SlideShare a Scribd company logo
1 of 48
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR
FOUR WEEKS SUMMER TRAINING
At
RELIANCE INFRASTRUCTURE
(From JUNE 16, 2010 to JULY 16, 2010)
ANALYSIS OF TRUSS SYSTEM, BY PREPARING EXCEL
PROGRAMMING SHEET AND VERIFYING THE DESIGN
EXCEL SHEET BY STAAD ANALYSIS
SUBMITTED BY: -
TAUSIF ALAM
0809700426
B.Tech, 2nd
Year
DEPARTMENT OF CIVIL ENGINEERING
GALGOTIA’S COLLEGE OF ENGG. & TECH.
GREATER NOIDA
1
TO WHOM IT MAY CONCERN
2
I here by certify that ‘ TAUSIF ALAM ’ROLL No. 0809700426of GALGOTIA’S
COLLEGE OF ENGG.& TECNOLOGY, Greater Noida has undergone one
month of training from June 16 to July 17 at Reliance Infrastructure Ltd to
fulfill the requirements for the award of degree of B.Tech (Civil Engineering).
He worked on the analysis of Structure (Truss Analysis) during the training
under my supervision. During his tenure with us we found him sincere and
hard working. I wish him great success in the future.
DATE:
Signature of the Student
Signature
(Mr. C.M Sarvaiya)
Head, In-house engineering department,
Reliance Infrastructure Ltd; Noida
(Seal of Organization)
3
ACKNOWLEDGEMENT
I would like to express a deep sense of gratitude and thanks profusely to Mr.
C.M Sarvaiya (Head, In house engineering department, Reliance Infrastructure)
without the wise counsel and able guidance, it would have been impossible to
complete the report in this manner.
The help rendered by Rupesh Anand (Design Engineer, In House Engineering
Department) and P. Ramakanth (Design Engineer, In House Engineering
Department) and all other member for intellectual support throughout the
course of his work is greatly acknowledged.
Finally, I am indebted to all whosoever have contributed in this report work and
friendly stay at RELIANCE INFRASTRUCTURE.
TAUSIF ALAM
080970042
B.Tech 2nd
year
Department of civil engineering
Gagotia’s College of Engg.& Technology
INTRODUCTION
4
Reliance Infrastructure Limited, incorporated in 1929, is a fully integrated
utility engaged in the generation, transmission and distribution of electricity. It
ranks among India’s top listed private companies on all major financial
parameters, including assets, sales, profits and market capitalization.
It is India’s foremost private sector utility with aggregate estimated revenues
of Rs 9,500 crore (US$2.1 billion) and total assets of Rs 10,700 crores
(US$2.4 billion).
Reliance Infrastructure Limited distributes more than 21 billion units of
electricity to over 25 million consumers I Mumbai, Delhi, Orissa and Goa,
across an its power stations located in Maharashtra, Andhra Pradesh, Kerala,
Karnataka and Goa.
The company is currently pursuing several gas, coal, wind and hydro-based
power generation projects in Maharashtra, Uttar Pradesh, arunachal Pradesh
and Uttaranchal with aggregates capacity of over 12,500 MW. These projects
are at various stages of development.
Reliance Infrastructure Limited is vigorously participating in emerging
opportunities in the areas of trading and transmission of power. It is also
engaged in a portfolio of services in the power sector in engineering,
procurement and construction (EPC) through regional offices in India.
5
CONTENTS
TOPIC Page no.
1. Introduction to Truss 7
2. Truss
2.1 Plane Truss 7
2.2 Space Truss 9
2.2.1 Equilibrium and Stability Equation 9
3. Types of Truss
3.1 Perfect Truss 10
3.2 Imperfect Truss 10
3.3 Deficient Truss 10
3.4 Redundant Truss 11
4. Assumption made in classical Truss Analysis 12
5. Terminology
5.1 Nature of forces in the member 13
6. Determinate, Indeterminate and Unstable Truss
6.1 Determinate Truss 14
6.2 Indeterminate Truss 14
6.3 Unstable Truss 14
6.4 Unknown Reaction Component at
6.4.1 Roller Support 14
6.4.2 Hinged Support 14
6.4.3 Fixed Support 14
7. Method of Analysis
7.1 Method of Joints 15
7.2 Method of Section (Method of Moments) 15
8. Analysis of truss systems in STAAD.PRO 29
9. Results and conclusions 30
6
1. INTRODUCTION TO TRUSS
1.1) A truss is an articulated structure composed of straight members
arranged and connected in such a way that they transmit primarily axial
forces. If all the members lie in one plane it is called a plane truss. A three
dimensional truss is called a space truss.
2. TRUSS
2.1) Plane Truss: - The basic form of truss is a triangle formed by three
members joined together at their common ends forming three joints. Another
two member connected to two of the joints form a stable system of two
triangles.
a) I f whole structure is built up in this way it must be internally rigid. Such a
truss if supported suitably will be stable.
b) The truss has to be supported in general by three reaction components, all
of which neither parallel nor concurrent such a truss is called simple truss.
Various types of trusses are shown in Fig 1 a, b and c. These are stable and
statically determinate.
(a)
JOINT
MEMBER
SUPPORTS
7
(b)
(c)
Fig (1)
(2.2) SPACE TRUSS
The basic element of space truss which is just rigid is a tetrahedron with four
joints space truss is shown in figure 2.
Fig (2)
8
(2.2.1) EQUILIBRIUM AND STABILITY EQUATION
The equilibrium of an entire space truss or Section of a space truss is
described by the sir scalar equation given below:-
∑Fx = 0 ∑Mx = 0
∑Fy = 0 ∑My = 0
∑Fz = 0 ∑Mz = 0
Or in vector from
Fr = 0 Mr = 0
Fr and Mr represent three – dimensional force and moment Vector.
3. Type of Truss:-
I) Perfect Truss
II) Imperfect Truss
- Deficient Truss
- Redundant Truss.
(3.1) Perfect Truss:-
A truss which has got just sufficient number of members to resist load without
undergoing appreciable deformation in shape is called Perfect Truss. The
number of members in a perfect truss may also be expressed by the relation:
m = 2j-3
Where,
m = number of members,
j = number of joints
Perfect truss is shown in fig (3) a and b.
9
(b)
(a) (b)
FIG. 3
3.2) Imperfect truss: - It is a truss in which the no. of members is more or less
than (2j-3). The imperfect truss may be further classified into following two
types.
1. DEFICIENT TRUSS
2. REDUDANT TRUSS
Imperfect truss does not satisfy the equation m=2j-3
(3.3) Deficient Truss:-
A truss which has got less number of members than that required for a perfect
truss. Deficient truss is shown in fig (4)
Fig. (4)
(3.4) Redundant Truss: -
A truss which has got more number of members than that required for a
perfect frame or truss. A redundant truss is a statically indeterminate since the
forces in the member can not be determined using equation of equilibrium
alone.
Each extra member adds one degree of indeterminacy.
Redundant truss is shown in figure (5).
10
Fig (5)
4. Assumptions made in classical truss analysis.
 Every member of truss is straight.
 Each end of the member is connected to a joint by a frictionless pin on
the longitudinal centroidal axis of the member.
 The self weighs of the members of a truss are taken to be negligible
compared with the applied loads.
 All the load and reactions are applied or transmitted to the joints only.
11
 The cross-section of the members is uniform i.e.; members are
prismatic.
5. TERMINOLOGY:
(5.1) Nature of forces in members.
The members of truss are subjected to either tensile or compressive forces. A
typical truss ABCDE loaded at joint E is shown in figure .6(a).
The member BC is subjected to compressive force C as shown in fig 6 (b).
Effect of this force on the joint B (or C) is equal and opposite to the force C as
shown in fig 6 (b).
The member AE is subjected to tensile force T. It effect on the Joint A and E
are as shown in fig. 6 (b).
12
A
B C
D
E
E D
In the analysis of frame. We work forces on the joints, instead of the forces in
the member as shown in figure 1.6 (c). It may be noted that compressive force
in a member is represented in the in the figure by two arrows going away
from each other and a tensile force by two arrows coming towards each other.
(6).DETERMINATE, INDETERMINATE & UNSTABLE
TRUSS:-
(6.1) A structural system which can analyzed with the use of equation of
statical
Equilibrium only is called as statically determinate structure e.g. trusses with
both end simply supported, one end hinged and other rollers etc.
If m+r -2j =0 then truss is said to be statically determinate.
13
Fig 6(a)
Fig 6(b)
C
T
A
B C
D
E
(6.2) A structure which can not be analyzed with the use of equation of
equilibrium only is called statically indeterminate structure.
If m+r-2j > 0 then truss is said to be statically in indeterminate.
Indeterminate structures are also called redundant structure.
(6.3) if m+r-2J<0 then truss is said to be unstable.
(6.4) Unknown reaction component at
a) Roller support ---1
b) Hinged support---2
c) Fixed support------3
7. Methods of Analysis:-
The following to analytical methods for finding out the forces in the members
of a perfect frame, are important from the subject point of view.
7.1 Method of Joints
7.2 Method of section
7.1 Method of Joints
14
2
KN
1 2
(a) Space diagram (b) Joint ’1’ (c) Joint
(2)
Fig. 7 (a, b, c)
In this method, each and every joint is treated as a free body in equilibrium as
shown in figure 7 (a), (b), (c) & (d). The unknown forces are then determined
by equilibrium equation viz; ∑v=0 and ∑h-=0.
i.e.; sum of all the vertical forces and horizontal forces is equated to zero.
Note:1.:-The member of the frame may be named either by Bow’s method or
by joints at their ends.
7.1.1. While selecting the joints, for calculation work, care should be taken that
at any instant. The joint should not contain more then two members in which
the forces are unknown.
7.2 Method of section (or Method of Moments)
This method is particularly convenient when the forces in a few members of a
truss are required to be found out. In this method the truss is cut into two
parts and equilibrium equations are written for one of the parts of truss
treating it as a free –body diagram for the purpose. The critical aspect of this
method is the choice of the proper free body diagram for the purpose.
The method of joints is effective if want to calculate forces in all
members of the truss but the method of section is obviously superior if we
seek forces only in certain members. In such case section can be made only
through the selected members, where as the method of joints would require
the analysis of joints from one end of the structure progressively up to
particular member.
15
Analytical Analysis of Truss 1
16
Taking moment about joint 1
R4*(2a) = F2*(3a / 2) + F1*(a) + F4*(a / 2) + ( 3 a/2) (F3 – F5)
Cancelling (a) from both sides and rearranging the equation we get;
R4 = (3F2 / 4 + F1 / 2 + F4 / 4) + ( 3 /4) (F3 – F5)
R1 = ΣFv - R4
H1 = F3- F5
R1= F4+F1+F2-(R4)
R1= F4 + F1 + F2 - [(3 F2/4 + F1/2 + F4/4) + ( 3 /4) (F3 – F5)]
After Simplification we get;
R1= (F1/2 + F2/4 + 3F4/4) - ( 3 /4) (F3 – F5)
a
aaa
a a
a
1
2 3
4
5
F4
F2
F5 F3
F1R1
R4
H1
17
P53P53
P12
P15
R1
H1
F4
CACULATION OF MEMBER FORCES
AT JOINT (1)
ΣFy = 0 gives;
[(F2/4 + F1/2 + 3F4/4) - ( 3 /4) (F3 – F5)] + P12 sin60˚ = 0
P12 = [(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4]
ΣFx = 0 gives ;
P12 cos60˚ + P15 - H1 = 0
P15 = H1 - [(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4] cos 60˚
P15 = 0.75 (F3 – F5) + (0.144 F2+0.288 F1+0.433 F4)
AT JOINT (2)
18
60˚
P23
P25
P12
F5
ΣFy =0 gives;
([(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4]) sin60 + F4 + P25sin60 =
0
[(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4] + F4 = - P25sin60
P25 = - {[(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (2.02) F4}
ΣFx = 0 gives;
P25 (cos60) + P23 – F5 – P12 ( cos 60˚) =0
(0.288F2+0.577F1+0.866F4) cos60 + (0.288F2+0.577F1+2.02F4) cos60 - F5+
P23=0
0.144F2+0.2885F1+0.433F4+0.144F2+0.2885F1+1.01F4-F5+P23=0
P23 = - (0.288F2+0.577F1+1.443F4-F5)
AT JOINT (5)
ΣFy =0 gives;
(0.288F2+0.577F1+2.04F4)(0.866)-F1-P53 (sin60) =0
19
60˚
60˚
P25 P53
P15
F1
P54
60˚
60˚
P43
P53 = - (0.288F2-0.577F1+2.04F4)
ΣFx=0 gives;
P15-P53(cos60)-P25(cos60)+P54=0
( 0.288F2 - 0.578F1 + 0.204F4)(cos60)-(0.288F2 + 0.577F1 + 2.02F4)(cos60) +
P54 = 0
0.144F2 + 0.288F1 + 0.433F4 - 0.144F2 - 0.289F1 + 1.02F4 - 0.144F2 + 0.288F1 +
1.01F4 + P54 = 0
P54= 0.144F2 - 0.285F1 - 2.463F4
AT JOINT (4)
∑Fy = 0 gives;
R4-P43 sin60 = 0
0.75F2 + 0.5F1 + 0.25F4 = P43sin60
P43=0.866F2+0.577F1+0.288F4
20
60˚P54
R4
Analytical Analysis of Truss 2
21
VA
VB
VC
VD
VE
HA
HD
HB
HC
HE
VF
VG
VH
HF
HG
HH
A
C
B D
E
F G Hθ
PROCEDURE FOR ANALYSIS
Taking moment about A
MA = VB*a-HBtanθ+Vc*2a-HC*2a*tanθ+VD*3a-
HD*atanθ+VE*4a+VF*a+VG*2a+VH*3a+RE*4a=0
RE*4a=-(VB*a-HB*tanθ+VC*2a-HC*2ª*tanθ+VD*3a-
HD*atanθ+VE*4a+VF*a+VG*2a+VH*3a)
Cancelling a from both side we get,
RE=-(VB/4-HBtanθ/4*2Vc/4-2Hctanθ/4+3VD/4-HDtanθ/4+VE+VF/4+2VA/4+3VH/4)
RE=-(VB/4-HB/4tanθ+VC/2-HC/2tanθ+3/4VD-HD/4tanθ+VE+VF/4+VG/2+3VH/4)
RA=-(∑F-RE)
RA= -(VA+VB+VC+VD+VE+VF+VG+VH-VB/4-HBtanθ/4-VC/2-HCtanθ/2-3VD/4-
HDtanθ/4-VE-VF/4-VG/2-3VH/4)
RA= -(VA-3VB/4-HBtanθ-VC/2-HCtanθ/2-VD/4-HDtanθ-3VF/4-VG/2-VH/4)
CALCULATION OF FORCE IN MEMBERS
At joint (A)
∑Fy=0 gives
-(VA+RA)=PAB*Sinθ
PABsin30 = - (VA-VA+VB*0.75+HB*tanθ*0.25+0.5*VC+HC*tanθ*0.5+VD*0.25+HD*
tanθ
22
*0.25+VF*0.75+VG*0.5+VH*0.25)
PAB=-
(1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)
PAB=-(1.5*2+0+2+0+0.*2+0+0+0+0)
PAB=6KN(COMP)
PAF=-(PAB*cos30+HA)
PAF=-
(1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+0.5*VG+0.5*VH
)(cos30)+(HA)
PAF=5.196 KN (Comp)
At joint (F)
∑Fy=0 gives
PBF=0 KN
23
VA
HA
RA
PAB
PAF
PBF
PFGPFA
∑Fx = 0 gives;
PFG - PAF = 0
PFG= (1.299*VB + 0.433*HB*tanθ + 0.866*VC + 0.866*HC*tanθ + 0.433*VD +
0.433*HD*tanθ +1.299*VF +0.866*VG+ 0.433*VH) + HF
PFG=5.196 (tensile)
At Joint (B)
∑Fy=0 gives
PBA + VB + PBC=0
PBC=-(1.5*VB+0.5*HB*tanθ+ VC+HC*tanθ +0.5*VD+0.5*HD*tanθ
1.5*VF+VG+0.5*VH)-(VB)
PBC = 4KN (Comp)
Joint (B)
∑Fx=0 gives;
PBA+PBC=PBG
PBG= -
(1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)
+(1.5*VB+0.5*HB* tanθ+ VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)-
(VB)
PBG=2KN (Comp)
At Joint (C)
24
VB
PBC
PBG
PBA
PBF
HB
ΣFy=0 gives;
PCG-VC=0
PCG=2KN (Tensile)
Joint (C)
∑Fx=0 gives;
PBC+PCD=0
PCD=-
(1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)-
(VB)
PCD=4KN (Comp)
At Joint (G)
∑Fy=0 gives;
PCG+PBG*sinθ+ PDG*sinθ+ VG=0
PDG= - (VG/ sinθ+ PCG/sinθ + PBG)
PDG= 2KN (Comp)
25
PBC PCD
VC
PGC
HC
PGC
PGDPGB
PGHPGF
VG
HG
∑Fx=0 gives;
PGH-PFG=0
PGH= (1.299*VB+0.433*HB*tanθ+0.866*VC +0.866*HC*tanθ+
0.433*VD+0.433*HD*tanθ+1.299*VF+0.866*VG+ 0.433*VH) + (HG)
PGH=5.196+0
PGH=5.196N (Tensile)
At Joint (H)
∑Fy=0 gives;
PDH+VH=0
PDH =0KN
∑Fx = 0 gives;
PEH+PGH=0 gives;
PEH= - (PGH)
PEH=
(1.299*VB+0.433*tanθ+0.866*VC+0.866*HC*tanθ+0.433*VD+0.433*HD*tanθ+1.299
*VF+0.866*VG+ 0.433*VH+ HH)
PEH=5.196KN (Tensile)
26
PDH
PEHPGH
VH
HH
At joint (E)
ΣFy=0 gives;
PDEsin30 = - (RE+VE)
PDE= - (0.5VB-0.5HBtanθ+VC-HCtanθ+1.5VD-0.5HBtanθ+0.5VF+VG+1.5VH+HE)
8. ANALYSIS OF TRUSS SYSTEMS IN STAAD.PRO
Two truss systems were modeled in STAAD.PRO and are checked for a
particular Loading Pattern. The arrangement and the Output are mentioned in
this report. First the Truss System 1 was analyzed and then Truss system 2,
the output for which has been mentioned as per the order mentioned above.
27
VEPDE
PEH
RE
HE
STAAD OUTPUT FOR TRUSS SYSTEM 1
Job Information
Engineer Checked Approved
Name: TAUSIF ALAM RUPESH ANAND
Date: 13-Jul-10
Structure Type TRUSS ANALYSIS
28
ARRANGEMENT OF TRUSS SYSTEM 1
Number of Nodes 6 Highest Node 6
Number of Elements 9 Highest Beam 9
Number of Basic Load Cases 1
Number of Combination Load Cases 0
Included in this printout are data for:
All The Whole Structure
Included in this printout are results for load cases:
Type L/C Name
Primary 1 ALL AXIAL FORCES
Nodes
Node
X
(m)
Y
(m)
Z
(m)
1 0.000 0.000 0.000
2 3.000 0.000 0.000
3 6.000 0.000 0.000
4 6.000 3.000 0.000
5 3.000 3.000 0.000
6 0.000 3.000 0.000
Beams
Beam Node A Node B
Length
(m)
Property
β
(degrees)
1 1 2 3.000 1 0
2 2 3 3.000 1 0
3 3 4 3.000 1 0
4 2 5 3.000 1 0
5 1 6 3.000 1 0
6 6 2 4.243 1 0
7 4 2 4.243 1 0
8 4 5 3.000 1 0
9 5 6 3.000 1 0
Section Properties
Prop Section
Area
(in2
)
Iyy
(in4
)
Izz
(in4
)
J
(in4
)
Material
1 ISMB100 2.263 0.985 6.198 0.050 STEEL
29
Supports
Node
X
(kip/in)
Y
(kip/in)
Z
(kip/in)
rX
(kip-
ft/deg)
rY
(kip-
ft/deg)
rZ
(kip-
ft/deg)
1 Fixed Fixed Fixed - - -
3 - Fixed - - - -
Releases
There is no data of this type.
Basic Load Cases
Number Name
1 AXIAL FORCE
Combination Load Cases
There is no data of this type.
Load Generators
There is no data of this type.
Node Loads : 1 AXIAL FORCE
Node
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
4 - -25.000 - - - -
-10.000 - - - - -
5 - -15.000 - - - -
6 - -15.000 - - - -
10.000 - - - - -
Node Displacements
Node L/C
X
(mm)
Y
(mm)
Z
(mm)
Resultant
(mm)
rX
(rad)
rY
(rad)
rZ
(rad)
1 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL FORCE 0.000 -0.680 0.000 0.680 0.000 0.000 0.000
3 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 1:AXIAL FORCE -0.128 -0.334 0.000 0.358 0.000 0.000 0.000
5 1:AXIAL FORCE 0.051 -0.835 0.000 0.836 0.000 0.000 0.000
6 1:AXIAL FORCE 0.231 -0.231 0.000 0.327 0.000 0.000 0.000
30
Beam End Forces
Sign convention is as the action of the joint on the beam.
Axial Shear Torsion Bending
Beam Node L/C
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000
2 2 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000
3 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
3 3 1:AXIAL FORCE 32.500 0.000 0.000 0.000 0.000 0.000
4 1:AXIAL FORCE -32.500 0.000 0.000 0.000 0.000 0.000
4 2 1:AXIAL FORCE 15.000 0.000 0.000 0.000 0.000 0.000
5 1:AXIAL FORCE -15.000 0.000 0.000 0.000 0.000 0.000
5 1 1:AXIAL FORCE 22.500 0.000 0.000 0.000 0.000 0.000
6 1:AXIAL FORCE -22.500 0.000 0.000 0.000 0.000 0.000
6 6 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL FORCE 10.607 0.000 0.000 0.000 0.000 0.000
7 4 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL FORCE 10.607 0.000 0.000 0.000 0.000 0.000
8 4 1:AXIAL FORCE 17.500 0.000 0.000 0.000 0.000 0.000
5 1:AXIAL FORCE -17.500 0.000 0.000 0.000 0.000 0.000
9 5 1:AXIAL FORCE 17.500 0.000 0.000 0.000 0.000 0.000
6 1:AXIAL FORCE -17.500 0.000 0.000 0.000 0.000 0.000
Beam End Force Summary
The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry
gives the largest tension value for an beam.
Axial Shear Torsion Bending
Beam Node L/C
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
Max Fx 3 3 1:AXIAL FORCE 32.500 0.000 0.000 0.000 0.000 0.000
Min Fx 7 4 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000
Max Fy 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Min Fy 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Max Fz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Min Fz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Max Mx 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Min Mx 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Max My 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Min My 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Max Mz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
Min Mz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000
31
Beam Force Detail Summary
Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression.
Distance d is given from beam end A.
Axial Shear Torsion Bending
Beam L/C
d
(m)
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
Max Fx 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000 0.000
Min Fx 7 1:AXIAL FORCE 0.000 -10.607 0.000 0.000 0.000 0.000 0.000
Max Fy 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Min Fy 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Max Fz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Min Fz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Max Mx 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Min Mx 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Max My 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Min My 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Max Mz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Min Mz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Beam Maximum Moments
Distances to maxima are given from beam end A.
Beam Node A
Length
(m)
L/C
d
(m)
Max My
(kN-
m)
d
(m)
Max Mz
(kN-
m)
1 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
3 3 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
4 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
5 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
6 6 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
32
Max +ve 0.000 0.000 0.000 0.000
7 4 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
8 4 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
9 5 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
Beam Maximum Axial Forces
Distances to maxima are given from beam end A.
Beam Node A
Length
(m)
L/C
d
(m)
Max Fx
(kN)
1 1 3.000 1:AXIAL FORCE Max -ve
Max +ve 0.000 -0.000
2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000
Max +ve
3 3 3.000 1:AXIAL FORCE Max -ve 0.000 32.500
Max +ve
4 2 3.000 1:AXIAL FORCE Max -ve 0.000 15.000
Max +ve
5 1 3.000 1:AXIAL FORCE Max -ve 0.000 22.500
Max +ve
Beam Node A
Length
(m)
L/C
d
(m)
Max Fz
(kN)
d
(m)
Max Fy
(kN)
1 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
3 3 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
4 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
5 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
6 6 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
7 4 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
8 4 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
9 5 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
33
6 6 4.243 1:AXIAL FORCE Max -ve
Max +ve 0.000 -10.607
7 4 4.243 1:AXIAL FORCE Max -ve
Max +ve 0.000 -10.607
8 4 3.000 1:AXIAL FORCE Max -ve 0.000 17.500
Max +ve
9 5 3.000 1:AXIAL FORCE Max -ve 0.000 17.500
Max +ve
Beam Maximum Forces by Section Property
Axial Shear Torsion Bending
Section
Max Fx
(kN)
Max Fy
(kN)
Max Fz
(kN)
Max Mx
(kN-
m)
Max My
(kN-
m)
Max Mz
(kN-
m)
ISMB100 Max +ve 32.500 0.000 0.000 0.000 0.000 0.000
Max -ve -10.607 0.000 0.000 0.000 0.000 0.000
Beam Combined Axial and Bending Stresses
Beam Combined Axial and Bending Stresses Summary
Max Comp Max Tens
Beam L/C
Length
(m)
Stress
(MPa)
d
(m)
Corner
Stress
(MPa)
d
(m)
Corner
1 1:AXIAL FORCE 3.000 -0.000 0.000 1
2 1:AXIAL FORCE 3.000 0.000 0.000 1
3 1:AXIAL FORCE 3.000 22.260 0.000 1
4 1:AXIAL FORCE 3.000 10.274 0.000 1
5 1:AXIAL FORCE 3.000 15.411 0.000 1
6 1:AXIAL FORCE 4.243 -7.265 0.000 1
7 1:AXIAL FORCE 4.243 -7.265 0.000 1
8 1:AXIAL FORCE 3.000 11.986 0.000 1
9 1:AXIAL FORCE 3.000 11.986 0.000 1
Beam Profile Stress
There is no data of this type.
34
Reactions
Horizontal Vertical Horizontal Moment
Node L/C
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000
Reaction Summary
Horizontal Vertical Horizontal Moment
Node L/C
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
Max FX 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000
Min FX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Max FY 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000
Min FY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Max FZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Min FZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Max MX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Min MX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Max MY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Min MY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Max MZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Min MZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000
Reaction Envelope
There is no data of this type - Analysis results are not available
Failed Members
There is no data of this type.
35
Statics Check Results
L/C
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
1:AXIAL FORCE Loads 0.000 -55.000 0.000 0.000 0.000 -195.000
1:AXIAL FORCE Reactions -0.000 55.000 0.000 0.000 0.000 195.000
Difference -0.000 0.000 0.000 0.000 0.000 -0.000
STAAD OUTPUT FOR TRUSS SYSTEM 2
36
Job Information
Engineer Checked Approved
Name: TAUSIF ALAM P RAMAKANTH
Date: 16-Jul-10
Structure Type PLANE FRAME
Number of Nodes 8 Highest Node 8
Number of Elements 13 Highest Beam 13
Number of Basic Load Cases 1
Number of Combination Load Cases 0
Included in this printout are data for:
All The Whole Structure
Included in this printout are results for load cases:
Type L/C Name
Primary 1 AXIAL LOADS
37
ARRANGEMENT OF TRUSS SYSTEM 2
Nodes
Node
X
(m)
Y
(m)
Z
(m)
1 0.000 0.000 0.000
2 4.000 0.000 0.000
3 10.000 0.000 0.000
4 16.000 0.000 0.000
5 20.000 0.000 0.000
6 4.000 2.000 0.000
7 10.000 5.000 0.000
8 16.000 2.000 0.000
Beams
Beam Node A Node B
Length
(m)
Property
b
(degrees)
1 1 2 4.000 1 0
2 2 3 6.000 1 0
3 3 4 6.000 1 0
4 4 5 4.000 1 0
5 1 6 4.472 1 0
6 6 7 6.708 1 0
7 7 8 6.708 1 0
8 8 5 4.472 1 0
9 4 8 2.000 1 0
10 3 7 5.000 1 0
11 2 6 2.000 1 0
12 6 3 6.325 1 0
13 3 8 6.325 1 0
Section Properties
Prop Section
Area
(cm2
)
Iyy
(cm4
)
Izz
(cm4
)
J
(cm4
)
Material
1 ISMB150 19.000 53.000 725.997 2.866 STEEL
Materials
Mat Name
E
(N/mm2
)
n
Density
(N/mm3
)
a
(1/°K)
3 STEEL 200E 3 0.300 0.000 3.61E -6
4 STAINLESSSTEEL 193E 3 0.300 0.000 5.5E -6
5 ALUMINUM 68.9E 3 0.330 0.000 7.11E -6
6 CONCRETE 21.7E 3 0.170 0.000 3.06E -6
Supports
Node
X
(kN/m)
Y
(kN/m)
Z
(kN/m)
rX
(kN-
m/deg)
rY
(kN-
m/deg)
rZ
(kN-
m/deg)
1 Fixed Fixed Fixed - - -
5 - Fixed - - - -
Releases
There is no data of this type.
38
Basic Load Cases
Number Name
1 AXIAL LOADS
Combination Load Cases
There is no data of this type.
Load Generators
There is no data of this type.
Node Displacements
Node L/C
X
(mm)
Y
(mm)
Z
(mm)
Resultant
(mm)
rX
(deg)
rY
(deg)
rZ
(deg)
1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL LOADS 1.537 -12.364 0.000 12.459 0.000 0.000 0.000
3 1:AXIAL LOADS 3.843 -12.378 0.000 12.961 0.000 0.000 0.000
4 1:AXIAL LOADS 5.249 -9.334 0.000 10.709 0.000 0.000 0.000
5 1:AXIAL LOADS 6.186 0.000 0.000 6.186 0.000 0.000 0.000
6 1:AXIAL LOADS 4.937 -12.259 0.000 13.216 0.000 0.000 0.000
7 1:AXIAL LOADS 3.593 -11.733 0.000 12.271 0.000 0.000 0.000
8 1:AXIAL LOADS 2.828 -9.334 0.000 9.753 0.000 0.000 0.000
Node Displacement Summary
Node L/C
X
(mm)
Y
(mm)
Z
(mm)
Resultant
(mm)
rX
(deg)
rY
(deg)
rZ
(deg)
Max X 5 1:AXIAL LOADS 6.186 0.000 0.000 6.186 0.000 0.000 0.000
Min X 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Y 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min Y 3 1:AXIAL LOADS 3.843 -12.378 0.000 12.961 0.000 0.000 0.000
Max Z 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min Z 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max rX 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rX 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max rY 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rY 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max rZ 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rZ 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Rst 6 1:AXIAL LOADS 4.937 -12.259 0.000 13.216 0.000 0.000 0.000
Beam End Forces
Sign convention is as the action of the joint on the beam.
Axial Shear Torsion Bending
Beam Node L/C
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
1 1 1:AXIAL LOADS -146.000 0.000 0.000 0.000 0.000 0.000
2 1:AXIAL LOADS 146.000 0.000 0.000 0.000 0.000 0.000
2 2 1:AXIAL LOADS -146.000 0.000 0.000 0.000 0.000 0.000
3 1:AXIAL LOADS 146.000 0.000 0.000 0.000 0.000 0.000
3 3 1:AXIAL LOADS -89.000 0.000 0.000 0.000 0.000 0.000
4 1:AXIAL LOADS 89.000 0.000 0.000 0.000 0.000 0.000
4 4 1:AXIAL LOADS -89.000 0.000 0.000 0.000 0.000 0.000
39
5 1:AXIAL LOADS 89.000 0.000 0.000 0.000 0.000 0.000
5 1 1:AXIAL LOADS 90.561 0.000 0.000 0.000 0.000 0.000
6 1:AXIAL LOADS -90.561 0.000 0.000 0.000 0.000 0.000
6 6 1:AXIAL LOADS 54.784 0.000 0.000 0.000 0.000 0.000
7 1:AXIAL LOADS -54.784 0.000 0.000 0.000 0.000 0.000
7 7 1:AXIAL LOADS 99.505 0.000 0.000 0.000 0.000 0.000
8 1:AXIAL LOADS -99.505 0.000 0.000 0.000 0.000 0.000
8 8 1:AXIAL LOADS 99.505 0.000 0.000 0.000 0.000 0.000
5 1:AXIAL LOADS -99.505 0.000 0.000 0.000 0.000 0.000
9 4 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000
8 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000
10 3 1:AXIAL LOADS -49.000 0.000 0.000 0.000 0.000 0.000
7 1:AXIAL LOADS 49.000 0.000 0.000 0.000 0.000 0.000
11 2 1:AXIAL LOADS -20.000 0.000 0.000 0.000 0.000 0.000
6 1:AXIAL LOADS 20.000 0.000 0.000 0.000 0.000 0.000
12 6 1:AXIAL LOADS 60.084 0.000 0.000 0.000 0.000 0.000
3 1:AXIAL LOADS -60.084 0.000 0.000 0.000 0.000 0.000
13 3 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000
8 1:AXIAL LOADS -0.000 0.000 0.000 0.000 0.000 0.000
Beam End Force Summary
The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry
gives the largest tension value for an beam.
Axial Shear
Torsio
n
Bending
Bea
m
Nod
e
L/C
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
Max Fx 8 8
1:AXIAL
LOADS
99.505 0.000 0.000 0.000 0.000 0.000
Min Fx 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Max Fy 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Min Fy 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Max Fz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Min Fz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Min Mx 1 1
1:AXIAL
LOADS
-146.000 0.000 0.000 0.000 0.000 0.000
Max
My
1 1
1:AXIAL
LOADS
-146.00 0.000 0.000 0.000 0.000 0.000
Min My 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Min Mz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000
Beam Force Detail Summary
Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression.
Distance d is given from beam end A.
Axial Shear Torsion Bending
Beam L/C
d
(m)
Fx
(kN)
Fy
(kN)
Fz
(kN)
Mx
(kN-
m)
My
(kN-
m)
Mz
(kN-
m)
Max 8 1:AXIAL 0.000 99.505 0.000 0.000 0.000 0.000 0.000
Min Fx 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Min Fy 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Min Fz 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
40
Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000
Beam Maximum Moments
Distances to maxima are given from beam end A.
Beam Node A
Length
(m)
L/C
d
(m)
Max My
(kN-
m)
d
(m)
Max Mz
(kN-
m)
1 1 4.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
2 2 6.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
3 3 6.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
4 4 4.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
5 1 4.472 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
6 6 6.708 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
7 7 6.708
1:AXIAL
LOADS
Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
8 8 4.472 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
9 4 2.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
10 3 5.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
11 2 2.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
12 6 6.325
1:AXIAL
LOADS
Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
13 3 6.325
1:AXIAL
LOADS
Max -ve 0.000 0.000 0.000 0.000
Max +ve 0.000 0.000 0.000 0.000
Beam Maximum Axial Forces
Distances to maxima are given from beam end A.
Beam Node A
Length
(m)
L/C
d
(m)
Max Fx
(kN)
1 1 4.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -146.000
2 2 6.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -146.000
3 3 6.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -89.000
4 4 4.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -89.000
5 1 4.472 1:AXIAL LOADS Max -ve 0.000 90.561
Max +ve
6 6 6.708 1:AXIAL LOADS Max -ve 0.000 54.784
Max +ve
7 7 6.708 1:AXIAL LOADS Max -ve 0.000 99.505
Max +ve
8 8 4.472 1:AXIAL LOADS Max -ve 0.000 99.505
Max +ve
9 4 2.000 1:AXIAL LOADS Max -ve 0.000 0.000
41
Max +ve 0.000 0.000
10 3 5.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -49.000
11 2 2.000 1:AXIAL LOADS Max -ve
Max +ve 0.000 -20.000
12 6 6.325 1:AXIAL LOADS Max -ve 0.000 60.084
Max +ve
13 3 6.325 1:AXIAL LOADS Max -ve 0.000 0.000
Max +ve
Beam Combined Axial and Bending Stresses
Beam L/C d
Corner 1
(MPa)
Corner 2
(MPa)
Corner 3
(MPa)
Corner 4
(MPa)
Max
Tens
(MPa)
Max
Comp
(MPa)
1
1:AXIAL
LOADS
0.000 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
15.748 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
31.496 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
47.244 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
62.992 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
78.740 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
94.488 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
110.236 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
125.984 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
141.732 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
157.480 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
2 1:AXIAL 0.000 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
23.622 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
47.244 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
70.866 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
94.488 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
118.110 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
141.732 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
165.354 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
188.976 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
212.598 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
236.220 -76.842 -76.842 -76.842 -76.842 -76.842 0.000
3 1:AXIAL 0.000 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
23.622 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
47.244 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
70.866 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
94.488 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
118.110 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
141.732 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
165.354 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
188.976 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
212.598 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
236.220 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
4 1:AXIAL 0.000 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
15.748 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
31.496 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
47.244 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
62.992 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
78.740 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
94.488 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
110.236 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
125.984 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
141.732 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
157.480 -46.842 -46.842 -46.842 -46.842 -46.842 0.000
5 1:AXIAL 0.000 47.664 47.664 47.664 47.664 0.000 47.664
17.607 47.664 47.664 47.664 47.664 0.000 47.664
35.214 47.664 47.664 47.664 47.664 0.000 47.664
52.821 47.664 47.664 47.664 47.664 0.000 47.664
70.427 47.664 47.664 47.664 47.664 0.000 47.664
88.034 47.664 47.664 47.664 47.664 0.000 47.664
42
105.641 47.664 47.664 47.664 47.664 0.000 47.664
123.248 47.664 47.664 47.664 47.664 0.000 47.664
140.855 47.664 47.664 47.664 47.664 0.000 47.664
158.462 47.664 47.664 47.664 47.664 0.000 47.664
176.068 47.664 47.664 47.664 47.664 0.000 47.664
6 1:AXIAL 0.000 28.834 28.834 28.834 28.834 0.000 28.834
26.410 28.834 28.834 28.834 28.834 0.000 28.834
52.820 28.834 28.834 28.834 28.834 0.000 28.834
79.231 28.834 28.834 28.834 28.834 0.000 28.834
105.641 28.834 28.834 28.834 28.834 0.000 28.834
132.051 28.834 28.834 28.834 28.834 0.000 28.834
158.461 28.834 28.834 28.834 28.834 0.000 28.834
184.871 28.834 28.834 28.834 28.834 0.000 28.834
211.281 28.834 28.834 28.834 28.834 0.000 28.834
237.692 28.834 28.834 28.834 28.834 0.000 28.834
264.102 28.834 28.834 28.834 28.834 0.000 28.834
7 1:AXIAL 0.000 52.371 52.371 52.371 52.371 0.000 52.371
26.410 52.371 52.371 52.371 52.371 0.000 52.371
52.820 52.371 52.371 52.371 52.371 0.000 52.371
79.231 52.371 52.371 52.371 52.371 0.000 52.371
105.641 52.371 52.371 52.371 52.371 0.000 52.371
132.051 52.371 52.371 52.371 52.371 0.000 52.371
158.461 52.371 52.371 52.371 52.371 0.000 52.371
184.871 52.371 52.371 52.371 52.371 0.000 52.371
211.282 52.371 52.371 52.371 52.371 0.000 52.371
237.692 52.371 52.371 52.371 52.371 0.000 52.371
264.102 52.371 52.371 52.371 52.371 0.000 52.371
8 1:AXIAL 0.000 52.371 52.371 52.371 52.371 0.000 52.371
17.607 52.371 52.371 52.371 52.371 0.000 52.371
35.214 52.371 52.371 52.371 52.371 0.000 52.371
52.820 52.371 52.371 52.371 52.371 0.000 52.371
70.427 52.371 52.371 52.371 52.371 0.000 52.371
88.034 52.371 52.371 52.371 52.371 0.000 52.371
105.641 52.371 52.371 52.371 52.371 0.000 52.371
123.248 52.371 52.371 52.371 52.371 0.000 52.371
140.854 52.371 52.371 52.371 52.371 0.000 52.371
158.461 52.371 52.371 52.371 52.371 0.000 52.371
176.068 52.371 52.371 52.371 52.371 0.000 52.371
9 1:AXIAL 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7.874 0.000 0.000 0.000 0.000 0.000 0.000
15.748 0.000 0.000 0.000 0.000 0.000 0.000
23.622 0.000 0.000 0.000 0.000 0.000 0.000
31.496 0.000 0.000 0.000 0.000 0.000 0.000
39.370 0.000 0.000 0.000 0.000 0.000 0.000
47.244 0.000 0.000 0.000 0.000 0.000 0.000
55.118 0.000 0.000 0.000 0.000 0.000 0.000
62.992 0.000 0.000 0.000 0.000 0.000 0.000
70.866 0.000 0.000 0.000 0.000 0.000 0.000
78.740 0.000 0.000 0.000 0.000 0.000 0.000
10 1:AXIAL 0.000 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
19.685 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
39.370 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
59.055 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
78.740 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
98.425 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
118.110 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
137.795 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
157.480 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
177.165 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
196.850 -25.790 -25.790 -25.790 -25.790 -25.790 0.000
11 1:AXIAL 0.000 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
7.874 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
15.748 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
23.622 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
31.496 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
39.370 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
47.244 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
55.118 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
43
62.992 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
70.866 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
78.740 -10.526 -10.526 -10.526 -10.526 -10.526 0.000
12 1:AXIAL 0.000 31.623 31.623 31.623 31.623 0.000 31.623
24.900 31.623 31.623 31.623 31.623 0.000 31.623
49.799 31.623 31.623 31.623 31.623 0.000 31.623
74.699 31.623 31.623 31.623 31.623 0.000 31.623
99.599 31.623 31.623 31.623 31.623 0.000 31.623
124.499 31.623 31.623 31.623 31.623 0.000 31.623
149.398 31.623 31.623 31.623 31.623 0.000 31.623
174.298 31.623 31.623 31.623 31.623 0.000 31.623
199.198 31.623 31.623 31.623 31.623 0.000 31.623
224.098 31.623 31.623 31.623 31.623 0.000 31.623
248.997 31.623 31.623 31.623 31.623 0.000 31.623
13
1:AXIAL
LOADS
0.000 0.000 0.000 0.000 0.000 0.000 0.000
24.900 0.000 0.000 0.000 0.000 0.000 0.000
49.800 0.000 0.000 0.000 0.000 0.000 0.000
74.699 0.000 0.000 0.000 0.000 0.000 0.000
99.599 0.000 0.000 0.000 0.000 0.000 0.000
124.499 0.000 0.000 0.000 0.000 0.000 0.000
149.399 0.000 0.000 0.000 0.000 0.000 0.000
174.298 0.000 0.000 0.000 0.000 0.000 0.000
199.198 0.000 0.000 0.000 0.000 0.000 0.000
224.098 0.000 0.000 0.000 0.000 0.000 0.000
248.998 0.000 0.000 0.000 0.000 0.000 0.000
Beam Combined Axial and Bending Stresses Summary
Max Comp Max Tens
Beam L/C
Length
(m)
Stress
(MPa)
d
(m)
Corner
Stress
(MPa)
d
(m)
Corner
1
1:AXIAL
LOADS
4.000 -76.842 0.000 1
2
1:AXIAL
LOADS
6.000 -76.842 0.000 1
3
1:AXIAL
LOADS
6.000 -46.842 0.000 1
4
1:AXIAL
LOADS
4.000 -46.842 0.000 1
5
1:AXIAL
LOADS
4.472 47.664 0.000 1
6
1:AXIAL
LOADS
6.708 28.834 0.000 1
7
1:AXIAL
LOADS
6.708 52.371 0.000 1
8
1:AXIAL
LOADS
4.472 52.371 0.000 1
9
1:AXIAL
LOADS
2.000
10
1:AXIAL
LOADS
5.000 -25.790 0.000 1
11
1:AXIAL
LOADS
2.000 -10.526 0.000 1
12
1:AXIAL
LOADS
6.325 31.623 0.000 1
13
1:AXIAL
LOADS
6.325 0.000 0.000 1
Beam Profile Stress
44
There is no data of this type.
Reactions
Horizontal Vertical Horizontal Moment
Node L/C FX (kN) FY (kN) FZ (kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
1 1:AXIAL LOADS -65.000 40.500 0.000 0.000 0.000 0.000
5 1:AXIAL LOADS 0.000 44.500 0.000 0.000 0.000 0.000
Reaction Summary
Horizontal Vertical Horizontal Moment
Node L/C
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
Max FX 5
1:AXIAL
LOADS
0.000 4.500 0.000 0.000 0.000 0.000
Min FX 1
1:AXIAL
LOADS
-65.000 40.500 0.000 0.000 0.000 0.000
Max FY 5 1:AXIAL 0.000 44.500 0.000 0.000 0.000 0.000
Min FY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Max FZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Min FZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Max MX 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Min MX 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Max MY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Min MY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Max MZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Min MZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000
Failed Members
There is no data of this type.
Statics Check Results
L/C
FX
(kN)
FY
(kN)
FZ
(kN)
MX
(kN-
m)
MY
(kN-
m)
MZ
(kN-
m)
1:AXIAL
LOADS
Loads 65.000 -85.000 0.000 0.000 0.000 -890.001
1:AXIAL
LOADS
Reactions -65.000 85.000 0.000 0.000 0.000 890.001
45
Difference -0.000 0.000 0.000 0.000 0.000 0.000
9. RESULTS & CONCLUSIONS
Truss system has been understood entirely with its various elements, types,
stability and analysis for an unknown set of forces.
Further, two types of truss system have been analytically analyzed for a set of
unknown forces manually. Also, STAAD Files have been generated for both
the Truss systems comprising modeling, loading, and analysis. The results
46
drawn from manual calculation and from STAAD.PRO have been found to be
in compliance.
Furthermore, Standard Excel Program Files have been developed for the two
Truss systems for a set of unknown forces and the results were in
concurrence with the results obtained from the analysis of STAAD.PRO.
47
RENDERD
VIEW
48

More Related Content

Similar to Report(Tausif)

STRESS AND DEFORMATION ANALYSIS of mechanisms
STRESS AND DEFORMATION ANALYSIS of mechanismsSTRESS AND DEFORMATION ANALYSIS of mechanisms
STRESS AND DEFORMATION ANALYSIS of mechanisms
mohamed7446967
 
Ce 382 l5 truss structures
Ce 382 l5   truss structuresCe 382 l5   truss structures
Ce 382 l5 truss structures
hlksd
 

Similar to Report(Tausif) (20)

colorado2.pdf
colorado2.pdfcolorado2.pdf
colorado2.pdf
 
STRESS AND DEFORMATION ANALYSIS of mechanisms
STRESS AND DEFORMATION ANALYSIS of mechanismsSTRESS AND DEFORMATION ANALYSIS of mechanisms
STRESS AND DEFORMATION ANALYSIS of mechanisms
 
s1233587_Report
s1233587_Reports1233587_Report
s1233587_Report
 
Beams
BeamsBeams
Beams
 
L5 truss structures
L5   truss structuresL5   truss structures
L5 truss structures
 
Ifem.ch02
Ifem.ch02Ifem.ch02
Ifem.ch02
 
Approximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfApproximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdf
 
Civil Engineering structure
Civil Engineering structureCivil Engineering structure
Civil Engineering structure
 
Structural Analysis
Structural AnalysisStructural Analysis
Structural Analysis
 
Structural analysis 1
Structural analysis   1Structural analysis   1
Structural analysis 1
 
Direct Stifness Method- Trusses updated.pptx
Direct Stifness Method- Trusses updated.pptxDirect Stifness Method- Trusses updated.pptx
Direct Stifness Method- Trusses updated.pptx
 
Truss & its analysis
Truss & its analysisTruss & its analysis
Truss & its analysis
 
Ce 382 l5 truss structures
Ce 382 l5   truss structuresCe 382 l5   truss structures
Ce 382 l5 truss structures
 
Fem frame
Fem frameFem frame
Fem frame
 
E1303021829
E1303021829E1303021829
E1303021829
 
LARGE SPAN STEEL TRUSS BRIDGE FINITE ELEMENT SIMULATION TO INVESTIGATE THE BO...
LARGE SPAN STEEL TRUSS BRIDGE FINITE ELEMENT SIMULATION TO INVESTIGATE THE BO...LARGE SPAN STEEL TRUSS BRIDGE FINITE ELEMENT SIMULATION TO INVESTIGATE THE BO...
LARGE SPAN STEEL TRUSS BRIDGE FINITE ELEMENT SIMULATION TO INVESTIGATE THE BO...
 
A study of r.c.c. beam column connection subjected to
A study of r.c.c. beam column connection subjected toA study of r.c.c. beam column connection subjected to
A study of r.c.c. beam column connection subjected to
 
A study of r.c.c. beam column connection subjected to monotonic loading
A study of r.c.c. beam column connection subjected to monotonic loadingA study of r.c.c. beam column connection subjected to monotonic loading
A study of r.c.c. beam column connection subjected to monotonic loading
 
A study of r.c.c. beam column connection subjected to monotonic loading
A study of r.c.c. beam column connection subjected to monotonic loadingA study of r.c.c. beam column connection subjected to monotonic loading
A study of r.c.c. beam column connection subjected to monotonic loading
 
Truss.pptx
Truss.pptxTruss.pptx
Truss.pptx
 

Report(Tausif)

  • 1. SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR FOUR WEEKS SUMMER TRAINING At RELIANCE INFRASTRUCTURE (From JUNE 16, 2010 to JULY 16, 2010) ANALYSIS OF TRUSS SYSTEM, BY PREPARING EXCEL PROGRAMMING SHEET AND VERIFYING THE DESIGN EXCEL SHEET BY STAAD ANALYSIS SUBMITTED BY: - TAUSIF ALAM 0809700426 B.Tech, 2nd Year DEPARTMENT OF CIVIL ENGINEERING GALGOTIA’S COLLEGE OF ENGG. & TECH. GREATER NOIDA 1
  • 2. TO WHOM IT MAY CONCERN 2
  • 3. I here by certify that ‘ TAUSIF ALAM ’ROLL No. 0809700426of GALGOTIA’S COLLEGE OF ENGG.& TECNOLOGY, Greater Noida has undergone one month of training from June 16 to July 17 at Reliance Infrastructure Ltd to fulfill the requirements for the award of degree of B.Tech (Civil Engineering). He worked on the analysis of Structure (Truss Analysis) during the training under my supervision. During his tenure with us we found him sincere and hard working. I wish him great success in the future. DATE: Signature of the Student Signature (Mr. C.M Sarvaiya) Head, In-house engineering department, Reliance Infrastructure Ltd; Noida (Seal of Organization) 3
  • 4. ACKNOWLEDGEMENT I would like to express a deep sense of gratitude and thanks profusely to Mr. C.M Sarvaiya (Head, In house engineering department, Reliance Infrastructure) without the wise counsel and able guidance, it would have been impossible to complete the report in this manner. The help rendered by Rupesh Anand (Design Engineer, In House Engineering Department) and P. Ramakanth (Design Engineer, In House Engineering Department) and all other member for intellectual support throughout the course of his work is greatly acknowledged. Finally, I am indebted to all whosoever have contributed in this report work and friendly stay at RELIANCE INFRASTRUCTURE. TAUSIF ALAM 080970042 B.Tech 2nd year Department of civil engineering Gagotia’s College of Engg.& Technology INTRODUCTION 4
  • 5. Reliance Infrastructure Limited, incorporated in 1929, is a fully integrated utility engaged in the generation, transmission and distribution of electricity. It ranks among India’s top listed private companies on all major financial parameters, including assets, sales, profits and market capitalization. It is India’s foremost private sector utility with aggregate estimated revenues of Rs 9,500 crore (US$2.1 billion) and total assets of Rs 10,700 crores (US$2.4 billion). Reliance Infrastructure Limited distributes more than 21 billion units of electricity to over 25 million consumers I Mumbai, Delhi, Orissa and Goa, across an its power stations located in Maharashtra, Andhra Pradesh, Kerala, Karnataka and Goa. The company is currently pursuing several gas, coal, wind and hydro-based power generation projects in Maharashtra, Uttar Pradesh, arunachal Pradesh and Uttaranchal with aggregates capacity of over 12,500 MW. These projects are at various stages of development. Reliance Infrastructure Limited is vigorously participating in emerging opportunities in the areas of trading and transmission of power. It is also engaged in a portfolio of services in the power sector in engineering, procurement and construction (EPC) through regional offices in India. 5
  • 6. CONTENTS TOPIC Page no. 1. Introduction to Truss 7 2. Truss 2.1 Plane Truss 7 2.2 Space Truss 9 2.2.1 Equilibrium and Stability Equation 9 3. Types of Truss 3.1 Perfect Truss 10 3.2 Imperfect Truss 10 3.3 Deficient Truss 10 3.4 Redundant Truss 11 4. Assumption made in classical Truss Analysis 12 5. Terminology 5.1 Nature of forces in the member 13 6. Determinate, Indeterminate and Unstable Truss 6.1 Determinate Truss 14 6.2 Indeterminate Truss 14 6.3 Unstable Truss 14 6.4 Unknown Reaction Component at 6.4.1 Roller Support 14 6.4.2 Hinged Support 14 6.4.3 Fixed Support 14 7. Method of Analysis 7.1 Method of Joints 15 7.2 Method of Section (Method of Moments) 15 8. Analysis of truss systems in STAAD.PRO 29 9. Results and conclusions 30 6
  • 7. 1. INTRODUCTION TO TRUSS 1.1) A truss is an articulated structure composed of straight members arranged and connected in such a way that they transmit primarily axial forces. If all the members lie in one plane it is called a plane truss. A three dimensional truss is called a space truss. 2. TRUSS 2.1) Plane Truss: - The basic form of truss is a triangle formed by three members joined together at their common ends forming three joints. Another two member connected to two of the joints form a stable system of two triangles. a) I f whole structure is built up in this way it must be internally rigid. Such a truss if supported suitably will be stable. b) The truss has to be supported in general by three reaction components, all of which neither parallel nor concurrent such a truss is called simple truss. Various types of trusses are shown in Fig 1 a, b and c. These are stable and statically determinate. (a) JOINT MEMBER SUPPORTS 7
  • 8. (b) (c) Fig (1) (2.2) SPACE TRUSS The basic element of space truss which is just rigid is a tetrahedron with four joints space truss is shown in figure 2. Fig (2) 8
  • 9. (2.2.1) EQUILIBRIUM AND STABILITY EQUATION The equilibrium of an entire space truss or Section of a space truss is described by the sir scalar equation given below:- ∑Fx = 0 ∑Mx = 0 ∑Fy = 0 ∑My = 0 ∑Fz = 0 ∑Mz = 0 Or in vector from Fr = 0 Mr = 0 Fr and Mr represent three – dimensional force and moment Vector. 3. Type of Truss:- I) Perfect Truss II) Imperfect Truss - Deficient Truss - Redundant Truss. (3.1) Perfect Truss:- A truss which has got just sufficient number of members to resist load without undergoing appreciable deformation in shape is called Perfect Truss. The number of members in a perfect truss may also be expressed by the relation: m = 2j-3 Where, m = number of members, j = number of joints Perfect truss is shown in fig (3) a and b. 9
  • 10. (b) (a) (b) FIG. 3 3.2) Imperfect truss: - It is a truss in which the no. of members is more or less than (2j-3). The imperfect truss may be further classified into following two types. 1. DEFICIENT TRUSS 2. REDUDANT TRUSS Imperfect truss does not satisfy the equation m=2j-3 (3.3) Deficient Truss:- A truss which has got less number of members than that required for a perfect truss. Deficient truss is shown in fig (4) Fig. (4) (3.4) Redundant Truss: - A truss which has got more number of members than that required for a perfect frame or truss. A redundant truss is a statically indeterminate since the forces in the member can not be determined using equation of equilibrium alone. Each extra member adds one degree of indeterminacy. Redundant truss is shown in figure (5). 10
  • 11. Fig (5) 4. Assumptions made in classical truss analysis.  Every member of truss is straight.  Each end of the member is connected to a joint by a frictionless pin on the longitudinal centroidal axis of the member.  The self weighs of the members of a truss are taken to be negligible compared with the applied loads.  All the load and reactions are applied or transmitted to the joints only. 11
  • 12.  The cross-section of the members is uniform i.e.; members are prismatic. 5. TERMINOLOGY: (5.1) Nature of forces in members. The members of truss are subjected to either tensile or compressive forces. A typical truss ABCDE loaded at joint E is shown in figure .6(a). The member BC is subjected to compressive force C as shown in fig 6 (b). Effect of this force on the joint B (or C) is equal and opposite to the force C as shown in fig 6 (b). The member AE is subjected to tensile force T. It effect on the Joint A and E are as shown in fig. 6 (b). 12 A B C D E
  • 13. E D In the analysis of frame. We work forces on the joints, instead of the forces in the member as shown in figure 1.6 (c). It may be noted that compressive force in a member is represented in the in the figure by two arrows going away from each other and a tensile force by two arrows coming towards each other. (6).DETERMINATE, INDETERMINATE & UNSTABLE TRUSS:- (6.1) A structural system which can analyzed with the use of equation of statical Equilibrium only is called as statically determinate structure e.g. trusses with both end simply supported, one end hinged and other rollers etc. If m+r -2j =0 then truss is said to be statically determinate. 13 Fig 6(a) Fig 6(b) C T A B C D E
  • 14. (6.2) A structure which can not be analyzed with the use of equation of equilibrium only is called statically indeterminate structure. If m+r-2j > 0 then truss is said to be statically in indeterminate. Indeterminate structures are also called redundant structure. (6.3) if m+r-2J<0 then truss is said to be unstable. (6.4) Unknown reaction component at a) Roller support ---1 b) Hinged support---2 c) Fixed support------3 7. Methods of Analysis:- The following to analytical methods for finding out the forces in the members of a perfect frame, are important from the subject point of view. 7.1 Method of Joints 7.2 Method of section 7.1 Method of Joints 14 2 KN 1 2
  • 15. (a) Space diagram (b) Joint ’1’ (c) Joint (2) Fig. 7 (a, b, c) In this method, each and every joint is treated as a free body in equilibrium as shown in figure 7 (a), (b), (c) & (d). The unknown forces are then determined by equilibrium equation viz; ∑v=0 and ∑h-=0. i.e.; sum of all the vertical forces and horizontal forces is equated to zero. Note:1.:-The member of the frame may be named either by Bow’s method or by joints at their ends. 7.1.1. While selecting the joints, for calculation work, care should be taken that at any instant. The joint should not contain more then two members in which the forces are unknown. 7.2 Method of section (or Method of Moments) This method is particularly convenient when the forces in a few members of a truss are required to be found out. In this method the truss is cut into two parts and equilibrium equations are written for one of the parts of truss treating it as a free –body diagram for the purpose. The critical aspect of this method is the choice of the proper free body diagram for the purpose. The method of joints is effective if want to calculate forces in all members of the truss but the method of section is obviously superior if we seek forces only in certain members. In such case section can be made only through the selected members, where as the method of joints would require the analysis of joints from one end of the structure progressively up to particular member. 15
  • 17. Taking moment about joint 1 R4*(2a) = F2*(3a / 2) + F1*(a) + F4*(a / 2) + ( 3 a/2) (F3 – F5) Cancelling (a) from both sides and rearranging the equation we get; R4 = (3F2 / 4 + F1 / 2 + F4 / 4) + ( 3 /4) (F3 – F5) R1 = ΣFv - R4 H1 = F3- F5 R1= F4+F1+F2-(R4) R1= F4 + F1 + F2 - [(3 F2/4 + F1/2 + F4/4) + ( 3 /4) (F3 – F5)] After Simplification we get; R1= (F1/2 + F2/4 + 3F4/4) - ( 3 /4) (F3 – F5) a aaa a a a 1 2 3 4 5 F4 F2 F5 F3 F1R1 R4 H1 17
  • 18. P53P53 P12 P15 R1 H1 F4 CACULATION OF MEMBER FORCES AT JOINT (1) ΣFy = 0 gives; [(F2/4 + F1/2 + 3F4/4) - ( 3 /4) (F3 – F5)] + P12 sin60˚ = 0 P12 = [(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4] ΣFx = 0 gives ; P12 cos60˚ + P15 - H1 = 0 P15 = H1 - [(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4] cos 60˚ P15 = 0.75 (F3 – F5) + (0.144 F2+0.288 F1+0.433 F4) AT JOINT (2) 18 60˚
  • 19. P23 P25 P12 F5 ΣFy =0 gives; ([(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4]) sin60 + F4 + P25sin60 = 0 [(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (0.866) F4] + F4 = - P25sin60 P25 = - {[(0.5) (F3 – F5)] – [(0.288) F2+ (0.577 F1) + (2.02) F4} ΣFx = 0 gives; P25 (cos60) + P23 – F5 – P12 ( cos 60˚) =0 (0.288F2+0.577F1+0.866F4) cos60 + (0.288F2+0.577F1+2.02F4) cos60 - F5+ P23=0 0.144F2+0.2885F1+0.433F4+0.144F2+0.2885F1+1.01F4-F5+P23=0 P23 = - (0.288F2+0.577F1+1.443F4-F5) AT JOINT (5) ΣFy =0 gives; (0.288F2+0.577F1+2.04F4)(0.866)-F1-P53 (sin60) =0 19 60˚ 60˚
  • 20. P25 P53 P15 F1 P54 60˚ 60˚ P43 P53 = - (0.288F2-0.577F1+2.04F4) ΣFx=0 gives; P15-P53(cos60)-P25(cos60)+P54=0 ( 0.288F2 - 0.578F1 + 0.204F4)(cos60)-(0.288F2 + 0.577F1 + 2.02F4)(cos60) + P54 = 0 0.144F2 + 0.288F1 + 0.433F4 - 0.144F2 - 0.289F1 + 1.02F4 - 0.144F2 + 0.288F1 + 1.01F4 + P54 = 0 P54= 0.144F2 - 0.285F1 - 2.463F4 AT JOINT (4) ∑Fy = 0 gives; R4-P43 sin60 = 0 0.75F2 + 0.5F1 + 0.25F4 = P43sin60 P43=0.866F2+0.577F1+0.288F4 20
  • 21. 60˚P54 R4 Analytical Analysis of Truss 2 21 VA VB VC VD VE HA HD HB HC HE VF VG VH HF HG HH A C B D E F G Hθ
  • 22. PROCEDURE FOR ANALYSIS Taking moment about A MA = VB*a-HBtanθ+Vc*2a-HC*2a*tanθ+VD*3a- HD*atanθ+VE*4a+VF*a+VG*2a+VH*3a+RE*4a=0 RE*4a=-(VB*a-HB*tanθ+VC*2a-HC*2ª*tanθ+VD*3a- HD*atanθ+VE*4a+VF*a+VG*2a+VH*3a) Cancelling a from both side we get, RE=-(VB/4-HBtanθ/4*2Vc/4-2Hctanθ/4+3VD/4-HDtanθ/4+VE+VF/4+2VA/4+3VH/4) RE=-(VB/4-HB/4tanθ+VC/2-HC/2tanθ+3/4VD-HD/4tanθ+VE+VF/4+VG/2+3VH/4) RA=-(∑F-RE) RA= -(VA+VB+VC+VD+VE+VF+VG+VH-VB/4-HBtanθ/4-VC/2-HCtanθ/2-3VD/4- HDtanθ/4-VE-VF/4-VG/2-3VH/4) RA= -(VA-3VB/4-HBtanθ-VC/2-HCtanθ/2-VD/4-HDtanθ-3VF/4-VG/2-VH/4) CALCULATION OF FORCE IN MEMBERS At joint (A) ∑Fy=0 gives -(VA+RA)=PAB*Sinθ PABsin30 = - (VA-VA+VB*0.75+HB*tanθ*0.25+0.5*VC+HC*tanθ*0.5+VD*0.25+HD* tanθ 22
  • 24. ∑Fx = 0 gives; PFG - PAF = 0 PFG= (1.299*VB + 0.433*HB*tanθ + 0.866*VC + 0.866*HC*tanθ + 0.433*VD + 0.433*HD*tanθ +1.299*VF +0.866*VG+ 0.433*VH) + HF PFG=5.196 (tensile) At Joint (B) ∑Fy=0 gives PBA + VB + PBC=0 PBC=-(1.5*VB+0.5*HB*tanθ+ VC+HC*tanθ +0.5*VD+0.5*HD*tanθ 1.5*VF+VG+0.5*VH)-(VB) PBC = 4KN (Comp) Joint (B) ∑Fx=0 gives; PBA+PBC=PBG PBG= - (1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH) +(1.5*VB+0.5*HB* tanθ+ VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)- (VB) PBG=2KN (Comp) At Joint (C) 24 VB PBC PBG PBA PBF HB
  • 25. ΣFy=0 gives; PCG-VC=0 PCG=2KN (Tensile) Joint (C) ∑Fx=0 gives; PBC+PCD=0 PCD=- (1.5*VB+0.5*HB*tanθ+VC+HC*tanθ+0.5*VD+0.5*HD*tanθ+1.5*VF+VG+0.5*VH)- (VB) PCD=4KN (Comp) At Joint (G) ∑Fy=0 gives; PCG+PBG*sinθ+ PDG*sinθ+ VG=0 PDG= - (VG/ sinθ+ PCG/sinθ + PBG) PDG= 2KN (Comp) 25 PBC PCD VC PGC HC PGC PGDPGB PGHPGF VG HG
  • 26. ∑Fx=0 gives; PGH-PFG=0 PGH= (1.299*VB+0.433*HB*tanθ+0.866*VC +0.866*HC*tanθ+ 0.433*VD+0.433*HD*tanθ+1.299*VF+0.866*VG+ 0.433*VH) + (HG) PGH=5.196+0 PGH=5.196N (Tensile) At Joint (H) ∑Fy=0 gives; PDH+VH=0 PDH =0KN ∑Fx = 0 gives; PEH+PGH=0 gives; PEH= - (PGH) PEH= (1.299*VB+0.433*tanθ+0.866*VC+0.866*HC*tanθ+0.433*VD+0.433*HD*tanθ+1.299 *VF+0.866*VG+ 0.433*VH+ HH) PEH=5.196KN (Tensile) 26 PDH PEHPGH VH HH
  • 27. At joint (E) ΣFy=0 gives; PDEsin30 = - (RE+VE) PDE= - (0.5VB-0.5HBtanθ+VC-HCtanθ+1.5VD-0.5HBtanθ+0.5VF+VG+1.5VH+HE) 8. ANALYSIS OF TRUSS SYSTEMS IN STAAD.PRO Two truss systems were modeled in STAAD.PRO and are checked for a particular Loading Pattern. The arrangement and the Output are mentioned in this report. First the Truss System 1 was analyzed and then Truss system 2, the output for which has been mentioned as per the order mentioned above. 27 VEPDE PEH RE HE
  • 28. STAAD OUTPUT FOR TRUSS SYSTEM 1 Job Information Engineer Checked Approved Name: TAUSIF ALAM RUPESH ANAND Date: 13-Jul-10 Structure Type TRUSS ANALYSIS 28 ARRANGEMENT OF TRUSS SYSTEM 1
  • 29. Number of Nodes 6 Highest Node 6 Number of Elements 9 Highest Beam 9 Number of Basic Load Cases 1 Number of Combination Load Cases 0 Included in this printout are data for: All The Whole Structure Included in this printout are results for load cases: Type L/C Name Primary 1 ALL AXIAL FORCES Nodes Node X (m) Y (m) Z (m) 1 0.000 0.000 0.000 2 3.000 0.000 0.000 3 6.000 0.000 0.000 4 6.000 3.000 0.000 5 3.000 3.000 0.000 6 0.000 3.000 0.000 Beams Beam Node A Node B Length (m) Property β (degrees) 1 1 2 3.000 1 0 2 2 3 3.000 1 0 3 3 4 3.000 1 0 4 2 5 3.000 1 0 5 1 6 3.000 1 0 6 6 2 4.243 1 0 7 4 2 4.243 1 0 8 4 5 3.000 1 0 9 5 6 3.000 1 0 Section Properties Prop Section Area (in2 ) Iyy (in4 ) Izz (in4 ) J (in4 ) Material 1 ISMB100 2.263 0.985 6.198 0.050 STEEL 29
  • 30. Supports Node X (kip/in) Y (kip/in) Z (kip/in) rX (kip- ft/deg) rY (kip- ft/deg) rZ (kip- ft/deg) 1 Fixed Fixed Fixed - - - 3 - Fixed - - - - Releases There is no data of this type. Basic Load Cases Number Name 1 AXIAL FORCE Combination Load Cases There is no data of this type. Load Generators There is no data of this type. Node Loads : 1 AXIAL FORCE Node FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) 4 - -25.000 - - - - -10.000 - - - - - 5 - -15.000 - - - - 6 - -15.000 - - - - 10.000 - - - - - Node Displacements Node L/C X (mm) Y (mm) Z (mm) Resultant (mm) rX (rad) rY (rad) rZ (rad) 1 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL FORCE 0.000 -0.680 0.000 0.680 0.000 0.000 0.000 3 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 1:AXIAL FORCE -0.128 -0.334 0.000 0.358 0.000 0.000 0.000 5 1:AXIAL FORCE 0.051 -0.835 0.000 0.836 0.000 0.000 0.000 6 1:AXIAL FORCE 0.231 -0.231 0.000 0.327 0.000 0.000 0.000 30
  • 31. Beam End Forces Sign convention is as the action of the joint on the beam. Axial Shear Torsion Bending Beam Node L/C Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 2 2 1:AXIAL FORCE 0.000 0.000 0.000 0.000 0.000 0.000 3 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 3 3 1:AXIAL FORCE 32.500 0.000 0.000 0.000 0.000 0.000 4 1:AXIAL FORCE -32.500 0.000 0.000 0.000 0.000 0.000 4 2 1:AXIAL FORCE 15.000 0.000 0.000 0.000 0.000 0.000 5 1:AXIAL FORCE -15.000 0.000 0.000 0.000 0.000 0.000 5 1 1:AXIAL FORCE 22.500 0.000 0.000 0.000 0.000 0.000 6 1:AXIAL FORCE -22.500 0.000 0.000 0.000 0.000 0.000 6 6 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL FORCE 10.607 0.000 0.000 0.000 0.000 0.000 7 4 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL FORCE 10.607 0.000 0.000 0.000 0.000 0.000 8 4 1:AXIAL FORCE 17.500 0.000 0.000 0.000 0.000 0.000 5 1:AXIAL FORCE -17.500 0.000 0.000 0.000 0.000 0.000 9 5 1:AXIAL FORCE 17.500 0.000 0.000 0.000 0.000 0.000 6 1:AXIAL FORCE -17.500 0.000 0.000 0.000 0.000 0.000 Beam End Force Summary The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam. Axial Shear Torsion Bending Beam Node L/C Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) Max Fx 3 3 1:AXIAL FORCE 32.500 0.000 0.000 0.000 0.000 0.000 Min Fx 7 4 1:AXIAL FORCE -10.607 0.000 0.000 0.000 0.000 0.000 Max Fy 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Min Fy 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Max Fz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Min Fz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Max Mx 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Min Mx 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Max My 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Min My 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Max Mz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 Min Mz 1 1 1:AXIAL FORCE -0.000 0.000 0.000 0.000 0.000 0.000 31
  • 32. Beam Force Detail Summary Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression. Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d (m) Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) Max Fx 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000 0.000 Min Fx 7 1:AXIAL FORCE 0.000 -10.607 0.000 0.000 0.000 0.000 0.000 Max Fy 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Min Fy 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Max Fz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Min Fz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Max Mx 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Min Mx 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Max My 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Min My 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Max Mz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Min Mz 1 1:AXIAL FORCE 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 Beam Maximum Moments Distances to maxima are given from beam end A. Beam Node A Length (m) L/C d (m) Max My (kN- m) d (m) Max Mz (kN- m) 1 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 3 3 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 4 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 5 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 6 6 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 32
  • 33. Max +ve 0.000 0.000 0.000 0.000 7 4 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 8 4 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 9 5 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 Beam Maximum Axial Forces Distances to maxima are given from beam end A. Beam Node A Length (m) L/C d (m) Max Fx (kN) 1 1 3.000 1:AXIAL FORCE Max -ve Max +ve 0.000 -0.000 2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 Max +ve 3 3 3.000 1:AXIAL FORCE Max -ve 0.000 32.500 Max +ve 4 2 3.000 1:AXIAL FORCE Max -ve 0.000 15.000 Max +ve 5 1 3.000 1:AXIAL FORCE Max -ve 0.000 22.500 Max +ve Beam Node A Length (m) L/C d (m) Max Fz (kN) d (m) Max Fy (kN) 1 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 2 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 3 3 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 4 2 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 5 1 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 6 6 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 7 4 4.243 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 8 4 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 9 5 3.000 1:AXIAL FORCE Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 33
  • 34. 6 6 4.243 1:AXIAL FORCE Max -ve Max +ve 0.000 -10.607 7 4 4.243 1:AXIAL FORCE Max -ve Max +ve 0.000 -10.607 8 4 3.000 1:AXIAL FORCE Max -ve 0.000 17.500 Max +ve 9 5 3.000 1:AXIAL FORCE Max -ve 0.000 17.500 Max +ve Beam Maximum Forces by Section Property Axial Shear Torsion Bending Section Max Fx (kN) Max Fy (kN) Max Fz (kN) Max Mx (kN- m) Max My (kN- m) Max Mz (kN- m) ISMB100 Max +ve 32.500 0.000 0.000 0.000 0.000 0.000 Max -ve -10.607 0.000 0.000 0.000 0.000 0.000 Beam Combined Axial and Bending Stresses Beam Combined Axial and Bending Stresses Summary Max Comp Max Tens Beam L/C Length (m) Stress (MPa) d (m) Corner Stress (MPa) d (m) Corner 1 1:AXIAL FORCE 3.000 -0.000 0.000 1 2 1:AXIAL FORCE 3.000 0.000 0.000 1 3 1:AXIAL FORCE 3.000 22.260 0.000 1 4 1:AXIAL FORCE 3.000 10.274 0.000 1 5 1:AXIAL FORCE 3.000 15.411 0.000 1 6 1:AXIAL FORCE 4.243 -7.265 0.000 1 7 1:AXIAL FORCE 4.243 -7.265 0.000 1 8 1:AXIAL FORCE 3.000 11.986 0.000 1 9 1:AXIAL FORCE 3.000 11.986 0.000 1 Beam Profile Stress There is no data of this type. 34
  • 35. Reactions Horizontal Vertical Horizontal Moment Node L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) Max FX 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000 Min FX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Max FY 3 1:AXIAL FORCE 0.000 32.500 0.000 0.000 0.000 0.000 Min FY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Max FZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Min FZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Max MX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Min MX 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Max MY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Min MY 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Max MZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Min MZ 1 1:AXIAL FORCE -0.000 22.500 0.000 0.000 0.000 0.000 Reaction Envelope There is no data of this type - Analysis results are not available Failed Members There is no data of this type. 35
  • 36. Statics Check Results L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) 1:AXIAL FORCE Loads 0.000 -55.000 0.000 0.000 0.000 -195.000 1:AXIAL FORCE Reactions -0.000 55.000 0.000 0.000 0.000 195.000 Difference -0.000 0.000 0.000 0.000 0.000 -0.000 STAAD OUTPUT FOR TRUSS SYSTEM 2 36
  • 37. Job Information Engineer Checked Approved Name: TAUSIF ALAM P RAMAKANTH Date: 16-Jul-10 Structure Type PLANE FRAME Number of Nodes 8 Highest Node 8 Number of Elements 13 Highest Beam 13 Number of Basic Load Cases 1 Number of Combination Load Cases 0 Included in this printout are data for: All The Whole Structure Included in this printout are results for load cases: Type L/C Name Primary 1 AXIAL LOADS 37 ARRANGEMENT OF TRUSS SYSTEM 2
  • 38. Nodes Node X (m) Y (m) Z (m) 1 0.000 0.000 0.000 2 4.000 0.000 0.000 3 10.000 0.000 0.000 4 16.000 0.000 0.000 5 20.000 0.000 0.000 6 4.000 2.000 0.000 7 10.000 5.000 0.000 8 16.000 2.000 0.000 Beams Beam Node A Node B Length (m) Property b (degrees) 1 1 2 4.000 1 0 2 2 3 6.000 1 0 3 3 4 6.000 1 0 4 4 5 4.000 1 0 5 1 6 4.472 1 0 6 6 7 6.708 1 0 7 7 8 6.708 1 0 8 8 5 4.472 1 0 9 4 8 2.000 1 0 10 3 7 5.000 1 0 11 2 6 2.000 1 0 12 6 3 6.325 1 0 13 3 8 6.325 1 0 Section Properties Prop Section Area (cm2 ) Iyy (cm4 ) Izz (cm4 ) J (cm4 ) Material 1 ISMB150 19.000 53.000 725.997 2.866 STEEL Materials Mat Name E (N/mm2 ) n Density (N/mm3 ) a (1/°K) 3 STEEL 200E 3 0.300 0.000 3.61E -6 4 STAINLESSSTEEL 193E 3 0.300 0.000 5.5E -6 5 ALUMINUM 68.9E 3 0.330 0.000 7.11E -6 6 CONCRETE 21.7E 3 0.170 0.000 3.06E -6 Supports Node X (kN/m) Y (kN/m) Z (kN/m) rX (kN- m/deg) rY (kN- m/deg) rZ (kN- m/deg) 1 Fixed Fixed Fixed - - - 5 - Fixed - - - - Releases There is no data of this type. 38
  • 39. Basic Load Cases Number Name 1 AXIAL LOADS Combination Load Cases There is no data of this type. Load Generators There is no data of this type. Node Displacements Node L/C X (mm) Y (mm) Z (mm) Resultant (mm) rX (deg) rY (deg) rZ (deg) 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL LOADS 1.537 -12.364 0.000 12.459 0.000 0.000 0.000 3 1:AXIAL LOADS 3.843 -12.378 0.000 12.961 0.000 0.000 0.000 4 1:AXIAL LOADS 5.249 -9.334 0.000 10.709 0.000 0.000 0.000 5 1:AXIAL LOADS 6.186 0.000 0.000 6.186 0.000 0.000 0.000 6 1:AXIAL LOADS 4.937 -12.259 0.000 13.216 0.000 0.000 0.000 7 1:AXIAL LOADS 3.593 -11.733 0.000 12.271 0.000 0.000 0.000 8 1:AXIAL LOADS 2.828 -9.334 0.000 9.753 0.000 0.000 0.000 Node Displacement Summary Node L/C X (mm) Y (mm) Z (mm) Resultant (mm) rX (deg) rY (deg) rZ (deg) Max X 5 1:AXIAL LOADS 6.186 0.000 0.000 6.186 0.000 0.000 0.000 Min X 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Max Y 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Min Y 3 1:AXIAL LOADS 3.843 -12.378 0.000 12.961 0.000 0.000 0.000 Max Z 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Min Z 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Max rX 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Min rX 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Max rY 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Min rY 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Max rZ 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Min rZ 1 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Max Rst 6 1:AXIAL LOADS 4.937 -12.259 0.000 13.216 0.000 0.000 0.000 Beam End Forces Sign convention is as the action of the joint on the beam. Axial Shear Torsion Bending Beam Node L/C Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) 1 1 1:AXIAL LOADS -146.000 0.000 0.000 0.000 0.000 0.000 2 1:AXIAL LOADS 146.000 0.000 0.000 0.000 0.000 0.000 2 2 1:AXIAL LOADS -146.000 0.000 0.000 0.000 0.000 0.000 3 1:AXIAL LOADS 146.000 0.000 0.000 0.000 0.000 0.000 3 3 1:AXIAL LOADS -89.000 0.000 0.000 0.000 0.000 0.000 4 1:AXIAL LOADS 89.000 0.000 0.000 0.000 0.000 0.000 4 4 1:AXIAL LOADS -89.000 0.000 0.000 0.000 0.000 0.000 39
  • 40. 5 1:AXIAL LOADS 89.000 0.000 0.000 0.000 0.000 0.000 5 1 1:AXIAL LOADS 90.561 0.000 0.000 0.000 0.000 0.000 6 1:AXIAL LOADS -90.561 0.000 0.000 0.000 0.000 0.000 6 6 1:AXIAL LOADS 54.784 0.000 0.000 0.000 0.000 0.000 7 1:AXIAL LOADS -54.784 0.000 0.000 0.000 0.000 0.000 7 7 1:AXIAL LOADS 99.505 0.000 0.000 0.000 0.000 0.000 8 1:AXIAL LOADS -99.505 0.000 0.000 0.000 0.000 0.000 8 8 1:AXIAL LOADS 99.505 0.000 0.000 0.000 0.000 0.000 5 1:AXIAL LOADS -99.505 0.000 0.000 0.000 0.000 0.000 9 4 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 8 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 10 3 1:AXIAL LOADS -49.000 0.000 0.000 0.000 0.000 0.000 7 1:AXIAL LOADS 49.000 0.000 0.000 0.000 0.000 0.000 11 2 1:AXIAL LOADS -20.000 0.000 0.000 0.000 0.000 0.000 6 1:AXIAL LOADS 20.000 0.000 0.000 0.000 0.000 0.000 12 6 1:AXIAL LOADS 60.084 0.000 0.000 0.000 0.000 0.000 3 1:AXIAL LOADS -60.084 0.000 0.000 0.000 0.000 0.000 13 3 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 8 1:AXIAL LOADS -0.000 0.000 0.000 0.000 0.000 0.000 Beam End Force Summary The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam. Axial Shear Torsio n Bending Bea m Nod e L/C Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) Max Fx 8 8 1:AXIAL LOADS 99.505 0.000 0.000 0.000 0.000 0.000 Min Fx 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Max Fy 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Min Fy 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Max Fz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Min Fz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Min Mx 1 1 1:AXIAL LOADS -146.000 0.000 0.000 0.000 0.000 0.000 Max My 1 1 1:AXIAL LOADS -146.00 0.000 0.000 0.000 0.000 0.000 Min My 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Min Mz 1 1 1:AXIAL -146.000 0.000 0.000 0.000 0.000 0.000 Beam Force Detail Summary Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression. Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d (m) Fx (kN) Fy (kN) Fz (kN) Mx (kN- m) My (kN- m) Mz (kN- m) Max 8 1:AXIAL 0.000 99.505 0.000 0.000 0.000 0.000 0.000 Min Fx 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Min Fy 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Min Fz 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 40
  • 41. Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Max 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Min 1 1:AXIAL 0.000 -146.000 0.000 0.000 0.000 0.000 0.000 Beam Maximum Moments Distances to maxima are given from beam end A. Beam Node A Length (m) L/C d (m) Max My (kN- m) d (m) Max Mz (kN- m) 1 1 4.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 2 2 6.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 3 3 6.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 4 4 4.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 5 1 4.472 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 6 6 6.708 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 7 7 6.708 1:AXIAL LOADS Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 8 8 4.472 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 9 4 2.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 10 3 5.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 11 2 2.000 1:AXIAL Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 12 6 6.325 1:AXIAL LOADS Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 13 3 6.325 1:AXIAL LOADS Max -ve 0.000 0.000 0.000 0.000 Max +ve 0.000 0.000 0.000 0.000 Beam Maximum Axial Forces Distances to maxima are given from beam end A. Beam Node A Length (m) L/C d (m) Max Fx (kN) 1 1 4.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -146.000 2 2 6.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -146.000 3 3 6.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -89.000 4 4 4.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -89.000 5 1 4.472 1:AXIAL LOADS Max -ve 0.000 90.561 Max +ve 6 6 6.708 1:AXIAL LOADS Max -ve 0.000 54.784 Max +ve 7 7 6.708 1:AXIAL LOADS Max -ve 0.000 99.505 Max +ve 8 8 4.472 1:AXIAL LOADS Max -ve 0.000 99.505 Max +ve 9 4 2.000 1:AXIAL LOADS Max -ve 0.000 0.000 41
  • 42. Max +ve 0.000 0.000 10 3 5.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -49.000 11 2 2.000 1:AXIAL LOADS Max -ve Max +ve 0.000 -20.000 12 6 6.325 1:AXIAL LOADS Max -ve 0.000 60.084 Max +ve 13 3 6.325 1:AXIAL LOADS Max -ve 0.000 0.000 Max +ve Beam Combined Axial and Bending Stresses Beam L/C d Corner 1 (MPa) Corner 2 (MPa) Corner 3 (MPa) Corner 4 (MPa) Max Tens (MPa) Max Comp (MPa) 1 1:AXIAL LOADS 0.000 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 15.748 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 31.496 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 47.244 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 62.992 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 78.740 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 94.488 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 110.236 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 125.984 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 141.732 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 157.480 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 2 1:AXIAL 0.000 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 23.622 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 47.244 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 70.866 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 94.488 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 118.110 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 141.732 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 165.354 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 188.976 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 212.598 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 236.220 -76.842 -76.842 -76.842 -76.842 -76.842 0.000 3 1:AXIAL 0.000 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 23.622 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 47.244 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 70.866 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 94.488 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 118.110 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 141.732 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 165.354 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 188.976 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 212.598 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 236.220 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 4 1:AXIAL 0.000 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 15.748 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 31.496 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 47.244 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 62.992 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 78.740 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 94.488 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 110.236 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 125.984 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 141.732 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 157.480 -46.842 -46.842 -46.842 -46.842 -46.842 0.000 5 1:AXIAL 0.000 47.664 47.664 47.664 47.664 0.000 47.664 17.607 47.664 47.664 47.664 47.664 0.000 47.664 35.214 47.664 47.664 47.664 47.664 0.000 47.664 52.821 47.664 47.664 47.664 47.664 0.000 47.664 70.427 47.664 47.664 47.664 47.664 0.000 47.664 88.034 47.664 47.664 47.664 47.664 0.000 47.664 42
  • 43. 105.641 47.664 47.664 47.664 47.664 0.000 47.664 123.248 47.664 47.664 47.664 47.664 0.000 47.664 140.855 47.664 47.664 47.664 47.664 0.000 47.664 158.462 47.664 47.664 47.664 47.664 0.000 47.664 176.068 47.664 47.664 47.664 47.664 0.000 47.664 6 1:AXIAL 0.000 28.834 28.834 28.834 28.834 0.000 28.834 26.410 28.834 28.834 28.834 28.834 0.000 28.834 52.820 28.834 28.834 28.834 28.834 0.000 28.834 79.231 28.834 28.834 28.834 28.834 0.000 28.834 105.641 28.834 28.834 28.834 28.834 0.000 28.834 132.051 28.834 28.834 28.834 28.834 0.000 28.834 158.461 28.834 28.834 28.834 28.834 0.000 28.834 184.871 28.834 28.834 28.834 28.834 0.000 28.834 211.281 28.834 28.834 28.834 28.834 0.000 28.834 237.692 28.834 28.834 28.834 28.834 0.000 28.834 264.102 28.834 28.834 28.834 28.834 0.000 28.834 7 1:AXIAL 0.000 52.371 52.371 52.371 52.371 0.000 52.371 26.410 52.371 52.371 52.371 52.371 0.000 52.371 52.820 52.371 52.371 52.371 52.371 0.000 52.371 79.231 52.371 52.371 52.371 52.371 0.000 52.371 105.641 52.371 52.371 52.371 52.371 0.000 52.371 132.051 52.371 52.371 52.371 52.371 0.000 52.371 158.461 52.371 52.371 52.371 52.371 0.000 52.371 184.871 52.371 52.371 52.371 52.371 0.000 52.371 211.282 52.371 52.371 52.371 52.371 0.000 52.371 237.692 52.371 52.371 52.371 52.371 0.000 52.371 264.102 52.371 52.371 52.371 52.371 0.000 52.371 8 1:AXIAL 0.000 52.371 52.371 52.371 52.371 0.000 52.371 17.607 52.371 52.371 52.371 52.371 0.000 52.371 35.214 52.371 52.371 52.371 52.371 0.000 52.371 52.820 52.371 52.371 52.371 52.371 0.000 52.371 70.427 52.371 52.371 52.371 52.371 0.000 52.371 88.034 52.371 52.371 52.371 52.371 0.000 52.371 105.641 52.371 52.371 52.371 52.371 0.000 52.371 123.248 52.371 52.371 52.371 52.371 0.000 52.371 140.854 52.371 52.371 52.371 52.371 0.000 52.371 158.461 52.371 52.371 52.371 52.371 0.000 52.371 176.068 52.371 52.371 52.371 52.371 0.000 52.371 9 1:AXIAL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.874 0.000 0.000 0.000 0.000 0.000 0.000 15.748 0.000 0.000 0.000 0.000 0.000 0.000 23.622 0.000 0.000 0.000 0.000 0.000 0.000 31.496 0.000 0.000 0.000 0.000 0.000 0.000 39.370 0.000 0.000 0.000 0.000 0.000 0.000 47.244 0.000 0.000 0.000 0.000 0.000 0.000 55.118 0.000 0.000 0.000 0.000 0.000 0.000 62.992 0.000 0.000 0.000 0.000 0.000 0.000 70.866 0.000 0.000 0.000 0.000 0.000 0.000 78.740 0.000 0.000 0.000 0.000 0.000 0.000 10 1:AXIAL 0.000 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 19.685 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 39.370 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 59.055 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 78.740 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 98.425 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 118.110 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 137.795 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 157.480 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 177.165 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 196.850 -25.790 -25.790 -25.790 -25.790 -25.790 0.000 11 1:AXIAL 0.000 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 7.874 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 15.748 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 23.622 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 31.496 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 39.370 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 47.244 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 55.118 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 43
  • 44. 62.992 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 70.866 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 78.740 -10.526 -10.526 -10.526 -10.526 -10.526 0.000 12 1:AXIAL 0.000 31.623 31.623 31.623 31.623 0.000 31.623 24.900 31.623 31.623 31.623 31.623 0.000 31.623 49.799 31.623 31.623 31.623 31.623 0.000 31.623 74.699 31.623 31.623 31.623 31.623 0.000 31.623 99.599 31.623 31.623 31.623 31.623 0.000 31.623 124.499 31.623 31.623 31.623 31.623 0.000 31.623 149.398 31.623 31.623 31.623 31.623 0.000 31.623 174.298 31.623 31.623 31.623 31.623 0.000 31.623 199.198 31.623 31.623 31.623 31.623 0.000 31.623 224.098 31.623 31.623 31.623 31.623 0.000 31.623 248.997 31.623 31.623 31.623 31.623 0.000 31.623 13 1:AXIAL LOADS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24.900 0.000 0.000 0.000 0.000 0.000 0.000 49.800 0.000 0.000 0.000 0.000 0.000 0.000 74.699 0.000 0.000 0.000 0.000 0.000 0.000 99.599 0.000 0.000 0.000 0.000 0.000 0.000 124.499 0.000 0.000 0.000 0.000 0.000 0.000 149.399 0.000 0.000 0.000 0.000 0.000 0.000 174.298 0.000 0.000 0.000 0.000 0.000 0.000 199.198 0.000 0.000 0.000 0.000 0.000 0.000 224.098 0.000 0.000 0.000 0.000 0.000 0.000 248.998 0.000 0.000 0.000 0.000 0.000 0.000 Beam Combined Axial and Bending Stresses Summary Max Comp Max Tens Beam L/C Length (m) Stress (MPa) d (m) Corner Stress (MPa) d (m) Corner 1 1:AXIAL LOADS 4.000 -76.842 0.000 1 2 1:AXIAL LOADS 6.000 -76.842 0.000 1 3 1:AXIAL LOADS 6.000 -46.842 0.000 1 4 1:AXIAL LOADS 4.000 -46.842 0.000 1 5 1:AXIAL LOADS 4.472 47.664 0.000 1 6 1:AXIAL LOADS 6.708 28.834 0.000 1 7 1:AXIAL LOADS 6.708 52.371 0.000 1 8 1:AXIAL LOADS 4.472 52.371 0.000 1 9 1:AXIAL LOADS 2.000 10 1:AXIAL LOADS 5.000 -25.790 0.000 1 11 1:AXIAL LOADS 2.000 -10.526 0.000 1 12 1:AXIAL LOADS 6.325 31.623 0.000 1 13 1:AXIAL LOADS 6.325 0.000 0.000 1 Beam Profile Stress 44
  • 45. There is no data of this type. Reactions Horizontal Vertical Horizontal Moment Node L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) 1 1:AXIAL LOADS -65.000 40.500 0.000 0.000 0.000 0.000 5 1:AXIAL LOADS 0.000 44.500 0.000 0.000 0.000 0.000 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) Max FX 5 1:AXIAL LOADS 0.000 4.500 0.000 0.000 0.000 0.000 Min FX 1 1:AXIAL LOADS -65.000 40.500 0.000 0.000 0.000 0.000 Max FY 5 1:AXIAL 0.000 44.500 0.000 0.000 0.000 0.000 Min FY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Max FZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Min FZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Max MX 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Min MX 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Max MY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Min MY 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Max MZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Min MZ 1 1:AXIAL -65.000 40.500 0.000 0.000 0.000 0.000 Failed Members There is no data of this type. Statics Check Results L/C FX (kN) FY (kN) FZ (kN) MX (kN- m) MY (kN- m) MZ (kN- m) 1:AXIAL LOADS Loads 65.000 -85.000 0.000 0.000 0.000 -890.001 1:AXIAL LOADS Reactions -65.000 85.000 0.000 0.000 0.000 890.001 45
  • 46. Difference -0.000 0.000 0.000 0.000 0.000 0.000 9. RESULTS & CONCLUSIONS Truss system has been understood entirely with its various elements, types, stability and analysis for an unknown set of forces. Further, two types of truss system have been analytically analyzed for a set of unknown forces manually. Also, STAAD Files have been generated for both the Truss systems comprising modeling, loading, and analysis. The results 46
  • 47. drawn from manual calculation and from STAAD.PRO have been found to be in compliance. Furthermore, Standard Excel Program Files have been developed for the two Truss systems for a set of unknown forces and the results were in concurrence with the results obtained from the analysis of STAAD.PRO. 47