SlideShare a Scribd company logo
1 of 16
UNIT I TRIGONOMETRY 10 hrs.
Review of Complex numbers and De Moivre’s Theorem. Expansions of Sinnθ and Cosnθ; Sinθ and
Cosθ in powers of θ, Sinnθ and Cosnθ in terms of multiples of θ. Hyperbolic functions – Inverse
hyperbolic functions. Separation into real and imaginary parts of complex functions
I.Separate into real and imaginary parts of cos(x+iy)
Find the real part of sin(x + iy).
Separate into real and imaginary parts of cos(x+iy)
Find the real part of Sin h (A+iB)
Separate into real and imaginary parts of tan(x + i y)
Separate sin (x + iy) into real and imaginary parts
Separate into real and imaginary parts of cos(x+iy)
Separate real and imaginary parts of cosech (x + iy).
II. Write down the expansion for tan nθ interms of power of
tanθ.
Write down the expansion for tan nθ interms of power of tanθ.
Write the expansion of sin nθ.
Write the expansion of sin nθ.
Write the expansion of sin nθ.
Write down the expansion for tan nθ interms of power of tanθ.
Write the expansion of sin nθ.
Expand cos4θ in terms of cosθ.
Expand sin5θ in terms of sinθ.
Expand cos4θ in terms of cosθ.
Expand cos θ in powers of cos θ and sin θ.
Write cos4θ in terms of a series of cosines of multiples of θ
Expand Cos4
θ in a series of cosines of multiples of θ.
Express θ
θ
sin
4sin
in terms of cosθ
If sin (A + iB) = x + iy, prove that 1
cossin 21
2
2
2
=−
A
y
A
x
If cos (α + iβ) = cosθ + isinθ prove that Sin2
α = ± sinθ.
4. If x = cosθ + i sinθ, what is
n
x
x 





−
1
Show that cos4θ = 8cos4
θ - 8cos2
θ + 1
Show that 3cos4
cos
3cos 2
−= θ
θ
θ
Show that = 4 cos2
θ – 3.
Show that 3cos4
cos
3cos 2
−= θ
θ
θ
Show that .
1
1
log
2
1
)(tanh 1






−
+
=−
x
x
x
Prove that tan h-1
= log x for x>0.
Prove that tan h-1
= log x for x>0.
Prove that cosh2
x – sinh2
x = 1.
Prove that tan h-1
= log x for x>0.
Show that sinh 2x = 2sinhx coshx.
Prove that cosh2
x – sinh2
x = 1.
PART-B
1.Separate real and imaginary parts of cosech (x + iy)
(b) Separate into real and imaginary parts of tanh(x + iy).
(b) Separate tan-1
(x + iy) into real and imaginary parts
(b) Separate tanh-1
(x + iy) into real and imaginary parts.
(a) Separate into real and imaginary part of tan-1
(x + iy).
(b) Separate tanh-1
(x + iy) into real and imaginary parts.
(b) Separate into real and imaginary parts of tanh(x + iy).
(b) Separate tan-1
(x + iy) into real and imaginary parts.
(b) Separate tanh-1
(x + iy) into real and imaginary parts.
II.(a) Expand sin 6θ in terms of sin θ.
Find θ
θ
cos
7cos
in terms of cosines powers of θ.
(a) Expand sin 7θ as a polynomial in sin θ, Hence show that
Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64
(a) Expand sin 7θ as a polynomial in sin θ, Hence show that
Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64
(a) Expand sin 6θ in terms of sin θ.
(a) Expand sin 6θ in terms of sinθ
Expand Sin8
θ in a series of cosines of multiple of θ.
. Expand Sin4
θCos3
θ in a series of cosines of multiples of θ.
(may-2012)
Expand Sin4
θCos3
θ in a series of cosines of multiples of θ.
(a) Obtain the expansion of Sin7θ/Sinθ
(a) Expand Sin3
θ. Cos5
θ in a series of sines of multiples of θ.
(a) Expand sin 5 θ cos 4 θ in a series of sines of multiples of θ . (may-
2013)
(a) Prove that 64sin4
θ cos3
θ = cos7θ - cos 5θ = 3 cos 3θ +
3cosθ.
(a) Prove that cos7θ secθ = 64cos6
θ - 112cos4
θ + 56 cos2
θ - 7.
(a) Expand Sin3
θ. Cos5
θ in a series of sines of multiples of θ.
It cos(u+iv) = x+iy where u,v,x,y as real, prove that
(i) (1+x)2
+ y2
= (Coshv + cos u)2
(ii) (1-x)2
+ y2
= (Coshv – Cos u)2
(a) Prove that cos6
θ = [cos6θ + 6cos4θ+15cos2θ+10].
(a) Prove that sin6
θ = ]102cos154cos66[cos
32
1
−+−− θθθ
(b) Prove that sin5
θ cos2
θ= 1/26 [sin7θ – 3sin5θ + sin3θ
+5sinθ]
(a) Prove that
75611264
7 246
−+−= θθθ
θ
θ
CosCosCos
Cos
Cos
(a) Find θ
θ
cos
7cos
in powers of cosθ. (may-2012)
(a) Find θ
θ
cos
7cos
in powers of cosθ.
Show that 3cos4
cos
3cos 2
−= θ
θ
θ
(a) Show that
[Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ]
(a) Show that
[Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ]
(a) Show that
[Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ]
x
2
x
2
Find θ
θ
cos
7cos
in terms of cosines powers of θ
(a) Find θ
θ
cos
7cos
in powers of cosθ.
(a) Prove that
75611264
7 246
−+−= θθθ
θ
θ
CosCosCos
Cos
Cos
(a) Prove that θθθ
θ
θ
cos6cos32cos32
6 35
+−=
Sin
Sin
(may-2012)
(b) If Sin ( αθααφθ sincos,sincos) 2
±=+=+ thatproveii
If x + iy = sin (A+iB) prove that
1
cossin
1
sinhcosh 2
2
2
2
2
2
2
2
=−=++
A
y
A
x
and
B
y
B
x
(b) If sin (α + iβ) = x + iy, prove that 1
sinhcosh 2
2
2
2
=+
ββ
yx
If cos (α + iβ) = cosθ + isinθ prove that Sin2
α = ± sinθ.
(8
marks)
(b) If tan x/2 = tan h y/2, prove that sin hy = tanx and
y = log tan
(b) If tan = tan h prove that cos x cos hx = 1.
12. It cos(u+iv) = x+iy where u,v,x,y as real, prove that
(i) (1+x)2
+ y2
= (Coshv + cos u)2
(may-2012)
(ii) (1-x)2
+ y2
= (Coshv – Cos u)2
12. It cos(u+iv) = x+iy where u,v,x,y as real, prove that
(i) (1+x)2
+ y2
= (Coshv + cos u)2
(ii) (1-x)2
+ y2
= (Coshv – Cos u)2
Show that sinh 2x = 2sinhx coshx.
Prove that cosh2
x – sinh2
x = 1.
(b) If tan (θ+ iφ) = tanα + i secα,
Prove that .
2
2
2
cot2
α
π
πθ
αϕ
++=





±= nande
.
(b) If tan x/2 = tan h y/2, prove that sin hy = tanx and
y = log tan
12. (b) Show that x
x
xx
tanh1
tanh1
2sinh2cosh
−
+
=+
(b) If x+iy = cos(A – iB), find the value of X2
+
(b) Show that tanh1
tanh1
2sinh2cosh
−
+
=+
x
xx
(or)
12. (a) If ,
2166
2165sin
=
θ
θ
show that θ is nearly equal to 3 1° ’
(b) If cos hu = secθ, prove that u=log tan 





+
24
θπ
(b) If sin( A + i B) = x + i y , prove that
X2
/Sin2
A –x2
/cos2
A = 1
(b) Prove that tanh– 1
(sin θ) = cosh-1
(sec θ).
Cosh2
B sinh2
B
x
2
x
2
(b) If sin θ = tanh x prove that tan θ = sinh x.
(b) If tan = tan h prove that cos x cos hx = 1.
12.
(b) If tan 





2
x
= tanh 





2
y
, prove that y = log tan 





+
24
xπ
Expand Sin4
θCos3
θ in a series of cosines of multiples of θ.
(b) If tan (θ+ iφ) = tanα + i secα,
Prove that .
2
2
2
cot2
α
π
πθ
αϕ
++=





±= nande
(a) Expand sin 7θ as a polynomial in sin θ, Hence show that
Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64
(b) If tan x/2 = tan h y/2, prove that sin hy = tanx and
y = log tan
12. (b) Show that x
x
xx
tanh1
tanh1
2sinh2cosh
−
+
=+
UNIT II
Characteristic equation of a square matrix - Eigen values and Eigen vectors of a real matrix-
properties of Eigen
values and Eigen vectors, Cayley-Hamilton theorem (without proof) verification – Finding inverse
and power of a matrix.
Diagonalisation of a matrix using similarity transformation (concept only) , Orthogonal transformation
– Reduction of
quadratic form to canonical form by orthogonal transformation
1.Find the rank of the matrix












−
−
−
2642
3963
1321
2.Find the sum and product of the eigen values of matrix.
1
a1
1
a2
1
an










321
221
111
3.Find the rank of the matrix 1 3 2 4
1 4 3 2
2 7 5 6
4 14 10 12
4.If a1, a2, … an are the eigen values of a square matrix A, prove that
a.For what values of a and b the equations. , , … are the eigen values
of A–1
5.The product of two eigen values of the matrix










−
−−
−
=
312
132
226
A is 16. Find the third eigen value.
6. Write down the matrix of the quadratic form
x2
+ y2
+ z2
+ xy + yz + zx.
7.Find the sum and product of the eigen values of the matrix










201
020
102
8. Prove the matrix 





=
10
01
M is orthogonal.
9.State any two properties of eigen values of a matrix.
10. Use Cayley-Hamilton theorem to find the inverse of the matrix 





=
62
37
A
11.Find the sum of the squares of the eigen values of A =










500
620
413
.
12.. Determine the nature of the Quadrative form without reducing to the canonical form:
x2
+3y2
+6z2
+2xy+2yz+4xz.
Find the eigen value and eigen vectors of
6 –2 2
–2 3 –1
2 –1 3
13. Find the eigen value and eigen vectors of 2 -1
-8 4
14. The eigen values of the matrix A =
the third eigen value and the product of eigen values.
15.State cayly-hamilton theorem.
16..If λ = 3 and λ = -2 are twp eigen values of










=
113
151
311
A then find third eigen value
17.Find the rank of the matrix












−
−
−
2642
3963
1321
18.. Find the sum and product of the eigen values of matrix.










321
221
111
19.State any two properties of eigen values of a matrix.
20.Use Cayley-Hamilton theorem to find the inverse of the matrix 





=
62
37
A
21.If A=










−
300
720
321
, find the eigen values of A-1
and A 3 .M12
22. Find the nature of the quadratic form 222
32 zyx +− M12
23. Find the sum and product of the eigen values of the matrix










−
−
−
111
111
111
24. State Cayley Hamilton theorem.
25.Find the rank of matrix.










−
−
−
821
712
643
26.. Find the sum and product of eigen values of the matrix










−
−
−
312
421
441
27.State Cayley-Hamilton theorem.-D11
28.Find the quadratic form corresponding to the matrix









−
305
002
521
D11
27.State cayly-hamilton theorem.-D11
28.If λ = 3 and λ = -2 are twp eigen values of










=
113
151
311
A then find third eigen value. D11
29.If A = 





23
14
, then find the eigen values of A2
.-M11
30.Write the matrix of the quadratic form.4x2
+ 2y2
– 3z2
+ 2xy + 4zx –M11
31. Define rank of a matrix.-M11
32. Two eigen values of
2 2 1
33. A = 1 3 1 are equal to 1 each. Find the third eigen value.-M11
1 2 2
34.In the rank of A =









 −
k53
241
112
is 2, find the value of k.-D10
35. Find the sum of the squares of eigenvalues of the matrix –D10
A =










526
048
003
36.Find sum and product of Eigen values of










−−−
−
=
312
301
221
A .-M10
37..Write the matrix of quadratic form (x1
2
+3x2
2
+6x3
2
-2x1x2+6x1x3+5x2x3).-M10
38.State any one property of Eigen value of a matrix and verify it on the matrix 





23
11
.D09
39. Write down the quadratic form whose corresponding matrix –is










−
−−
−
623
241
312
. D09
a.1) x + y + z = 6
x + 2y + 3z = 10
x + 2y + az = b
have (i) No solution (ii) A unique solution (iii) Infinite number of solutions.
(or)
A1. Reduce quadratic form 323121
2
3
2
2
2
1 2625 xxxxxxxxx +++++ to a canonical form through
an orthogonal transformation.
a.2)If A and B are any two non-singular matrices of the same order. Prove that (AB)–1
=
B–1
A–1
.
(or)
A2. If A is any square matrix, prove that ½ (A + AT
) is a symmetric matrix and ½ (A –
AT
) is a skew-symmetric matrix.
(a3) Show that the equations 3x + y + 2z = 3, 2x – 3y – z = -3, x + 2y + z = 4 are consistent and
solve them.
(b) Find the eigen values and eigen vectors of the matrix.










−− 327
112
022
(or)
A3. Reduce the quadratic form 8x2
+ 7y2
+ 3z2
– 12xy – 8zy + 4xz to the canonical form
through an orthogonal transformation.
a.4)Reduce the quadratic form 323121
2
3
2
2
2
1 8412378 xxxxxxxxx −+−++ in to its canonical form
by using orthogonal reduction.
(or)
A4. Verify Cayley – Hamilton theorem for the matrix










=
121
324
731
A Also find A– 1
and A4
.
(a5) Find the Eigen values and Eigen vectors of the matrix









 −
=
322
121
101
A
(b) Diagonalise the matrix A given above by similarity transformation.
(or)
A5. (a) Find the inverse of the matrix










−
−=
312
321
111
A by using Cay;ey-Hamilton theorem.
(b) Obtain an orthogonal transformation, which will transform the quadratic form 6x2
+
3y2
+ 3z2
– 4xy – 2yz + 4zx into a canonical form.
a.6) Reduce the quadratic form 2x2
+ 6y2
+ 2z2
+ 8xz to canonical form by orthogonal
reduction. Find also the nature of the quadratic form.
(or)
A6. (a) Find the eigen values and eigen vectors of the matrix 





21
45
(b) Verify Cayley Hamilton for the marix A =










211
010
112
a.7)Find the eigen values and eigen vectors of 2 2 0
2 1 1
–7 2 –3
–1 2 3
8 1 –7
–3 0 8
A7. Using cayley-Hamilton theorem, find the inverse of the matrix
A =
a.8)Show that the quadratic form 133221
2
3
2
2
2
1 4812378 xxxxxxxxxQ +=−++= is positive semi
definite.
(or)
A8. Investigate for what values of a and b the simultaneous equations x + y + z = 6, x + 2y +
3z = 10, x + 2y + az = b. will have
(a) no solution
(b) unique solution
(c) infinite solution
a.9)For what values of a and b the equations.
x + y + z = 6
x + 2y + 3z = 10
x + 2y + az = b
have (i) No solution (ii) A unique solution (iii) Infinite number of solutions.
(or)
A9. Reduce quadratic form 323121
2
3
2
2
2
1 2625 xxxxxxxxx +++++ to a canonical form through
an orthogonal transformation.
(a.10) Find the Eigen values and Eigen vectors of the matrix









 −
=
322
121
101
A
(b) Diagonalise the matrix A given above by similarity transformation.
(or)
A10. (a) Find the inverse of the matrix










−
−=
312
321
111
A by using Cay;ey-Hamilton theorem.
(b) Obtain an orthogonal transformation, which will transform the quadratic form 6x2
+
3y2
+ 3z2
– 4xy – 2yz + 4zx into a canonical form.
a.11)Verify Cayley – Hamilton theorem for the matrix A=










122
212
221
and hence find A-1
and A4
M-12
(or)
A11. Reduce the quadratic form 3x yzxzxyzy 22235 222
−+−++ into a canonical form by
orthogonal reduction.-M12
a.12). Diagonalize the matrix










113
151
311
by orthogonal transformation.
(or)
A12. (a) Show that the matrix










−
−=
111
112
301
A satisfies its own
characteristic equation and hence find A-1
.-M12
(b) Find the eigen values and eigen vectors of the matrix










110
110
001
M12
a.13)State Cayley–Hamilton theorem and find the inverse of the matrix A =









 −
200
422
201
using
Cayley – Hamilton theorem hence find A4
.
(or)
A13. Reduce 6x2
+ 3y2
+ 3z2
– 4xy – 2yz + 4xz into canonical form by an orthogonal
transformation
a.14) Reduce the quadratic form 133221
2
3
2
2
2
1 4812378 xxxxxxxxx +−−++ into its canonical
form using orthogonal reduction.-D11
(or)
A14.Using Cayley-Hamilton theorem find the inverse of the matrix










−
−
−
=
803
718
301
A D11
a.15)Show that the quadratic form 133221
2
3
2
2
2
1 4812378 xxxxxxxxxQ +=−++= is positive semi
definite.
(or)
A15. Investigate for what values of a and b the simultaneous equations x + y + z = 6, x + 2y +
3z = 10, x + 2y + az = b. will have
(a) no solution
(b) unique solution
(c) infinite solution
a.16). Find the eigen values and eigen vectors of
(a) the matrix










−
−−
−
342
476
268
(b) Verify Cayley-Hamilton theorem for the matrix A =










−
−
111
112
301
. Hence find its
inverse.
(or)
A16. Reduce the quadratic form
3x1
2
+5x2
2
+3x3
2
– 2x2x3 + 2x3x1 – 2x1x2
to a canonical form by orthogonal reduction. Find also index, signature and nature of the
quadratic form.
(a17) Verify Cayley-Hamilton theorem for the matrix =M11
7 2 –2
A = –6 –1 2
6 2 –1
2 2 –7
(b) Find the eigen values and eigen vectors of 2 1 2
0 1 -3
(or)
A17. Reduce 6x2
+ 3y2
– 4xy – 2yz + 4xz + 3z2
into a canonical form by an orthogonal
reduction. Discuss the nature of quadratic form.-M11
a.18)Using cayley.Hamilton theorem find A-1
if










−
−
−
=
573
452
221
A ;
Also verify the theorem.-D10
(or)
A18. Reduce the equation form 10x2
+ 2y2
+ 5z2
+ 6yz – 10zx – 4xy to a canonical form.D10
a.19). Verify Cayley-Hamilton theorem for the matrix










−
−−
−
=
211
121
212
A . Hence compute A-
1
. –M10
(or)
A19. Reduce the matrix










=
204
060
402
A to diagonal form by orthogonal transformation-M10
(a.20) Find the Eigen values and Eigen vectors of the matrix










−
−
=
310
212
722
A
(b) Diagonalise the matrix 





=
23
14
A hence find A8
.-D09
(or)
A20. (a) Find the inverse of the matrix










−−
−
=
126
216
227
A using Cayley-Hamilton
Therorem. –D09
UNIT III GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS
Curvature –centre, radius and circle of curvature in Cartesian co-ordinates only – Involutes and
evolutes –
envelope of family of curves with one and two parameters – properties of envelopes and evolutes –
evolutes as
envelope of normal.
UNIT IV FUNCTIONS OF SEVERAL VARIABLES 1
Functions of two variables – partial derivatives – Euler’s theorem and problems - Total differential –
Taylor’s
expansion – Maxima and minima – Constrained maxima and minima – Lagrange’s multiplier method
– Jacobian –
Differentiation under integral sign.
UNIT V ORDINARY DIFFERENTIAL EQUATION
Second order linear differential equation with constant coefficients – Particular Integrals for eax, sin
ax, cos ax,
xn, xneax, eax sinbx, eax cos bx. Equations reducible to Linear equations with constant co-efficient
using x=et.
Simultaneous first order linear equations with constant coefficients - Method of Variations of
Parameters.

More Related Content

What's hot

Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
 
Class 11 Cbse Maths Sample Paper 2012
Class 11 Cbse Maths Sample Paper 2012Class 11 Cbse Maths Sample Paper 2012
Class 11 Cbse Maths Sample Paper 2012Sunaina Rawat
 
Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vectorSelvaraj John
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paperPady Srini
 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Sunaina Rawat
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otckjalili
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematicsgeraldsiew
 
Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Sunaina Rawat
 
Matrices and determinants_01
Matrices and determinants_01Matrices and determinants_01
Matrices and determinants_01nitishguptamaps
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018KarunaGupta1982
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Sunaina Rawat
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)wsf6276
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printnitishguptamaps
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modulguestcc333c
 

What's hot (20)

Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Class 11 Cbse Maths Sample Paper 2012
Class 11 Cbse Maths Sample Paper 2012Class 11 Cbse Maths Sample Paper 2012
Class 11 Cbse Maths Sample Paper 2012
 
Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vector
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paper
 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otc
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14
 
Matrices and determinants_01
Matrices and determinants_01Matrices and determinants_01
Matrices and determinants_01
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018
 
CBSE Mathematics sample question paper with marking scheme
CBSE Mathematics sample question paper with marking schemeCBSE Mathematics sample question paper with marking scheme
CBSE Mathematics sample question paper with marking scheme
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4
 
CBSE Sample Paper Mathematics Class XII - 2015
CBSE Sample Paper  Mathematics Class XII  - 2015CBSE Sample Paper  Mathematics Class XII  - 2015
CBSE Sample Paper Mathematics Class XII - 2015
 
Class 9
Class 9Class 9
Class 9
 
Cs 601
Cs 601Cs 601
Cs 601
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modul
 

Viewers also liked

Viewers also liked (20)

linear transformation
linear transformationlinear transformation
linear transformation
 
Reality shock j aracil
Reality shock   j aracilReality shock   j aracil
Reality shock j aracil
 
EL RENENIXAMENT
EL RENENIXAMENTEL RENENIXAMENT
EL RENENIXAMENT
 
MS SSAS 2012 & MDX
MS SSAS 2012  &  MDXMS SSAS 2012  &  MDX
MS SSAS 2012 & MDX
 
Travel with me - prezentare
Travel with me - prezentare Travel with me - prezentare
Travel with me - prezentare
 
A dislexia no pré escolar prevenir-nos 1º e 2º ciclos-intervir_nos 3º ciclo e...
A dislexia no pré escolar prevenir-nos 1º e 2º ciclos-intervir_nos 3º ciclo e...A dislexia no pré escolar prevenir-nos 1º e 2º ciclos-intervir_nos 3º ciclo e...
A dislexia no pré escolar prevenir-nos 1º e 2º ciclos-intervir_nos 3º ciclo e...
 
Informe empleados
Informe empleadosInforme empleados
Informe empleados
 
Faculty web page
Faculty web pageFaculty web page
Faculty web page
 
Agoria delestree
Agoria delestreeAgoria delestree
Agoria delestree
 
Cisco mortensen
Cisco mortensenCisco mortensen
Cisco mortensen
 
гост пк
гост пкгост пк
гост пк
 
A cross-layer approach to energy management in manufacturing
A cross-layer approach to energy management in manufacturingA cross-layer approach to energy management in manufacturing
A cross-layer approach to energy management in manufacturing
 
Agile and Scrum for Executives
Agile and Scrum for ExecutivesAgile and Scrum for Executives
Agile and Scrum for Executives
 
2 uu guru&dosen no.14tahun2005
2 uu guru&dosen no.14tahun20052 uu guru&dosen no.14tahun2005
2 uu guru&dosen no.14tahun2005
 
maria eta almike
maria eta almikemaria eta almike
maria eta almike
 
Creelo 5to
Creelo 5toCreelo 5to
Creelo 5to
 
Changing the world
Changing the worldChanging the world
Changing the world
 
Borrador calendario académico curso 2016 2017
Borrador calendario académico curso 2016 2017Borrador calendario académico curso 2016 2017
Borrador calendario académico curso 2016 2017
 
3S Mobile - Innovation on tap
3S Mobile - Innovation on tap 3S Mobile - Innovation on tap
3S Mobile - Innovation on tap
 
WEBDESIGN TUDÁSTÁR: Színek alkalmazása
WEBDESIGN TUDÁSTÁR: Színek alkalmazásaWEBDESIGN TUDÁSTÁR: Színek alkalmazása
WEBDESIGN TUDÁSTÁR: Színek alkalmazása
 

Similar to Unit i trigonometry satyabama univesity

2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Dennis Almeida
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guidevhiggins1
 
Quadratic equations class 10
Quadratic equations class 10Quadratic equations class 10
Quadratic equations class 10AadhiSXA
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi indu psthakur
 
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01Mahadeva K S
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3naveenkumar9211
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
 

Similar to Unit i trigonometry satyabama univesity (16)

2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
 
Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guide
 
Quadratic equations class 10
Quadratic equations class 10Quadratic equations class 10
Quadratic equations class 10
 
Question bank xii
Question bank xiiQuestion bank xii
Question bank xii
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
Allied maths ii
Allied maths iiAllied maths ii
Allied maths ii
 
Math cbse samplepaper
Math cbse samplepaperMath cbse samplepaper
Math cbse samplepaper
 
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01
Ipuc annualexamqpaperforyear2013-2014-140113114635-phpapp01
 
Class 12 practice paper
Class 12 practice paperClass 12 practice paper
Class 12 practice paper
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3
 
VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2
 
Maths04
Maths04Maths04
Maths04
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
 

Recently uploaded

Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 

Recently uploaded (20)

Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Unit i trigonometry satyabama univesity

  • 1. UNIT I TRIGONOMETRY 10 hrs. Review of Complex numbers and De Moivre’s Theorem. Expansions of Sinnθ and Cosnθ; Sinθ and Cosθ in powers of θ, Sinnθ and Cosnθ in terms of multiples of θ. Hyperbolic functions – Inverse hyperbolic functions. Separation into real and imaginary parts of complex functions I.Separate into real and imaginary parts of cos(x+iy) Find the real part of sin(x + iy). Separate into real and imaginary parts of cos(x+iy) Find the real part of Sin h (A+iB) Separate into real and imaginary parts of tan(x + i y) Separate sin (x + iy) into real and imaginary parts Separate into real and imaginary parts of cos(x+iy) Separate real and imaginary parts of cosech (x + iy). II. Write down the expansion for tan nθ interms of power of tanθ. Write down the expansion for tan nθ interms of power of tanθ. Write the expansion of sin nθ. Write the expansion of sin nθ. Write the expansion of sin nθ. Write down the expansion for tan nθ interms of power of tanθ. Write the expansion of sin nθ. Expand cos4θ in terms of cosθ. Expand sin5θ in terms of sinθ. Expand cos4θ in terms of cosθ. Expand cos θ in powers of cos θ and sin θ. Write cos4θ in terms of a series of cosines of multiples of θ Expand Cos4 θ in a series of cosines of multiples of θ. Express θ θ sin 4sin in terms of cosθ
  • 2. If sin (A + iB) = x + iy, prove that 1 cossin 21 2 2 2 =− A y A x If cos (α + iβ) = cosθ + isinθ prove that Sin2 α = ± sinθ. 4. If x = cosθ + i sinθ, what is n x x       − 1 Show that cos4θ = 8cos4 θ - 8cos2 θ + 1 Show that 3cos4 cos 3cos 2 −= θ θ θ Show that = 4 cos2 θ – 3. Show that 3cos4 cos 3cos 2 −= θ θ θ Show that . 1 1 log 2 1 )(tanh 1       − + =− x x x Prove that tan h-1 = log x for x>0. Prove that tan h-1 = log x for x>0. Prove that cosh2 x – sinh2 x = 1. Prove that tan h-1 = log x for x>0. Show that sinh 2x = 2sinhx coshx. Prove that cosh2 x – sinh2 x = 1. PART-B 1.Separate real and imaginary parts of cosech (x + iy) (b) Separate into real and imaginary parts of tanh(x + iy).
  • 3. (b) Separate tan-1 (x + iy) into real and imaginary parts (b) Separate tanh-1 (x + iy) into real and imaginary parts. (a) Separate into real and imaginary part of tan-1 (x + iy). (b) Separate tanh-1 (x + iy) into real and imaginary parts. (b) Separate into real and imaginary parts of tanh(x + iy). (b) Separate tan-1 (x + iy) into real and imaginary parts. (b) Separate tanh-1 (x + iy) into real and imaginary parts. II.(a) Expand sin 6θ in terms of sin θ. Find θ θ cos 7cos in terms of cosines powers of θ. (a) Expand sin 7θ as a polynomial in sin θ, Hence show that Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64 (a) Expand sin 7θ as a polynomial in sin θ, Hence show that Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64 (a) Expand sin 6θ in terms of sin θ. (a) Expand sin 6θ in terms of sinθ Expand Sin8 θ in a series of cosines of multiple of θ. . Expand Sin4 θCos3 θ in a series of cosines of multiples of θ. (may-2012) Expand Sin4 θCos3 θ in a series of cosines of multiples of θ. (a) Obtain the expansion of Sin7θ/Sinθ (a) Expand Sin3 θ. Cos5 θ in a series of sines of multiples of θ. (a) Expand sin 5 θ cos 4 θ in a series of sines of multiples of θ . (may- 2013) (a) Prove that 64sin4 θ cos3 θ = cos7θ - cos 5θ = 3 cos 3θ + 3cosθ.
  • 4. (a) Prove that cos7θ secθ = 64cos6 θ - 112cos4 θ + 56 cos2 θ - 7. (a) Expand Sin3 θ. Cos5 θ in a series of sines of multiples of θ. It cos(u+iv) = x+iy where u,v,x,y as real, prove that (i) (1+x)2 + y2 = (Coshv + cos u)2 (ii) (1-x)2 + y2 = (Coshv – Cos u)2 (a) Prove that cos6 θ = [cos6θ + 6cos4θ+15cos2θ+10]. (a) Prove that sin6 θ = ]102cos154cos66[cos 32 1 −+−− θθθ (b) Prove that sin5 θ cos2 θ= 1/26 [sin7θ – 3sin5θ + sin3θ +5sinθ] (a) Prove that 75611264 7 246 −+−= θθθ θ θ CosCosCos Cos Cos (a) Find θ θ cos 7cos in powers of cosθ. (may-2012) (a) Find θ θ cos 7cos in powers of cosθ. Show that 3cos4 cos 3cos 2 −= θ θ θ (a) Show that [Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ] (a) Show that [Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ] (a) Show that [Cos 9θ + cos 7θ - 4cos 5θ - 4cos 3θ + 6cosθ]
  • 5. x 2 x 2 Find θ θ cos 7cos in terms of cosines powers of θ (a) Find θ θ cos 7cos in powers of cosθ. (a) Prove that 75611264 7 246 −+−= θθθ θ θ CosCosCos Cos Cos (a) Prove that θθθ θ θ cos6cos32cos32 6 35 +−= Sin Sin (may-2012) (b) If Sin ( αθααφθ sincos,sincos) 2 ±=+=+ thatproveii If x + iy = sin (A+iB) prove that 1 cossin 1 sinhcosh 2 2 2 2 2 2 2 2 =−=++ A y A x and B y B x (b) If sin (α + iβ) = x + iy, prove that 1 sinhcosh 2 2 2 2 =+ ββ yx If cos (α + iβ) = cosθ + isinθ prove that Sin2 α = ± sinθ. (8 marks) (b) If tan x/2 = tan h y/2, prove that sin hy = tanx and y = log tan (b) If tan = tan h prove that cos x cos hx = 1. 12. It cos(u+iv) = x+iy where u,v,x,y as real, prove that (i) (1+x)2 + y2 = (Coshv + cos u)2 (may-2012) (ii) (1-x)2 + y2 = (Coshv – Cos u)2 12. It cos(u+iv) = x+iy where u,v,x,y as real, prove that (i) (1+x)2 + y2 = (Coshv + cos u)2 (ii) (1-x)2 + y2 = (Coshv – Cos u)2
  • 6. Show that sinh 2x = 2sinhx coshx. Prove that cosh2 x – sinh2 x = 1. (b) If tan (θ+ iφ) = tanα + i secα, Prove that . 2 2 2 cot2 α π πθ αϕ ++=      ±= nande . (b) If tan x/2 = tan h y/2, prove that sin hy = tanx and y = log tan 12. (b) Show that x x xx tanh1 tanh1 2sinh2cosh − + =+ (b) If x+iy = cos(A – iB), find the value of X2 + (b) Show that tanh1 tanh1 2sinh2cosh − + =+ x xx (or) 12. (a) If , 2166 2165sin = θ θ show that θ is nearly equal to 3 1° ’ (b) If cos hu = secθ, prove that u=log tan       + 24 θπ (b) If sin( A + i B) = x + i y , prove that X2 /Sin2 A –x2 /cos2 A = 1 (b) Prove that tanh– 1 (sin θ) = cosh-1 (sec θ). Cosh2 B sinh2 B
  • 7. x 2 x 2 (b) If sin θ = tanh x prove that tan θ = sinh x. (b) If tan = tan h prove that cos x cos hx = 1. 12. (b) If tan       2 x = tanh       2 y , prove that y = log tan       + 24 xπ Expand Sin4 θCos3 θ in a series of cosines of multiples of θ. (b) If tan (θ+ iφ) = tanα + i secα, Prove that . 2 2 2 cot2 α π πθ αϕ ++=      ±= nande (a) Expand sin 7θ as a polynomial in sin θ, Hence show that Sin π/7 sin 2π/7 sin 3π/7 sin 4π/7 sin 5π/7 sin6π/7 = -7/64 (b) If tan x/2 = tan h y/2, prove that sin hy = tanx and y = log tan 12. (b) Show that x x xx tanh1 tanh1 2sinh2cosh − + =+ UNIT II Characteristic equation of a square matrix - Eigen values and Eigen vectors of a real matrix- properties of Eigen values and Eigen vectors, Cayley-Hamilton theorem (without proof) verification – Finding inverse and power of a matrix. Diagonalisation of a matrix using similarity transformation (concept only) , Orthogonal transformation – Reduction of quadratic form to canonical form by orthogonal transformation 1.Find the rank of the matrix             − − − 2642 3963 1321 2.Find the sum and product of the eigen values of matrix.
  • 8. 1 a1 1 a2 1 an           321 221 111 3.Find the rank of the matrix 1 3 2 4 1 4 3 2 2 7 5 6 4 14 10 12 4.If a1, a2, … an are the eigen values of a square matrix A, prove that a.For what values of a and b the equations. , , … are the eigen values of A–1 5.The product of two eigen values of the matrix           − −− − = 312 132 226 A is 16. Find the third eigen value. 6. Write down the matrix of the quadratic form x2 + y2 + z2 + xy + yz + zx. 7.Find the sum and product of the eigen values of the matrix           201 020 102 8. Prove the matrix       = 10 01 M is orthogonal. 9.State any two properties of eigen values of a matrix. 10. Use Cayley-Hamilton theorem to find the inverse of the matrix       = 62 37 A 11.Find the sum of the squares of the eigen values of A =           500 620 413 . 12.. Determine the nature of the Quadrative form without reducing to the canonical form: x2 +3y2 +6z2 +2xy+2yz+4xz. Find the eigen value and eigen vectors of
  • 9. 6 –2 2 –2 3 –1 2 –1 3 13. Find the eigen value and eigen vectors of 2 -1 -8 4 14. The eigen values of the matrix A = the third eigen value and the product of eigen values. 15.State cayly-hamilton theorem. 16..If λ = 3 and λ = -2 are twp eigen values of           = 113 151 311 A then find third eigen value 17.Find the rank of the matrix             − − − 2642 3963 1321 18.. Find the sum and product of the eigen values of matrix.           321 221 111 19.State any two properties of eigen values of a matrix. 20.Use Cayley-Hamilton theorem to find the inverse of the matrix       = 62 37 A 21.If A=           − 300 720 321 , find the eigen values of A-1 and A 3 .M12 22. Find the nature of the quadratic form 222 32 zyx +− M12 23. Find the sum and product of the eigen values of the matrix           − − − 111 111 111
  • 10. 24. State Cayley Hamilton theorem. 25.Find the rank of matrix.           − − − 821 712 643 26.. Find the sum and product of eigen values of the matrix           − − − 312 421 441 27.State Cayley-Hamilton theorem.-D11 28.Find the quadratic form corresponding to the matrix          − 305 002 521 D11 27.State cayly-hamilton theorem.-D11 28.If λ = 3 and λ = -2 are twp eigen values of           = 113 151 311 A then find third eigen value. D11 29.If A =       23 14 , then find the eigen values of A2 .-M11 30.Write the matrix of the quadratic form.4x2 + 2y2 – 3z2 + 2xy + 4zx –M11 31. Define rank of a matrix.-M11 32. Two eigen values of 2 2 1 33. A = 1 3 1 are equal to 1 each. Find the third eigen value.-M11 1 2 2 34.In the rank of A =           − k53 241 112 is 2, find the value of k.-D10 35. Find the sum of the squares of eigenvalues of the matrix –D10 A =           526 048 003 36.Find sum and product of Eigen values of           −−− − = 312 301 221 A .-M10 37..Write the matrix of quadratic form (x1 2 +3x2 2 +6x3 2 -2x1x2+6x1x3+5x2x3).-M10
  • 11. 38.State any one property of Eigen value of a matrix and verify it on the matrix       23 11 .D09 39. Write down the quadratic form whose corresponding matrix –is           − −− − 623 241 312 . D09 a.1) x + y + z = 6 x + 2y + 3z = 10 x + 2y + az = b have (i) No solution (ii) A unique solution (iii) Infinite number of solutions. (or) A1. Reduce quadratic form 323121 2 3 2 2 2 1 2625 xxxxxxxxx +++++ to a canonical form through an orthogonal transformation. a.2)If A and B are any two non-singular matrices of the same order. Prove that (AB)–1 = B–1 A–1 . (or)
  • 12. A2. If A is any square matrix, prove that ½ (A + AT ) is a symmetric matrix and ½ (A – AT ) is a skew-symmetric matrix. (a3) Show that the equations 3x + y + 2z = 3, 2x – 3y – z = -3, x + 2y + z = 4 are consistent and solve them. (b) Find the eigen values and eigen vectors of the matrix.           −− 327 112 022 (or) A3. Reduce the quadratic form 8x2 + 7y2 + 3z2 – 12xy – 8zy + 4xz to the canonical form through an orthogonal transformation. a.4)Reduce the quadratic form 323121 2 3 2 2 2 1 8412378 xxxxxxxxx −+−++ in to its canonical form by using orthogonal reduction. (or) A4. Verify Cayley – Hamilton theorem for the matrix           = 121 324 731 A Also find A– 1 and A4 . (a5) Find the Eigen values and Eigen vectors of the matrix           − = 322 121 101 A (b) Diagonalise the matrix A given above by similarity transformation. (or) A5. (a) Find the inverse of the matrix           − −= 312 321 111 A by using Cay;ey-Hamilton theorem. (b) Obtain an orthogonal transformation, which will transform the quadratic form 6x2 + 3y2 + 3z2 – 4xy – 2yz + 4zx into a canonical form. a.6) Reduce the quadratic form 2x2 + 6y2 + 2z2 + 8xz to canonical form by orthogonal reduction. Find also the nature of the quadratic form. (or) A6. (a) Find the eigen values and eigen vectors of the matrix       21 45 (b) Verify Cayley Hamilton for the marix A =           211 010 112 a.7)Find the eigen values and eigen vectors of 2 2 0 2 1 1 –7 2 –3
  • 13. –1 2 3 8 1 –7 –3 0 8 A7. Using cayley-Hamilton theorem, find the inverse of the matrix A = a.8)Show that the quadratic form 133221 2 3 2 2 2 1 4812378 xxxxxxxxxQ +=−++= is positive semi definite. (or) A8. Investigate for what values of a and b the simultaneous equations x + y + z = 6, x + 2y + 3z = 10, x + 2y + az = b. will have (a) no solution (b) unique solution (c) infinite solution a.9)For what values of a and b the equations. x + y + z = 6 x + 2y + 3z = 10 x + 2y + az = b have (i) No solution (ii) A unique solution (iii) Infinite number of solutions. (or) A9. Reduce quadratic form 323121 2 3 2 2 2 1 2625 xxxxxxxxx +++++ to a canonical form through an orthogonal transformation. (a.10) Find the Eigen values and Eigen vectors of the matrix           − = 322 121 101 A (b) Diagonalise the matrix A given above by similarity transformation. (or) A10. (a) Find the inverse of the matrix           − −= 312 321 111 A by using Cay;ey-Hamilton theorem. (b) Obtain an orthogonal transformation, which will transform the quadratic form 6x2 + 3y2 + 3z2 – 4xy – 2yz + 4zx into a canonical form.
  • 14. a.11)Verify Cayley – Hamilton theorem for the matrix A=           122 212 221 and hence find A-1 and A4 M-12 (or) A11. Reduce the quadratic form 3x yzxzxyzy 22235 222 −+−++ into a canonical form by orthogonal reduction.-M12 a.12). Diagonalize the matrix           113 151 311 by orthogonal transformation. (or) A12. (a) Show that the matrix           − −= 111 112 301 A satisfies its own characteristic equation and hence find A-1 .-M12 (b) Find the eigen values and eigen vectors of the matrix           110 110 001 M12 a.13)State Cayley–Hamilton theorem and find the inverse of the matrix A =           − 200 422 201 using Cayley – Hamilton theorem hence find A4 . (or) A13. Reduce 6x2 + 3y2 + 3z2 – 4xy – 2yz + 4xz into canonical form by an orthogonal transformation a.14) Reduce the quadratic form 133221 2 3 2 2 2 1 4812378 xxxxxxxxx +−−++ into its canonical form using orthogonal reduction.-D11 (or) A14.Using Cayley-Hamilton theorem find the inverse of the matrix           − − − = 803 718 301 A D11 a.15)Show that the quadratic form 133221 2 3 2 2 2 1 4812378 xxxxxxxxxQ +=−++= is positive semi definite. (or)
  • 15. A15. Investigate for what values of a and b the simultaneous equations x + y + z = 6, x + 2y + 3z = 10, x + 2y + az = b. will have (a) no solution (b) unique solution (c) infinite solution a.16). Find the eigen values and eigen vectors of (a) the matrix           − −− − 342 476 268 (b) Verify Cayley-Hamilton theorem for the matrix A =           − − 111 112 301 . Hence find its inverse. (or) A16. Reduce the quadratic form 3x1 2 +5x2 2 +3x3 2 – 2x2x3 + 2x3x1 – 2x1x2 to a canonical form by orthogonal reduction. Find also index, signature and nature of the quadratic form. (a17) Verify Cayley-Hamilton theorem for the matrix =M11 7 2 –2 A = –6 –1 2 6 2 –1 2 2 –7 (b) Find the eigen values and eigen vectors of 2 1 2 0 1 -3 (or) A17. Reduce 6x2 + 3y2 – 4xy – 2yz + 4xz + 3z2 into a canonical form by an orthogonal reduction. Discuss the nature of quadratic form.-M11 a.18)Using cayley.Hamilton theorem find A-1 if           − − − = 573 452 221 A ; Also verify the theorem.-D10 (or) A18. Reduce the equation form 10x2 + 2y2 + 5z2 + 6yz – 10zx – 4xy to a canonical form.D10 a.19). Verify Cayley-Hamilton theorem for the matrix           − −− − = 211 121 212 A . Hence compute A- 1 . –M10 (or) A19. Reduce the matrix           = 204 060 402 A to diagonal form by orthogonal transformation-M10
  • 16. (a.20) Find the Eigen values and Eigen vectors of the matrix           − − = 310 212 722 A (b) Diagonalise the matrix       = 23 14 A hence find A8 .-D09 (or) A20. (a) Find the inverse of the matrix           −− − = 126 216 227 A using Cayley-Hamilton Therorem. –D09 UNIT III GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS Curvature –centre, radius and circle of curvature in Cartesian co-ordinates only – Involutes and evolutes – envelope of family of curves with one and two parameters – properties of envelopes and evolutes – evolutes as envelope of normal. UNIT IV FUNCTIONS OF SEVERAL VARIABLES 1 Functions of two variables – partial derivatives – Euler’s theorem and problems - Total differential – Taylor’s expansion – Maxima and minima – Constrained maxima and minima – Lagrange’s multiplier method – Jacobian – Differentiation under integral sign. UNIT V ORDINARY DIFFERENTIAL EQUATION Second order linear differential equation with constant coefficients – Particular Integrals for eax, sin ax, cos ax, xn, xneax, eax sinbx, eax cos bx. Equations reducible to Linear equations with constant co-efficient using x=et. Simultaneous first order linear equations with constant coefficients - Method of Variations of Parameters.