0,4$ hàng hoá của ngành 3. b. Tìm tổng cầu cho mỗi ngành. Ta có 1 0 0 0,2 0,3 0,2 0,8 0,3 0,2 0 1 0 0,4 0,1 0,3 0,4 0,9 0,2 0 0 1 0,3 0,5 0,2 0,1 0,3 0,8 I A                                         Tìm ma trận nghịch đảo   1 21 12 3 1 19 8 1 12 5 4 1 I A                    Ma trận tổng cầu là   1 21 12 3 150 18 1 19 8 1 200 78 12 5 4 1 210 93 X I A B                                          Vậy tổng cầu đối với hàng hoá của ngành 1 là 18; tổng cầu đối với hàng hoá của ngành 2 là 78; tổng cầu đối với hàng hoá của ngành 3 là 93 (triệu USD). 4.2. Mô hình cân bằng thị trường n hàng hoá có liên quan * Thị trường một hàng hoá Khi phân tích hoạt động của thị trường hàng hoá, các nhà kinh tế học sử dụng hàm cung S Q và hàm cầu D Q để biểu diễn sự phụ thuộc của lượng cung và lượng cầu vào giá hàng hoá p (với giả thiết các yếu tố khác không thay đổi). Dạng tuyến tính của hàm cung và hàm cầu có dạng như sau: Hàm cung: S Q a bp    , Hàm cầu: D Q c dp   . Mô hình cân bằng thị trường có dạng: S D Q Q a bp c dp       (1) Giải phương trình (1) ta sẽ xác định xác cân bằng thị trường p , sau đó thay vào hàm cung (hoặc hàm cầu) để xác định lượng cân bằng S D Q Q  . Cụ thể, ta có
  • 58. 58 Giá cân bằng: a c p b d    , Lượng cân bằng: S D bc ad Q Q b d     . * Thị trường nhiều hàng hoá Trong thị trường nhiều hàng hoá liên quan giá của hàng hoá này có thể ảnh hưởng đến lượng cung và lượng cầu của các hàng hoá khác. Để xét mô hình cân bằng thị trường n hàng hoá liên qua ta kí hiệu biến số như sau: i S Q là lượng cung hàng hoá thứ i, i D Q là lượng cầu hàng hoá thứ i, i p là giá hàng hoá thứ i. Khi đó dạng tuyến tính của hàm cung và hàm cầu có dạng: Hàm cung hàng hoá thứ i: 0 1 1 2 2 ... ( 1,2,...,n) i S i i i in n Q a a p a p a p i       . Hàm cầu đối với hàng hoá thứ i: 0 1 1 2 2 ... ( 1,2,...,n) i D i i i in n Q b b p b p b p i       . Mô hình cân bằng thị trường n hàng hoá có dạng hệ phương trình: 1,2,..., i i S D Q Q i n        Thay phương trình biểu diễn hàm cung và hàm cầu vào các đẳng thức ta có hệ 10 11 1 12 2 1 10 11 1 12 2 1 20 21 1 22 2 2 20 21 1 22 2 2 0 1 1 2 2 0 1 1 2 2 ... ... ... ... ... ... n n n n n n n n n n n nn n n n n nn n a a p a p a p b b p b p b p a a p a p a p b b p b p b p a a p a p a p b b p b p b p                                   Đặt ij ij ij c a b   , ta được hệ phương trình 10 11 1 12 2 1 20 21 1 22 2 2 0 1 1 2 2 ... 0 ... 0 ... 0 n n n n n n n nn n c c p c p c p c c p c p c p c c p c p c p                       (2)
  • 59. 59 Giải hệ phương trình tuyến tính (2), ta xác định được giá cân bằng các mặt hàng i p , sau đó thay vào hàm cung (hoặc hàm cầu) ta xác định được lượng cân bằng i i S D Q Q  . Ví dụ 4.2. Giả sử thị trường gồm 2 mặt hàng: hàng hoá 1 và hàng hoá 2, với hàm cung và hàm cầu như sau Hàng hoá 1: 1 1 1 1 2 2 3 ; 10 2 S D Q p Q p p       . Hàng hoá 2: 2 2 2 1 2 1 2 ; 15 S D Q p Q p p       . Hãy xác định giá cân bằng và lượng cân bằng của các mặt hàng? Ta có hệ phương trình xác định giá cân bằng là: 1 1 2 2 1 1 2 1 2 2 1 2 1 2 2 3 10 2 5 12 1 2 15 3 16 S D S D Q Q p p p p p Q Q p p p p p                               Giải hệ phương trình này xác định giá cân bằng là: 1 2 26 46 ; 7 7 p p   Thay giá cân bằng vào các biểu thức hàm cung ta xác định được lượng cân bằng 1 1 2 2 64 85 2 3 ; 1 2 7 7 Q p Q p         4.3. Mô hình cân bằng thu nhập quốc dân Xét mô hình cho dưới dạng       0 0 0,0 1 0,0 1 Y C I G C a b Y T a b T d tY d t                    (1) trong đó : Y là tổng thu nhập quốc dân : C là tiêu dùng của dân cư : T là thuế 0 I : là mức đầu tư cố định theo kế hoạch 0 : G là mức chi tiêu cố định của chính phủ Xem Y,C, T là các biến số và 0 0 0 , , , , , C a d t I G là các số cho trước, biến đổi (1) ta được hệ phương trình
  • 60. 60 0 0 (2) Y C I G bY C bT a tT T d               Giải hệ (2) ta xác định được mức thu nhập quốc dân, mức tiêu dùng và mức thuế cân bằng. Ví dụ 4.3. Cho tổng thu nhập quốc dân Y, mức tiêu dùng C và mức thuế T được xác định bởi   0 0 15 0,4 36 0,1 Y C I G C Y T T Y         Trong đó 0 500 I  là mức đầu tư cố định, 0 20 G  là mức chi tiêu cố định. Hãy xác định mức thu nhập quốc dân, mức tiêu dùng và mức thuế cân bằng. 4.4. Mô hình cân bằng thị trường hàng hoá và tiền tệ (mô hình IS-LM) Mô hình IS-LM được dùng để phân tích trạng thái cân bằng của nền kinh tế trong cả hai thị trường: thị trường hàng hoá và thị trường tiền tệ. Mô hình này được mô tả như sau. Khi có mặt thị trường tiền tệ, mức đầu tư I phụ thuộc vào lãi suất r theo công thức: 1 1 1 1 ( , 0) I a br a b    Xét mô hình cân bằng thu nhập và tiêu dùng:     0 0 1 1 1 1 , 0 0,0 1 Y C I G I a b r a b C a bY a b                 Thay phương trình của I, C vào Y ta được   1 1 0 1 1 0 1 (2) Y a bY a b r G b r a a G b Y            Phương trình (2) biểu diễn mối quan hệ giữa lãi suất và thu nhập khi thị trường hàng hoá cân bằng và được gọi là phương trình IS. Trong thị trường tiền tệ, lượng cầu tiền L phụ thuộc vào thu nhập Y và lãi suất r. Giả sử lượng cung tiền cố định và 0 M và L có công thức   2 2 2 2 , 0 L a Y b r a b    Điều kiện cân bằng tiền tệ là 0 2 2 0 2 2 0 (3) L M a Y b r M b r a Y M       
  • 61. 61 Phương trình (3) biểu diễn điều kiện cân bằng của thị trường tiền tệ và được gọi là phương trình LM. Mô hình IS-LM là mô hình gộp IS và LM thành một hệ phương trình   1 1 0 2 2 0 1 b r a a G b Y b r a Y M             Từ mô hình này ta xác định được mức thu nhập Y và lãi suất r đảm bảo cân bằng trong cả hai thị trường: hàng hoá và tiền tệ. Ví dụ 4.4. Cho mô hình 0 0 250; 4500; 34 15 10 0,3 ; 22 200 G M I r C Y L Y r         a. Lập phương trình IS b. Lập phương trình LM c. Tìm mức thu nhập và lãi suất cân bằng của hai thị trường hàng hoá và tiền tệ.