SlideShare a Scribd company logo
1 of 49
Download to read offline
A multiscale systems pharmacology framework
to predict drug-class specific prophylactic
efficacy of antivirals against HIV
Sulav Duwal
Systems Pharmacology & Disease Control
Free University Berlin
01/06/2018,PAGE, Montreux
The motivation
Currently, there are more than 36 million people living with HIV.
No cure. No vaccine.
Prevention strategies - for e.g. pre-exposure prophylaxis (PrEP).
2 / 28
The motivation
target cell
compartment
Infection
Extinction
ExposedTransmitter
3 / 28
The motivation
target cell
compartment
Infection
Extinction
ExposedTransmitter
Stochastic process
Low transmission probability per exposure.
Low number of transmitted/founder viruses.
Keele et al. 2008 PNAS - The range of founder
viruses is 1 to 5.
A single founder virus (80 % transmission cases).
3 / 28
The motivation
target cell
compartment
Infection
Extinction
ExposedTransmitter
Prophylaxis
Stochastic process
Low transmission probability per exposure.
Low number of transmitted/founder viruses.
Keele et al. 2008 PNAS - The range of founder
viruses is 1 to 5.
A single founder virus (80 % transmission cases).
Pre-Exposure Prophylaxis - PrEP
An uninfected person with high risk of HIV-1
receives antiviral orally.
Currently, Truvada is only medication approved
for PrEP.
More than 25 antivirals approved for HIV-1
treatment. Novel formulations and long acting
agents.
3 / 28
Aims
target cell
compartment
Infection
Extinction
ExposedTransmitter
Prophylaxis
To build a modeling framework :
to select antivirals for PrEP
to assess PrEP strategy
4 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
5 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
5 / 28
Pharmacodynamics (Viral replication cycle)
k(t)
(early infected
T-cell)
(productively
infected T-cell)
T2Tu⋅ β(t)
Tu ⋅CLT(t)
CL
NT(t)
(free infectious
virus)
V
δPIC
δT1
δT2
T1
latency
pL|a5
longlivedcells
pM|a4
Drug-class :
CRA - Co-receptor antagonist
RTI - Reverse transcription inhibitor
InI - Integrase inhibitor
PI - Protease inhibitor
Pharmacodynamics (Viral replication cycle)
Free infectious viruses (V) infect CD4+
T-cells.
Early-infected T-cells (T1) - the virus has
successfully completed the reverse transcription.
Late-infected T-cells (T2) - the viral genome
integration in the host genome is complete.
A T2 cell produces viruses.
6 / 28
Pharmacodynamics (Viral replication cycle)
k(t)
(early infected
T-cell)
(productively
infected T-cell)
T2Tu⋅ β(t)
Tu ⋅CLT(t)
CL
NT(t)
(free infectious
virus)
V
δPIC
δT1
δT2
InIs
CRA
PI
RTIs
+
T1
latency
pL|a5
longlivedcells
pM|a4
Drug-classes :
CRA - Co-receptor antagonist
RTI - Reverse transcriptase inhibitor
InI - Integrase inhibitor
PI - Protease inhibitor
Drug-class specific mechanistic integration
7 / 28
Pharmacodynamics (Viral replication cycle)
k(t)
(early infected
T-cell)
(productively
infected T-cell)
T2Tu⋅ β(t)
Tu ⋅CLT(t)
CL
NT(t)
(free infectious
virus)
V
δPIC
δT1
δT2
InIs
CRA
PI
RTIs
+
T1
latency
pL|a5
longlivedcells
pM|a4
Drug-classes :
CRA - Co-receptor antagonist
RTI - Reverse transcriptase inhibitor
InI - Integrase inhibitor
PI - Protease inhibitor
Drug-class specific mechanistic integration
For e.g., an integrase inhibitor inhibits the viral
genome integration in the target cell genome :
k(t) = k∅ · (1 − η(t))
where k(t) and k(∅) are the rates in the presence and
absence of an InI.
7 / 28
Pharmacodynamics (Viral replication cycle)
k(t)
(early infected
T-cell)
(productively
infected T-cell)
T2Tu⋅ β(t)
Tu ⋅CLT(t)
CL
NT(t)
(free infectious
virus)
V
δPIC
δT1
δT2
InIs
CRA
PI
RTIs
+
T1
latency
pL|a5
longlivedcells
pM|a4
Drug-classes :
CRA - Co-receptor antagonist
RTI - Reverse transcriptase inhibitor
InI - Integrase inhibitor
PI - Protease inhibitor
Drug-class specific mechanistic integration
For e.g., an integrase inhibitor inhibits the viral
genome integration in the target cell genome :
k(t) = k∅ · (1 − η(t))
where k(t) and k(∅) are the rates in the presence and
absence of an InI.
PK-PD linked by EMAX model (direct response) :
1 − η(t) =
IC50
m
ICm
50 + C(t)m
IC50, Hill coefficient (m) from ex vivo single-round
infectivity assay (Shen et al. 2008 Nat Med). IC50
corrected for in vivo use.
7 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
8 / 28
Viral exposure model
target cell
compartment
Infection
Extinction
ExposedTransmitter
Prophylaxis
How many viruses reach the target-cell
compartment (transmitted viruses) per exposure?
What are factors that influence the number of
transmitted viruses ?
9 / 28
Viral exposure model
Viruses
ExposedTransmitter
Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med)
Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold.
Transmission mode : Homosexual > Heterosexual.
10 / 28
Viral exposure model
Viral load distribution in transmitter
Viruses
ExposedTransmitter
Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med)
Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold.
Transmission mode : Homosexual > Heterosexual.
10 / 28
Viral exposure model
Viral load distribution in transmitter
Viruses
ExposedTransmitter
Transmitted virus distribution in exposed
Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med)
Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold.
Transmission mode : Homosexual > Heterosexual.
10 / 28
Viral exposure model
Viral load distribution in transmitter
Viruses
ExposedTransmitter
Transmitted virus distribution in exposed
Mean transmission probability per exposure :
¯P(trans) =
∞
k=0
P(Viralload = k) ·
∞
n=0
P(Y0 = n · V|Viralload = k) · I(Y0 = n · V, ∅)
Linking the viral load of donor with the number of transmitted viruses (binomial distribution) :
P(Y0 = n · V|Viralload = k) =
kh
n
· si
· (1 − s)( kh
−i)
.
where h = log10(2.45) from Quinn 2000 et al. N Engl J Med.
11 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
12 / 28
Branching process
target cell
compartment
Infection
Extinction
ExposedTransmitter
Prophylaxis
Given a virus reaches a target-cell compartment,
what is the probability
that it establishes an infection or goes extinct?
13 / 28
Branching process
Sir Francis Galton and Henry William Watson in 1873. ‘What is the probability that the royal family
would eventually go extinct?’
Watson, H.W, Galton, F (1875) ‘On the probability of the Extinction of families’ Journal of the
Royal Anthropological Institute.
Branching process theory.
14 / 28
Branching process
Extinction / Infection probability
Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell
compartment:
E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 −
1
R0
where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral
replication cycle model.
15 / 28
Branching process
Extinction / Infection probability
Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell
compartment:
E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 −
1
R0
where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral
replication cycle model.
Extinction probability given n viruses reaches the target compartment :
E(Y0 = n · V) = E(Y0 = V)n
15 / 28
Branching process
Extinction / Infection probability
Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell
compartment:
E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 −
1
R0
where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral
replication cycle model.
Extinction probability given n viruses reaches the target compartment :
E(Y0 = n · V) = E(Y0 = V)n
Infection probability I is the complement of the extinction probability:
I(Y0 = n · V) = 1 − E(Y0 = n · V)
15 / 28
Branching process
Extinction / Infection probability
Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell
compartment:
E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 −
1
R0
where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral
replication cycle model.
Extinction probability given n viruses reaches the target compartment :
E(Y0 = n · V) = E(Y0 = V)n
Infection probability I is the complement of the extinction probability:
I(Y0 = n · V) = 1 − E(Y0 = n · V)
These equations are valid only for the constant target-site antiviral concentrations.
15 / 28
An application : concentration-response curves
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
(Non-nucleoside) RT inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10
-1
10
0
10
1
10
2
0
10
20
30
40
50
60
70
80
90
100
Integrase inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10-1
100
101
102
0
10
20
30
40
50
60
70
80
90
100
Protease inhibitor
Drug/IC50
ProphylacticEfficacyϕ[%]
C D
B
IC50
IC50
IC50
Co-receptor antagonistA
Drug/IC50
ProphylacticEfficacyϕ[%]
IC50
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
Response - Prophylactic efficacy (ϕ)
Reduction in the infection probability due to the
drug w.r.t to no drug
ϕ = 1 −
I(Y0 = V, Drug)
I(Y0 = V, ∅)
IC50 reduces the target process by 50 %.
16 / 28
An application : concentration-response curves
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
(Non-nucleoside) RT inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10
-1
10
0
10
1
10
2
0
10
20
30
40
50
60
70
80
90
100
Integrase inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10-1
100
101
102
0
10
20
30
40
50
60
70
80
90
100
Protease inhibitor
Drug/IC50
ProphylacticEfficacyϕ[%]
C D
B
IC50
IC50
IC50
Co-receptor antagonistA
Drug/IC50
ProphylacticEfficacyϕ[%]
EC50
IC50
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
EC50
EC50
EC50
Response - Prophylactic efficacy (ϕ)
Reduction in the infection probability due to the
drug w.r.t to no drug
ϕ = 1 −
I(Y0 = V, Drug)
I(Y0 = V, ∅)
IC50 reduces the target process by 50 %.
EC50 provides 50% prophylactic efficacy.
Except for RTI, IC50 < EC50.
PrEP clinical trials guided by IC50 might be
misleading.
16 / 28
An application : concentration-response curves
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
(Non-nucleoside) RT inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10
-1
10
0
10
1
10
2
0
10
20
30
40
50
60
70
80
90
100
Integrase inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10-1
100
101
102
0
10
20
30
40
50
60
70
80
90
100
Protease inhibitor
Drug/IC50
ProphylacticEfficacyϕ[%]
C D
B
IC50
IC50
IC50
Co-receptor antagonistA
Drug/IC50
ProphylacticEfficacyϕ[%]
EC50
IC50
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
EC50
EC50
EC50
Translation of IC50 (target process inhibition) to
EC50 (prophylactic efficacy):
CRA, RTI, InI - Classical EMAX model :
ϕ(V) ≈
Dm
(IC50 · α
EC50
)m · +Dm
The scaling factor α ≥ 1 is dependent on the
inhibited (viral) target process. When
ϕ(V) < 1.
17 / 28
An application : concentration-response curves
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
(Non-nucleoside) RT inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10
-1
10
0
10
1
10
2
0
10
20
30
40
50
60
70
80
90
100
Integrase inhibitor
ProphylacticEfficacyϕ[%]
Drug/IC50
10-1
100
101
102
0
10
20
30
40
50
60
70
80
90
100
Protease inhibitor
Drug/IC50
ProphylacticEfficacyϕ[%]
C D
B
IC50
IC50
IC50
Co-receptor antagonistA
Drug/IC50
ProphylacticEfficacyϕ[%]
EC50
IC50
10
-1
10
0
10
1
10
20
10
20
30
40
50
60
70
80
90
100
EC50
EC50
EC50
Translation of IC50 (target process inhibition) to
EC50 (prophylactic efficacy):
CRA, RTI, InI - Classical EMAX model :
ϕ(V) ≈
Dm
(IC50 · α
EC50
)m · +Dm
The scaling factor α ≥ 1 is dependent on the
inhibited (viral) target process. When
ϕ(V) < 1.
PI - Power function (Switch-like behavior):
ϕ(V) =
1
R0(∅) − 1
·
Dm
ICm
50
when ϕ(V) < 1.
17 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
18 / 28
Hybrid stochastic-deterministic approach
*
*
*
*
**
*
Astochastictrajectoryof
viralreplicationprocess
Target-siteDrug
Pharmacokinetics
Time
Conc
Hybrid stochastic-deterministic approach
Time-varying target-site antiviral drug
concentration.
Pharmacokinetics - deterministic process.
Pharmacodynamics (viral replication
cycle) - stochastic process.
19 / 28
Hybrid stochastic-deterministic approach
*
*
*
*
**
*
Astochastictrajectoryof
viralreplicationprocess
Target-siteDrug
Pharmacokinetics
Time
Conc
Hybrid stochastic-deterministic approach
Time-varying target-site antiviral drug
concentration.
Pharmacokinetics - deterministic process.
Pharmacodynamics (viral replication
cycle) - stochastic process.
Deterministic ODE approach is
unsuitable.
Hybrid stochastic-deterministic approach
is required.
19 / 28
Hybrid stochastic-deterministic approach
Time [hr]
Target-processinhibitionη[%]
Time [hr]
A C
B D
NumberoffreevirusorT1
cells
0 500 1000 1500 2000 2500
10-3
10-2
10-1
100
101
102
T
2
T
1
NumberofT2
cells
V
10-2
10-1
100
101
102
Time [hr]
0 500 1000 2000 2500
1654 1656 1658 1660 1662 1664 1666 1668 1670
0
1
2
3
0
1
Time [hr]
NumberoffreevirusorT1
cells
NumberofT2
cells
V
T
1
T
2
1500
1600 1620 1640 1660 1680 1700
10
2
10
1
virus exposure virus
extinction
virus exposure
establishment of
infection
0
10
20
30
40
50
60
70
80
90
100
0
1
2
950 960 970 980 990 1000 1010 1020
EXTRANDE
Extra Reaction Algorithm for Networks in
Dynamic Environments. (Voliotis et al. 2016
PLoS Comput Biol).
Monte Carlo algorithm with thinning
techniques. (Numerically exact)
We adapted the algorithm by designing
stopping criteria.
20 / 28
Modeling framework
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
21 / 28
Results : Screening candidates
Prophylactic efficacy range
Detailed PK not available.
Cmin, Cmax and t1/2
Clow - trough conc. after 3 days
without drug administration.
Transmitted viruses distribution.
IC50 and m values from ex vivo.
(Shen et al. 2008 Nat Med)
Branching process theory
22 / 28
Results : Screening candidates
Prophylactic efficacy range
Detailed PK not available.
Cmin, Cmax and t1/2
Clow - trough conc. after 3 days
without drug administration.
Transmitted viruses distribution.
IC50 and m values from ex vivo.
(Shen et al. 2008 Nat Med)
Branching process theory
100
101
102
103
104
105
0
50
100
MVC*
EFV
NVP
ETR RPV*
0
50
100
ATV APV DRV*
0
50
100
LPV NFV SQV TPV
100
101
102
103
104
105
100
101
102
103
104
105100
101
102
103
104
105
Drug Concentration [nM] Drug Concentration [nM]Drug Concentration [nM]
max
min
max
min
max
min
DLV
max
min
max
min
max
min
RAL*
max
min
EVG
max
min
max
min
max
min
max
min
IDV
max
min
max
min
max
min
max
min
max
min
ProphylacticEfficacyϕ[%]
0
50
100
Drug Concentration [nM]
ProphylacticEfficacyϕ[%]
22 / 28
Results : Screening candidates
Prophylactic efficacy range
Detailed PK not available.
Cmin, Cmax and t1/2
Clow - trough conc. after 3 days
without drug administration.
Transmitted viruses distribution.
IC50 and m values from ex vivo.
(Shen et al. 2008 Nat Med)
Branching process theory
Efavirenz (EFV)
Nevirapine (NVP)
Etravirine (ETR)
Rilpivirine (RPV)
Darunavir (DRV) 100
101
102
103
104
105
0
50
100
MVC*
EFV
NVP
ETR RPV*
0
50
100
ATV APV DRV*
0
50
100
LPV NFV SQV TPV
100
101
102
103
104
105
100
101
102
103
104
105100
101
102
103
104
105
Drug Concentration [nM] Drug Concentration [nM]Drug Concentration [nM]
max
min
max
min
max
min
DLV
max
min
max
min
max
min
RAL*
max
min
EVG
max
min
max
min
max
min
max
min
IDV
max
min
max
min
max
min
max
min
max
min
ProphylacticEfficacyϕ[%]
0
50
100
Drug Concentration [nM]
ProphylacticEfficacyϕ[%]
22 / 28
Results : PrEP strategies with dolutegravir
B
C
Time after dose (plateau) [hr] Time after last dose [hr]
10-3
10-2
10-1
100
101
0 24 96 120 21648 72 144 164 192
10-1
100
101
0 6 12 18 24
washout
A
DTGplasmaconc.[μM]
0
5
10
15
0 24 48 72 96
Time after initial dose [hr]
timetoplateau
withindosinginterval
central
peri-
pheral
Q/F
Vp/FVc/F
CL/F
dose
ka
D
PK-model
DTGplasmaconc.[μM]
Duwal et al. 2018 PLoS Comput Biol. accepted
Dolutegravir (DTG) PK model
Dolutegravir is an integrase inhibitor. Excellent
safety profile.
Institute of Translational Medicine, University of
Liverpool.
A two compartment model for plasma PK.
23 / 28
Results : PrEP strategies with dolutegravir
B
C
Time after dose (plateau) [hr] Time after last dose [hr]
10-3
10-2
10-1
100
101
0 24 96 120 21648 72 144 164 192
10-1
100
101
0 6 12 18 24
washout
A
DTGplasmaconc.[μM]
0
5
10
15
0 24 48 72 96
Time after initial dose [hr]
timetoplateau
withindosinginterval
central
peri-
pheral
Q/F
Vp/FVc/F
CL/F
dose
ka
D
PK-model
DTGplasmaconc.[μM]
Duwal et al. 2018 PLoS Comput Biol. accepted
Dolutegravir (DTG) PK model
Dolutegravir is an integrase inhibitor. Excellent
safety profile.
Institute of Translational Medicine, University of
Liverpool.
A two compartment model for plasma PK.
IC50 and m from Laskey et al. 2016 JCI insight.
IC50 corrected for in vivo use.
Hybrid stochastic-deterministic approach
(EXTRANDE)
23 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
24 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
% pills taken
ProphylacticEfficacyϕ[%]
25 50 75 95
0
10
20
30
40
50
60
70
80
90
100
100
50mg
10mg
2mg
50 mg DTG - Pharmacologically
forgiving.
Truvada - 96 %.
24 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
% pills taken
ProphylacticEfficacyϕ[%]
25 50 75 95
0
10
20
30
40
50
60
70
80
90
100
100
50mg
10mg
2mg
50 mg DTG - Pharmacologically
forgiving.
Truvada - 96 %.
PrEP on Demand
24 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
% pills taken
ProphylacticEfficacyϕ[%]
25 50 75 95
0
10
20
30
40
50
60
70
80
90
100
100
50mg
10mg
2mg
50 mg DTG - Pharmacologically
forgiving.
Truvada - 96 %.
PrEP on Demand
Timing of viral exposure after first DTG dose [hr]
50mg
12 18 23
40
50
60
70
80
90
100
0 1 3 6
ProphylacticEfficacyϕ[%]
10mg
2mg
30
Achieves high efficacy within a short
period of administration.
Truvada - 75 %-92 %.
24 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
% pills taken
ProphylacticEfficacyϕ[%]
25 50 75 95
0
10
20
30
40
50
60
70
80
90
100
100
50mg
10mg
2mg
50 mg DTG - Pharmacologically
forgiving.
Truvada - 96 %.
PrEP on Demand
Timing of viral exposure after first DTG dose [hr]
50mg
12 18 23
40
50
60
70
80
90
100
0 1 3 6
ProphylacticEfficacyϕ[%]
10mg
2mg
30
Achieves high efficacy within a short
period of administration.
Truvada - 75 %-92 %.
Post exposure prophylaxis
24 / 28
Results : PrEP strategies with dolutegravir
Continuous PrEP
% pills taken
ProphylacticEfficacyϕ[%]
25 50 75 95
0
10
20
30
40
50
60
70
80
90
100
100
50mg
10mg
2mg
50 mg DTG - Pharmacologically
forgiving.
Truvada - 96 %.
PrEP on Demand
Timing of viral exposure after first DTG dose [hr]
50mg
12 18 23
40
50
60
70
80
90
100
0 1 3 6
ProphylacticEfficacyϕ[%]
10mg
2mg
30
Achieves high efficacy within a short
period of administration.
Truvada - 75 %-92 %.
Post exposure prophylaxis
ProphylacticEfficacyϕ[%]
PEP initiation after
virus challenge [hrs] Duration of PEP [days]
50
60
2
70
94 6
80
90
712
100
5
24 3
Starting earlier more important than
the duration.
24 / 28
Summary
Viruses
ExposedTransmitter
Pharmacokinetics
Pharmacodynamics
(Viral replication cycle)
Direct response
model
Viral exposure model
Methods/Algorithms to quantity
infection probability
1) Branching process
theory
2)Hybrid stochastic
-deterministic approach
to select antivirals for PrEP
Branching process - list of candidates - EFV, NVP, ETR, RPV, DRV
to assess PrEP strategy
EXTRANDE
Continuous PrEP, PrEP on demand, Post exposure prophylaxis
Dolutegravir comparable to truvada.
25 / 28
Related publications and links
Publications:
Duwal, S., Sunkara, V. and von Kleist, M., 2016. Multiscale Systems-Pharmacology Pipeline to
Assess the Prophylactic Efficacy of NRTIs Against HIV-1. CPT: pharmacometrics & systems
pharmacology, 5(7), pp.377-387.
Duwal, S. and von Kleist, M., 2016. Top-down and bottom-up modeling in system pharmacology
to understand clinical efficacy: An example with NRTIs of HIV-1. European Journal of
Pharmaceutical Sciences, 94, pp.72-83.
Duwal, S., Dickinson, L., Khoo, S. and von Kleist, M. 2018. Hybrid stochastic framework predicts
efficacy of prophylaxis against HIV: An example with different dolutegravir regimen. PLoS
Comput Biol, in Press
Duwal, S., Dickinson, L., Khoo, S. and von Kleist, M. Submitted 2017. Mechanistic framework
predicts drug-class specific utility of antiretrovirals for HIV prophylaxis.
Duwal, S., Schütte, C. and von Kleist, M., 2012. Pharmacokinetics and pharmacodynamics of
the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against HIV-1 infection.
PloS one, 7(7), p.e40382.
Links:
Software : www.systems-pharmacology.org/prep-predictor
26 / 28
Acknowledgement
Max von Kleist
Systems pharmacology and disease control
Free University Berlin, Germany
Vikram Sunkara
Zuse Institute Berlin, Germany
Laura Dickinson
Institute of Translational Medicine
University of Liverpool, United Kingdom
Saye Khoo
Institute of Translational Medicine
University of Liverpool, United Kingdom
27 / 28
Thank you for your attention
28 / 28

More Related Content

Similar to Page2018 duwal

Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser Wouter de Heij
 
HIV Aetiology & Pathogenesis
HIV Aetiology & PathogenesisHIV Aetiology & Pathogenesis
HIV Aetiology & PathogenesisVaibhavShriya1
 
Hvb ~
Hvb ~ Hvb ~
Hvb ~ dodgy
 
Frequency Measures in pptx.pptx
Frequency Measures  in  pptx.pptxFrequency Measures  in  pptx.pptx
Frequency Measures in pptx.pptxandamlakdendir1
 
WGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert SindenWGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert SindenUWGlobalHealth
 
Immunology and Detection of Acute HIV-1 Infection
Immunology and Detection of Acute HIV-1 InfectionImmunology and Detection of Acute HIV-1 Infection
Immunology and Detection of Acute HIV-1 InfectionRongpong Plongla
 
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07webuploader
 
Terminologies communicable diseases
Terminologies communicable diseasesTerminologies communicable diseases
Terminologies communicable diseasesAbdul Wasay Baloch
 
Antao_openmalaria_BOSC2009
Antao_openmalaria_BOSC2009Antao_openmalaria_BOSC2009
Antao_openmalaria_BOSC2009bosc
 
重症病患抗生素使用961113
重症病患抗生素使用961113重症病患抗生素使用961113
重症病患抗生素使用961113calaf0618
 

Similar to Page2018 duwal (20)

Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
 
HIV Aetiology & Pathogenesis
HIV Aetiology & PathogenesisHIV Aetiology & Pathogenesis
HIV Aetiology & Pathogenesis
 
HIV_Phylodynamics
HIV_PhylodynamicsHIV_Phylodynamics
HIV_Phylodynamics
 
AIDS
AIDSAIDS
AIDS
 
Hvb ~
Hvb ~ Hvb ~
Hvb ~
 
Frequency Measures in pptx.pptx
Frequency Measures  in  pptx.pptxFrequency Measures  in  pptx.pptx
Frequency Measures in pptx.pptx
 
paper_2
paper_2paper_2
paper_2
 
Mph epidemiology2
Mph epidemiology2Mph epidemiology2
Mph epidemiology2
 
hiv_resistance_clicker.ppt
hiv_resistance_clicker.ppthiv_resistance_clicker.ppt
hiv_resistance_clicker.ppt
 
Virus vector ppt
Virus vector pptVirus vector ppt
Virus vector ppt
 
WGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert SindenWGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert Sinden
 
Hiv part 1
Hiv part 1Hiv part 1
Hiv part 1
 
Immunology and Detection of Acute HIV-1 Infection
Immunology and Detection of Acute HIV-1 InfectionImmunology and Detection of Acute HIV-1 Infection
Immunology and Detection of Acute HIV-1 Infection
 
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07
GraphDiseaseSpreadModels-Threshold&FirefighterCapeTown6-10-07
 
Terminologies communicable diseases
Terminologies communicable diseasesTerminologies communicable diseases
Terminologies communicable diseases
 
Antao_openmalaria_BOSC2009
Antao_openmalaria_BOSC2009Antao_openmalaria_BOSC2009
Antao_openmalaria_BOSC2009
 
Citrobacter
CitrobacterCitrobacter
Citrobacter
 
Viral ER Presentation (1)
Viral ER Presentation (1)Viral ER Presentation (1)
Viral ER Presentation (1)
 
重症病患抗生素使用961113
重症病患抗生素使用961113重症病患抗生素使用961113
重症病患抗生素使用961113
 
INFECTIONS IN ORGAN TRANSPLANT PATIENTS essential learning
INFECTIONS IN ORGAN TRANSPLANT PATIENTS essential learning INFECTIONS IN ORGAN TRANSPLANT PATIENTS essential learning
INFECTIONS IN ORGAN TRANSPLANT PATIENTS essential learning
 

Recently uploaded

Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Dipal Arora
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 

Recently uploaded (20)

Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 

Page2018 duwal

  • 1. A multiscale systems pharmacology framework to predict drug-class specific prophylactic efficacy of antivirals against HIV Sulav Duwal Systems Pharmacology & Disease Control Free University Berlin 01/06/2018,PAGE, Montreux
  • 2. The motivation Currently, there are more than 36 million people living with HIV. No cure. No vaccine. Prevention strategies - for e.g. pre-exposure prophylaxis (PrEP). 2 / 28
  • 4. The motivation target cell compartment Infection Extinction ExposedTransmitter Stochastic process Low transmission probability per exposure. Low number of transmitted/founder viruses. Keele et al. 2008 PNAS - The range of founder viruses is 1 to 5. A single founder virus (80 % transmission cases). 3 / 28
  • 5. The motivation target cell compartment Infection Extinction ExposedTransmitter Prophylaxis Stochastic process Low transmission probability per exposure. Low number of transmitted/founder viruses. Keele et al. 2008 PNAS - The range of founder viruses is 1 to 5. A single founder virus (80 % transmission cases). Pre-Exposure Prophylaxis - PrEP An uninfected person with high risk of HIV-1 receives antiviral orally. Currently, Truvada is only medication approved for PrEP. More than 25 antivirals approved for HIV-1 treatment. Novel formulations and long acting agents. 3 / 28
  • 6. Aims target cell compartment Infection Extinction ExposedTransmitter Prophylaxis To build a modeling framework : to select antivirals for PrEP to assess PrEP strategy 4 / 28
  • 7. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 5 / 28
  • 8. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 5 / 28
  • 9. Pharmacodynamics (Viral replication cycle) k(t) (early infected T-cell) (productively infected T-cell) T2Tu⋅ β(t) Tu ⋅CLT(t) CL NT(t) (free infectious virus) V δPIC δT1 δT2 T1 latency pL|a5 longlivedcells pM|a4 Drug-class : CRA - Co-receptor antagonist RTI - Reverse transcription inhibitor InI - Integrase inhibitor PI - Protease inhibitor Pharmacodynamics (Viral replication cycle) Free infectious viruses (V) infect CD4+ T-cells. Early-infected T-cells (T1) - the virus has successfully completed the reverse transcription. Late-infected T-cells (T2) - the viral genome integration in the host genome is complete. A T2 cell produces viruses. 6 / 28
  • 10. Pharmacodynamics (Viral replication cycle) k(t) (early infected T-cell) (productively infected T-cell) T2Tu⋅ β(t) Tu ⋅CLT(t) CL NT(t) (free infectious virus) V δPIC δT1 δT2 InIs CRA PI RTIs + T1 latency pL|a5 longlivedcells pM|a4 Drug-classes : CRA - Co-receptor antagonist RTI - Reverse transcriptase inhibitor InI - Integrase inhibitor PI - Protease inhibitor Drug-class specific mechanistic integration 7 / 28
  • 11. Pharmacodynamics (Viral replication cycle) k(t) (early infected T-cell) (productively infected T-cell) T2Tu⋅ β(t) Tu ⋅CLT(t) CL NT(t) (free infectious virus) V δPIC δT1 δT2 InIs CRA PI RTIs + T1 latency pL|a5 longlivedcells pM|a4 Drug-classes : CRA - Co-receptor antagonist RTI - Reverse transcriptase inhibitor InI - Integrase inhibitor PI - Protease inhibitor Drug-class specific mechanistic integration For e.g., an integrase inhibitor inhibits the viral genome integration in the target cell genome : k(t) = k∅ · (1 − η(t)) where k(t) and k(∅) are the rates in the presence and absence of an InI. 7 / 28
  • 12. Pharmacodynamics (Viral replication cycle) k(t) (early infected T-cell) (productively infected T-cell) T2Tu⋅ β(t) Tu ⋅CLT(t) CL NT(t) (free infectious virus) V δPIC δT1 δT2 InIs CRA PI RTIs + T1 latency pL|a5 longlivedcells pM|a4 Drug-classes : CRA - Co-receptor antagonist RTI - Reverse transcriptase inhibitor InI - Integrase inhibitor PI - Protease inhibitor Drug-class specific mechanistic integration For e.g., an integrase inhibitor inhibits the viral genome integration in the target cell genome : k(t) = k∅ · (1 − η(t)) where k(t) and k(∅) are the rates in the presence and absence of an InI. PK-PD linked by EMAX model (direct response) : 1 − η(t) = IC50 m ICm 50 + C(t)m IC50, Hill coefficient (m) from ex vivo single-round infectivity assay (Shen et al. 2008 Nat Med). IC50 corrected for in vivo use. 7 / 28
  • 13. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 8 / 28
  • 14. Viral exposure model target cell compartment Infection Extinction ExposedTransmitter Prophylaxis How many viruses reach the target-cell compartment (transmitted viruses) per exposure? What are factors that influence the number of transmitted viruses ? 9 / 28
  • 15. Viral exposure model Viruses ExposedTransmitter Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med) Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold. Transmission mode : Homosexual > Heterosexual. 10 / 28
  • 16. Viral exposure model Viral load distribution in transmitter Viruses ExposedTransmitter Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med) Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold. Transmission mode : Homosexual > Heterosexual. 10 / 28
  • 17. Viral exposure model Viral load distribution in transmitter Viruses ExposedTransmitter Transmitted virus distribution in exposed Viral load is the most dominant factor determining the transmission risk. (Quinn et al. 2000 N Engl J Med) Each 10 fold increment in viral load increases the transmission probability per exposure by 2.45 fold. Transmission mode : Homosexual > Heterosexual. 10 / 28
  • 18. Viral exposure model Viral load distribution in transmitter Viruses ExposedTransmitter Transmitted virus distribution in exposed Mean transmission probability per exposure : ¯P(trans) = ∞ k=0 P(Viralload = k) · ∞ n=0 P(Y0 = n · V|Viralload = k) · I(Y0 = n · V, ∅) Linking the viral load of donor with the number of transmitted viruses (binomial distribution) : P(Y0 = n · V|Viralload = k) = kh n · si · (1 − s)( kh −i) . where h = log10(2.45) from Quinn 2000 et al. N Engl J Med. 11 / 28
  • 19. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 12 / 28
  • 20. Branching process target cell compartment Infection Extinction ExposedTransmitter Prophylaxis Given a virus reaches a target-cell compartment, what is the probability that it establishes an infection or goes extinct? 13 / 28
  • 21. Branching process Sir Francis Galton and Henry William Watson in 1873. ‘What is the probability that the royal family would eventually go extinct?’ Watson, H.W, Galton, F (1875) ‘On the probability of the Extinction of families’ Journal of the Royal Anthropological Institute. Branching process theory. 14 / 28
  • 22. Branching process Extinction / Infection probability Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell compartment: E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 − 1 R0 where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral replication cycle model. 15 / 28
  • 23. Branching process Extinction / Infection probability Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell compartment: E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 − 1 R0 where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral replication cycle model. Extinction probability given n viruses reaches the target compartment : E(Y0 = n · V) = E(Y0 = V)n 15 / 28
  • 24. Branching process Extinction / Infection probability Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell compartment: E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 − 1 R0 where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral replication cycle model. Extinction probability given n viruses reaches the target compartment : E(Y0 = n · V) = E(Y0 = V)n Infection probability I is the complement of the extinction probability: I(Y0 = n · V) = 1 − E(Y0 = n · V) 15 / 28
  • 25. Branching process Extinction / Infection probability Probability that a virus eventually goes extinct (E), given a single virus (V)reaches the target-cell compartment: E(Y0 = V) = min 1, 1 − P(V → T1) · P(T1 → T2) · 1 − 1 R0 where P(V → T1), P(T1 → T2) and R0 basic reproductive number can be computed from the viral replication cycle model. Extinction probability given n viruses reaches the target compartment : E(Y0 = n · V) = E(Y0 = V)n Infection probability I is the complement of the extinction probability: I(Y0 = n · V) = 1 − E(Y0 = n · V) These equations are valid only for the constant target-site antiviral concentrations. 15 / 28
  • 26. An application : concentration-response curves 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 (Non-nucleoside) RT inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10 -1 10 0 10 1 10 2 0 10 20 30 40 50 60 70 80 90 100 Integrase inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10-1 100 101 102 0 10 20 30 40 50 60 70 80 90 100 Protease inhibitor Drug/IC50 ProphylacticEfficacyϕ[%] C D B IC50 IC50 IC50 Co-receptor antagonistA Drug/IC50 ProphylacticEfficacyϕ[%] IC50 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 Response - Prophylactic efficacy (ϕ) Reduction in the infection probability due to the drug w.r.t to no drug ϕ = 1 − I(Y0 = V, Drug) I(Y0 = V, ∅) IC50 reduces the target process by 50 %. 16 / 28
  • 27. An application : concentration-response curves 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 (Non-nucleoside) RT inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10 -1 10 0 10 1 10 2 0 10 20 30 40 50 60 70 80 90 100 Integrase inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10-1 100 101 102 0 10 20 30 40 50 60 70 80 90 100 Protease inhibitor Drug/IC50 ProphylacticEfficacyϕ[%] C D B IC50 IC50 IC50 Co-receptor antagonistA Drug/IC50 ProphylacticEfficacyϕ[%] EC50 IC50 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 EC50 EC50 EC50 Response - Prophylactic efficacy (ϕ) Reduction in the infection probability due to the drug w.r.t to no drug ϕ = 1 − I(Y0 = V, Drug) I(Y0 = V, ∅) IC50 reduces the target process by 50 %. EC50 provides 50% prophylactic efficacy. Except for RTI, IC50 < EC50. PrEP clinical trials guided by IC50 might be misleading. 16 / 28
  • 28. An application : concentration-response curves 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 (Non-nucleoside) RT inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10 -1 10 0 10 1 10 2 0 10 20 30 40 50 60 70 80 90 100 Integrase inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10-1 100 101 102 0 10 20 30 40 50 60 70 80 90 100 Protease inhibitor Drug/IC50 ProphylacticEfficacyϕ[%] C D B IC50 IC50 IC50 Co-receptor antagonistA Drug/IC50 ProphylacticEfficacyϕ[%] EC50 IC50 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 EC50 EC50 EC50 Translation of IC50 (target process inhibition) to EC50 (prophylactic efficacy): CRA, RTI, InI - Classical EMAX model : ϕ(V) ≈ Dm (IC50 · α EC50 )m · +Dm The scaling factor α ≥ 1 is dependent on the inhibited (viral) target process. When ϕ(V) < 1. 17 / 28
  • 29. An application : concentration-response curves 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 (Non-nucleoside) RT inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10 -1 10 0 10 1 10 2 0 10 20 30 40 50 60 70 80 90 100 Integrase inhibitor ProphylacticEfficacyϕ[%] Drug/IC50 10-1 100 101 102 0 10 20 30 40 50 60 70 80 90 100 Protease inhibitor Drug/IC50 ProphylacticEfficacyϕ[%] C D B IC50 IC50 IC50 Co-receptor antagonistA Drug/IC50 ProphylacticEfficacyϕ[%] EC50 IC50 10 -1 10 0 10 1 10 20 10 20 30 40 50 60 70 80 90 100 EC50 EC50 EC50 Translation of IC50 (target process inhibition) to EC50 (prophylactic efficacy): CRA, RTI, InI - Classical EMAX model : ϕ(V) ≈ Dm (IC50 · α EC50 )m · +Dm The scaling factor α ≥ 1 is dependent on the inhibited (viral) target process. When ϕ(V) < 1. PI - Power function (Switch-like behavior): ϕ(V) = 1 R0(∅) − 1 · Dm ICm 50 when ϕ(V) < 1. 17 / 28
  • 30. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 18 / 28
  • 31. Hybrid stochastic-deterministic approach * * * * ** * Astochastictrajectoryof viralreplicationprocess Target-siteDrug Pharmacokinetics Time Conc Hybrid stochastic-deterministic approach Time-varying target-site antiviral drug concentration. Pharmacokinetics - deterministic process. Pharmacodynamics (viral replication cycle) - stochastic process. 19 / 28
  • 32. Hybrid stochastic-deterministic approach * * * * ** * Astochastictrajectoryof viralreplicationprocess Target-siteDrug Pharmacokinetics Time Conc Hybrid stochastic-deterministic approach Time-varying target-site antiviral drug concentration. Pharmacokinetics - deterministic process. Pharmacodynamics (viral replication cycle) - stochastic process. Deterministic ODE approach is unsuitable. Hybrid stochastic-deterministic approach is required. 19 / 28
  • 33. Hybrid stochastic-deterministic approach Time [hr] Target-processinhibitionη[%] Time [hr] A C B D NumberoffreevirusorT1 cells 0 500 1000 1500 2000 2500 10-3 10-2 10-1 100 101 102 T 2 T 1 NumberofT2 cells V 10-2 10-1 100 101 102 Time [hr] 0 500 1000 2000 2500 1654 1656 1658 1660 1662 1664 1666 1668 1670 0 1 2 3 0 1 Time [hr] NumberoffreevirusorT1 cells NumberofT2 cells V T 1 T 2 1500 1600 1620 1640 1660 1680 1700 10 2 10 1 virus exposure virus extinction virus exposure establishment of infection 0 10 20 30 40 50 60 70 80 90 100 0 1 2 950 960 970 980 990 1000 1010 1020 EXTRANDE Extra Reaction Algorithm for Networks in Dynamic Environments. (Voliotis et al. 2016 PLoS Comput Biol). Monte Carlo algorithm with thinning techniques. (Numerically exact) We adapted the algorithm by designing stopping criteria. 20 / 28
  • 34. Modeling framework Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach 21 / 28
  • 35. Results : Screening candidates Prophylactic efficacy range Detailed PK not available. Cmin, Cmax and t1/2 Clow - trough conc. after 3 days without drug administration. Transmitted viruses distribution. IC50 and m values from ex vivo. (Shen et al. 2008 Nat Med) Branching process theory 22 / 28
  • 36. Results : Screening candidates Prophylactic efficacy range Detailed PK not available. Cmin, Cmax and t1/2 Clow - trough conc. after 3 days without drug administration. Transmitted viruses distribution. IC50 and m values from ex vivo. (Shen et al. 2008 Nat Med) Branching process theory 100 101 102 103 104 105 0 50 100 MVC* EFV NVP ETR RPV* 0 50 100 ATV APV DRV* 0 50 100 LPV NFV SQV TPV 100 101 102 103 104 105 100 101 102 103 104 105100 101 102 103 104 105 Drug Concentration [nM] Drug Concentration [nM]Drug Concentration [nM] max min max min max min DLV max min max min max min RAL* max min EVG max min max min max min max min IDV max min max min max min max min max min ProphylacticEfficacyϕ[%] 0 50 100 Drug Concentration [nM] ProphylacticEfficacyϕ[%] 22 / 28
  • 37. Results : Screening candidates Prophylactic efficacy range Detailed PK not available. Cmin, Cmax and t1/2 Clow - trough conc. after 3 days without drug administration. Transmitted viruses distribution. IC50 and m values from ex vivo. (Shen et al. 2008 Nat Med) Branching process theory Efavirenz (EFV) Nevirapine (NVP) Etravirine (ETR) Rilpivirine (RPV) Darunavir (DRV) 100 101 102 103 104 105 0 50 100 MVC* EFV NVP ETR RPV* 0 50 100 ATV APV DRV* 0 50 100 LPV NFV SQV TPV 100 101 102 103 104 105 100 101 102 103 104 105100 101 102 103 104 105 Drug Concentration [nM] Drug Concentration [nM]Drug Concentration [nM] max min max min max min DLV max min max min max min RAL* max min EVG max min max min max min max min IDV max min max min max min max min max min ProphylacticEfficacyϕ[%] 0 50 100 Drug Concentration [nM] ProphylacticEfficacyϕ[%] 22 / 28
  • 38. Results : PrEP strategies with dolutegravir B C Time after dose (plateau) [hr] Time after last dose [hr] 10-3 10-2 10-1 100 101 0 24 96 120 21648 72 144 164 192 10-1 100 101 0 6 12 18 24 washout A DTGplasmaconc.[μM] 0 5 10 15 0 24 48 72 96 Time after initial dose [hr] timetoplateau withindosinginterval central peri- pheral Q/F Vp/FVc/F CL/F dose ka D PK-model DTGplasmaconc.[μM] Duwal et al. 2018 PLoS Comput Biol. accepted Dolutegravir (DTG) PK model Dolutegravir is an integrase inhibitor. Excellent safety profile. Institute of Translational Medicine, University of Liverpool. A two compartment model for plasma PK. 23 / 28
  • 39. Results : PrEP strategies with dolutegravir B C Time after dose (plateau) [hr] Time after last dose [hr] 10-3 10-2 10-1 100 101 0 24 96 120 21648 72 144 164 192 10-1 100 101 0 6 12 18 24 washout A DTGplasmaconc.[μM] 0 5 10 15 0 24 48 72 96 Time after initial dose [hr] timetoplateau withindosinginterval central peri- pheral Q/F Vp/FVc/F CL/F dose ka D PK-model DTGplasmaconc.[μM] Duwal et al. 2018 PLoS Comput Biol. accepted Dolutegravir (DTG) PK model Dolutegravir is an integrase inhibitor. Excellent safety profile. Institute of Translational Medicine, University of Liverpool. A two compartment model for plasma PK. IC50 and m from Laskey et al. 2016 JCI insight. IC50 corrected for in vivo use. Hybrid stochastic-deterministic approach (EXTRANDE) 23 / 28
  • 40. Results : PrEP strategies with dolutegravir Continuous PrEP 24 / 28
  • 41. Results : PrEP strategies with dolutegravir Continuous PrEP % pills taken ProphylacticEfficacyϕ[%] 25 50 75 95 0 10 20 30 40 50 60 70 80 90 100 100 50mg 10mg 2mg 50 mg DTG - Pharmacologically forgiving. Truvada - 96 %. 24 / 28
  • 42. Results : PrEP strategies with dolutegravir Continuous PrEP % pills taken ProphylacticEfficacyϕ[%] 25 50 75 95 0 10 20 30 40 50 60 70 80 90 100 100 50mg 10mg 2mg 50 mg DTG - Pharmacologically forgiving. Truvada - 96 %. PrEP on Demand 24 / 28
  • 43. Results : PrEP strategies with dolutegravir Continuous PrEP % pills taken ProphylacticEfficacyϕ[%] 25 50 75 95 0 10 20 30 40 50 60 70 80 90 100 100 50mg 10mg 2mg 50 mg DTG - Pharmacologically forgiving. Truvada - 96 %. PrEP on Demand Timing of viral exposure after first DTG dose [hr] 50mg 12 18 23 40 50 60 70 80 90 100 0 1 3 6 ProphylacticEfficacyϕ[%] 10mg 2mg 30 Achieves high efficacy within a short period of administration. Truvada - 75 %-92 %. 24 / 28
  • 44. Results : PrEP strategies with dolutegravir Continuous PrEP % pills taken ProphylacticEfficacyϕ[%] 25 50 75 95 0 10 20 30 40 50 60 70 80 90 100 100 50mg 10mg 2mg 50 mg DTG - Pharmacologically forgiving. Truvada - 96 %. PrEP on Demand Timing of viral exposure after first DTG dose [hr] 50mg 12 18 23 40 50 60 70 80 90 100 0 1 3 6 ProphylacticEfficacyϕ[%] 10mg 2mg 30 Achieves high efficacy within a short period of administration. Truvada - 75 %-92 %. Post exposure prophylaxis 24 / 28
  • 45. Results : PrEP strategies with dolutegravir Continuous PrEP % pills taken ProphylacticEfficacyϕ[%] 25 50 75 95 0 10 20 30 40 50 60 70 80 90 100 100 50mg 10mg 2mg 50 mg DTG - Pharmacologically forgiving. Truvada - 96 %. PrEP on Demand Timing of viral exposure after first DTG dose [hr] 50mg 12 18 23 40 50 60 70 80 90 100 0 1 3 6 ProphylacticEfficacyϕ[%] 10mg 2mg 30 Achieves high efficacy within a short period of administration. Truvada - 75 %-92 %. Post exposure prophylaxis ProphylacticEfficacyϕ[%] PEP initiation after virus challenge [hrs] Duration of PEP [days] 50 60 2 70 94 6 80 90 712 100 5 24 3 Starting earlier more important than the duration. 24 / 28
  • 46. Summary Viruses ExposedTransmitter Pharmacokinetics Pharmacodynamics (Viral replication cycle) Direct response model Viral exposure model Methods/Algorithms to quantity infection probability 1) Branching process theory 2)Hybrid stochastic -deterministic approach to select antivirals for PrEP Branching process - list of candidates - EFV, NVP, ETR, RPV, DRV to assess PrEP strategy EXTRANDE Continuous PrEP, PrEP on demand, Post exposure prophylaxis Dolutegravir comparable to truvada. 25 / 28
  • 47. Related publications and links Publications: Duwal, S., Sunkara, V. and von Kleist, M., 2016. Multiscale Systems-Pharmacology Pipeline to Assess the Prophylactic Efficacy of NRTIs Against HIV-1. CPT: pharmacometrics & systems pharmacology, 5(7), pp.377-387. Duwal, S. and von Kleist, M., 2016. Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1. European Journal of Pharmaceutical Sciences, 94, pp.72-83. Duwal, S., Dickinson, L., Khoo, S. and von Kleist, M. 2018. Hybrid stochastic framework predicts efficacy of prophylaxis against HIV: An example with different dolutegravir regimen. PLoS Comput Biol, in Press Duwal, S., Dickinson, L., Khoo, S. and von Kleist, M. Submitted 2017. Mechanistic framework predicts drug-class specific utility of antiretrovirals for HIV prophylaxis. Duwal, S., Schütte, C. and von Kleist, M., 2012. Pharmacokinetics and pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against HIV-1 infection. PloS one, 7(7), p.e40382. Links: Software : www.systems-pharmacology.org/prep-predictor 26 / 28
  • 48. Acknowledgement Max von Kleist Systems pharmacology and disease control Free University Berlin, Germany Vikram Sunkara Zuse Institute Berlin, Germany Laura Dickinson Institute of Translational Medicine University of Liverpool, United Kingdom Saye Khoo Institute of Translational Medicine University of Liverpool, United Kingdom 27 / 28
  • 49. Thank you for your attention 28 / 28