SlideShare a Scribd company logo
1 of 45
Download to read offline
Feasibility of Attaining Fully Equiaxed
Microstructure
through Process Variable Control
for Additive Manufacturing of Ti-6Al-4V
Sarah Kuntz, B.S. Mechanical Engineering, WSU
Advised by Dr. Nathan Klingbeil
Wright State University
Dayton, Ohio 45434
Supported by the National Science Foundation
Grant No. CMMI-1131266 & CMMI-1335196
Acknowledgements
• Thesis Committee
− Dr. Nathan Klingbeil
− Dr. Joy Gockel
− Dr. Raghu Srinivasan
• Additive Manufacturing Research Group (AMRG)
− Dr. Greg Loughnane
− Luke Sheridan
− Nate Levkulich
− Laura Gliebe
− Jason Beckman
2
Outline
• Background & Literature Review
• Thesis Contributions
• Modeling Approach
• Results & Discussion
• Summary & Future Work
3
What is Additive Manufacturing?
• 3-D Printing
• An alternative manufacturing technique
− Less weight
− Less wasted material
− Fewer pieces  increased strength / longer life
− * Easy to customize
• A challenge
− Thermal history determines microstructure
− Microstructure determines material properties
4
LENSTM Powder Fed Process
(Hofmeister, 1999)
Consistent & Desirable Microstructure
Mixed β grains
Gockel 2014, NASA Langley, EBF3
(modified Sciaky)
4
• Phase diagram
− β grains (form at solidification)
− α grains (from at β transus)
• Morphologies of interest: β grains
− Fully columnar
− Fully equiaxed
− Mixed  not desirable
• Have achieved
− Fully columnar & mixed
Goal:
Determine process variables
for fully equiaxed microstructure
Process Variable Control
6Inspired by Beuth et. al. 2013
• Process variables of interest
− Beam power
− Velocity
− Preheat temperature
• Commercial Processes Considered
− LENS
− Sciaky
− EOS
− Arcam
• How do process variables relate to
microstructure?
Relating Process Variables to Thermal
Conditions
• 3-D Rosenthal Solution (1946)
− Solves 3D Heat Transfer Equation
− Assumptions:
o Temperature independent material properties (c, ρ, k)
o Constant point heat source (Q)
o Constant, linear velocity (V) only in the x-direction
o Solid & semi-infinite substrate
− * Previous research suggests this is a good approximation (Bontha, 2003;
Davis, etc.)
− Solution is an equation for temperature as a function of distance from the heat
source
7
(Rosenthal, 1946; Bontha, 2006)
𝑇 − 𝑇0 =
𝛼𝑄
2𝜋𝑘
𝑒−λ𝑉x0
𝑒−λ𝑉𝑟
𝑟
, 𝑟 = 𝑥0
2
+ 𝑦0
2
+ 𝑧0
2
8
(Kuntz’s Summary of Bontha 2006)
- Working with dimensionless quantities
 Will make it easier to switch material
systems, size scale, etc.
- Relationship between P-V and thermal
conditions
 Need relationship between thermal
conditions and microstructure
𝑆𝑅 =
1
𝛻𝑇
𝜕𝑇
𝜕𝑡
Solidification Rate
Dimensionless Rosenthal Solution
Relating Thermal Conditions to
Solidification Microstructure
• Hunt’s Criterion Boundary Curves
− Originally for welding
− Divide thermal process space into microstructural regions…
− By plotting microstructure morphology boundaries in terms
of thermal conditions!
9
Original Curves (Hunt, 1984)
G-R Map in Ti64, Casting Samples (Kobryn, 2003)
𝑮 𝑹 < 𝟎. 𝟔𝟏𝟕𝑵 𝑶
𝟏
𝟑
𝟏 − ∆𝑻 𝑵
𝟑 𝑹𝑪 𝒐
𝑨
−𝟑
𝟐 𝑹𝑪 𝒐
𝑨
𝟏
𝟐
Equiaxed Boundary
𝑮 𝑹 > 𝟎. 𝟔𝟏𝟕 𝟏𝟎𝟎𝑵 𝑶
𝟏
𝟑 𝟏 − ∆𝑻 𝑵
𝟑 𝑹𝑪 𝒐
𝑨
−𝟑
𝟐 𝑹𝑪 𝒐
𝑨
𝟏
𝟐
Columnar Boundary
Relating Process Variables to Microstructure
• Changing process variables  various thermal conditions 3-D Rosenthal Solution
• Specific thermal conditions  solidification microstructure Hunt’s Criterion Curves
10Gockel 2014
Bontha 2006
*Power & Velocity  Microstructure:
Select a specific location for thermal conditions
Specific Location for Thermal Conditions
11
1
2
• Meet the melt pool
− Heat source & direction of motion
− Melt pool boundary / liquidus isotherm
− Trailing edge / solidification front
• Points of Interest
1: Top Surface
 Top of trailing edge
 Visible in-situ to co-axial cameras
 Have achieved equiaxed grains
2: Deepest Point
 Bottom of melt pool, aka “melt pool depth”
& “deepest point”
 Have not achieved equiaxed grains
Importance of the Deepest Point…
when adding a new layer
Why the look at the bottom of the melt pool?
−Because Additive Manufacturing adds layers!
− The top of the melt pool gets
re-melted…
− But the bottom won’t be “overwritten”
when the next layer is added!
− If we have equiaxed at the top when
we deposit the next layer…
12
Added Material Deposition
Use this Point!
If we have equiaxed at the top when we deposit the next layer…
− Equiaxed at the top will be absorbed into long columnar grains
UNLESS…
− Equiaxed grains at the bottom get in the way
− Also, if the bottom is equiaxed, the whole melt pool
will likely be equiaxed…
* Photos on next slide
13
Case 1: Equiaxed at top
Columnar at bottom
Case 2: Equiaxed at top
Equiaxed at bottom
Case 1: Columnar at bottom
Case 2: Equiaxed at bottom
Importance of the Deepest Point…
when considering grain growth
Loughnane 2015
450 W, Thin Wall, 1 Bead, 4 sec pause
Gliebe 2015
14
• Grain propagation
− Equiaxed grains necessary to prevent columnar expansion
• Bontha’s work (2006)
− If deepest point is equiaxed, entire melt pool is equiaxed
Bloomin’
columnar grains!
Bontha 2006
Importance of the Deepest Point…
when finding thermal conditions
Recap of Background & Literature Review
• Answered the questions:
− What is Additive Manufacturing?
− What are Process Variables?
− What is Fully Equiaxed Microstructure?
• Introduced the approach:
− Process Variables are related to Thermal Conditions (Rosenthal Solution)
− Thermal Conditions are related to Microstructure (Hunt’s Curves)
− To relate Process Variables directly to Microstructure, need to pick a location
− This location should be the Deepest Point in the melt pool!
15
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
16
1
2
3
4
5
• 3-D Rosenthal provides equation for
temperature  Location of melt pool
• Take the derivative to find
− Thermal gradient, G
− Cooling rate
 Solidification rate, R:
• Problem:
− At any instant in time:
 Cooling rate equation equals zero
Thermal Conditions at Deepest Point
17
Moving Point Source Solution
Why is cooling
rate zero?
• Physical meaning:
− At a given instant in time, bottom
is transition between heating & cooling
• Artifact of the mathematics:
− Dimensionless cooling rate equals
x-component of thermal gradient
− At deepest point, x-component of
thermal gradient equals zero
* See next slide
18
Cooling Rate Equation Equals Zero at Depth
Artifact of the Mathematics…
At an instant in time, cooling rate might be zero…
− But cooling isn’t instantaneous!
19
T = TL
T = TS
Non-Instantaneous Cooling Rate
• Approximate derivative as finite difference
• Commonly done in FEA
* Can now find cooling rate
20
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
21
1
2
3
4
5
22
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at Surface of Melt Pool
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
G = 104.75
*R
50 W
100 W
500 W
1000 W
10000 W
50000 W
75000 W
100000 W
0.05 mm/s
0.5 mm/s
5 mm/s
10 mm/s
50 mm/s
100 mm/s
500 mm/s
1000 mm/s
At Melt Pool Surface At Melt Pool Depth
Changing Power and Velocity
23
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at Surface of Melt Pool
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
G = 104.75
*R
50 W
100 W
500 W
1000 W
10000 W
50000 W
75000 W
100000 W
0.05 mm/s
0.5 mm/s
5 mm/s
10 mm/s
50 mm/s
100 mm/s
500 mm/s
1000 mm/s
At Surface At Depth
Comparison with Prior Work
Bontha 2006
* General behavior is consistent!
However…
• Powers: 50 W to 100 kW
• Velocities: 0.05 mm/s to 1 m/s
• Preheat: none
• Prediction: Not Fully Equiaxed
*Remember, one of the four
commercial processes had a preheat
temperature…
24
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
G = 104.75
*R
50 W
100 W
500 W
1000 W
10000 W
50000 W
75000 W
100000 W
0.05 mm/s
0.5 mm/s
5 mm/s
10 mm/s
50 mm/s
100 mm/s
500 mm/s
1000 mm/s
At Melt Pool Depth
Impact of Power and Velocity
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Pre-Heat & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
25o
C
100
o
C
500o
C
850o
C
1000o
C
1500o
C
0.05 mm/s
0.5 mm/s
5 mm/s
10 mm/s
50 mm/s
100 mm/s
500 mm/s
1000 mm/s
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Pre-Heat & Velocity
on Thermal Trends at Surface of Melt Pool
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
25
At Melt Pool Surface At Melt Pool Depth _
Changing Preheat and Velocity
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
26
1
2
3
4
5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Arcam
(750o
C pre-heat)
Arcam range
(no pre-heat)
EOS
Sciaky
LENS
Morphology Prediction:
Four Commercial Processes
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
Results for Four Commercial Processes
• Prediction: Not Equiaxed
• LENS, Sciaky & EOS
− No preheat
• Arcam
− Preheat is too small
* Sciaky gets closest
− Very high powers
− Low velocities
27
Sciaky: 1 – 40 kW, 0.04 – 42 mm/s
LENS: 100 – 500 W, 0.04 – 42 mm/s
EOS: 50 – 500 W, 42 – 1060 mm/s
Arcam: 50 – 2000 W, 42 – 1060 mm/s
Arcam: 50 – 2000 W, 42 – 1060 mm/s
Closest to boundary
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
x-position (cm)
z-position(cm)
Melt Pool Contours for Representative Cases
Arcam, 750o
C
Arcam, 25o
C
LENS
EOS
Sciaky
Representative Melt Pool for Each Process
28
Representative Points
10 kW, 4.23 mm/s (Sciaky)
500 W, 4.23 mm/s (LENS)
100 W, 635 mm/s (EOS)
1000 W, 635 mm/s (Arcam)
1000 W, 635 mm/s (Arcam)-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0
x-position (cm)
z-position(cm)
Melt Pool Contours for Representative Cases
Arcam, 750o
C
Arcam, 25
o
C
LENS
EOS
Melt Pool Contours: Zoomed View
* Prediction:
Since Sciaky gets closest, fully
equiaxed melt pool will be large
(cm-size scale)
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
29
1
2
3
4
5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Impact of Changing Power & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Columnar Grains
Equiaxed Grains
Mixed Morphology
50 W
100 W
500 W
1000 W
10000 W
50000 W
75000 W
100000 W
0.05 mm/s
0.5 mm/s
5 mm/s
10 mm/s
50 mm/s
100 mm/s
500 mm/s
1000 mm/s
10
-2
10
-1
10
2
10
3
Impact of Changing Power & Velocity
on Thermal Trends at 99% of Melt Pool Depth
Solidification Rate (cm/s)
ThermalGradient(K/cm)
Process Variables for Equiaxed
The Process
• Consider a range of
Powers & Velocities
at various preheat
temperatures:
• 750oC, 850oC, 1000oC
1100oC, 1200oC, 1300oC
• Consider more P-V
combinations at and around
1300oC…
30
• A high preheat temperature is
necessary… but how high?
− Depends on power & velocity
• For a ~75% Melt Temp. preheat:
− Power: 50 – 100 kW
− Velocity: 4 – 8 mm/s
• For a ~95% Melt Temp. preheat:
− Power: 50 W – 100 kW
− Velocity: 0.2 mm/s – 4 m/s
31
Process Variables for Equiaxed
0
10
1
10
2
1550 C
1500 C
1475 C
1450 C
1425 C
1400 C
1350 C
1300 C
1250 C
50 W
94% Tm
50 kW
76% Tm
0.2 mm/s
4 m/s
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
32
1
2
3
4
5
33
Melt Pool Dimensions: Sciaky-Size?
* Prediction: Since Sciaky gets closest, fully equiaxed melt pool will
be large (cm-size scale)  FALSE
• For a ~75% Melt Temp. preheat:
− Power: 50 – 100 kW
− Velocity: 4 – 8 mm/s
− Trailing Edge Length: 35 – 71 cm
• For a ~95% Melt Temp. preheat:
− Power: 50 W – 100 kW
− Velocity: 0.2 mm/s – 4 m/s
− Trailing Edge Length: 1.5 mm to
2.80 m
• Trailing Edge length depends
on absorbed power & preheat
34
Melt Pool Length for Equiaxed
0
10
1
10
2
1550 C
1500 C
1475 C
1450 C
1425 C
1400 C
1350 C
1300 C
1250 C
Constant Velocity
Constant Power
Increasing Velocity
2.8 m
35-70 cm
1.5 mm
• For a ~75% Melt Temp. preheat:
− Power: 50 – 100 kW
− Velocity: 4 – 8 mm/s
− Melt Pool Depth: 4.2 – 5.0 cm
• For a ~95% Melt Temp. preheat:
− Power: 50 W – 100 kW
− Velocity: 0.2 mm/s – 4 m/s
− Melt Pool Depth: 0.8 mm to 14 cm
• Melt pool depth depends on
power, velocity & preheat
35
Melt Pool Depth for Equiaxed
0
10
1
10
2
1550 C
1500 C
1475 C
1450 C
1425 C
1400 C
1350 C
1300 C
1250 C
Constant Velocity Constant Power
0.8 mm
4.2-5 cm
14 cm
• If all equiaxed melt pools were huge…
− Equiaxed would not be attainable for small scale applications
− Achieving equiaxed would essentially require melting the substrate
(i.e. making a casting)
• Melt pools with preheats between 75-95% of Melt Temp.
Can be large… but don’t have to be!
• Near melt temperature preheats
− Do not correspond to melting the entire substrate
− Allow for equiaxed grain growth at melt pool depth
for a wide range of powers and velocities
36
Melt Pool Size for Equiaxed
Contributions
Analytic Model for thermal conditions at melt pool depth
Process Variable impact on Thermal Conditions
at melt pool surface & depth
Evaluation of Four Commercial Processes
Range of Process Variables for equiaxed grain growth
at melt pool depth
Examines impact of 4) on Melt Pool Dimensions
37
1
2
3
4
5
Summary
• Microstructure:
− Want either fully columnar or fully equiaxed
− Have not yet obtained fully equiaxed
• Modeling:
− Bontha’s analytic model accurately describes thermal trends
− A time-dependent element is added to cooling rate to describe melt pool depth
• Impact of Process Variables:
− Thermal conditions respond differently at melt pool surface & depth
− Equiaxed is not feasible at depth without an added preheat
• Evaluation of Commercial Processes:
− None are expected to produce fully equiaxed microstructure
38
• Fully equiaxed microstructure is attainable through process
variable control
• A substrate preheat of at least 75% of the melt temperature is
required for fully equiaxed microstructure
• Melt pools created using near-melt-temperature preheats are not
necessarily large (centimeter scale)
• No commercially existing processes are capable of producing
fully equiaxed microstructure because none have near-melt-
temperature preheats
39
Conclusions
• Finite Element Modeling
− Take into account latent heat effects & temperature dependence of
properties
− Fine-tune numeric predictions
− Impact of added material, more complex geometries, etc.
• Feasibility of Implementing near-melt-temperature preheats
(1250oC+)
− Can this be done? If so, how?
− Are other methods of obtaining fully equiaxed less difficult?
• Explore relationship between thermal conditions at surface and
depth of melt pool
40
Future Work
Questions?
41
Dimensionless Relationships:
Melt Pool Surface & Depth
42
-8 -6 -4 -2 0 2 4 6 8
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
Ln(Tmbar)
SolidificationRateRatio(SR
depth
/SR
surf
)
Relationship Between Solidifcation Rate Ratio &
Dimensionless Temperature
Rosenthal Values
Initial Curve Fit
Curve Fit Equation
r2 is 0.9953
-8 -6 -4 -2 0 2 4 6 8
0
5
10
15
20
25
30
35
40
45
50
Ln(Tmbar)
ThermalGradientRatio(Gdepth
/Gsurf
)
Relationship Between Thermal Gradient Ratio &
Dimensionless Temperature
Rosenthal Values
Exponential Curve Fit
Curve Fit Equation
r2 is 0.9981
10
-3
10
-2
10
-1
10
0
10
1
10
0
10
1
10
2
10
3
10
4
10
5
Fully Columnar
Fully Equiaxed
Mixed
Solidification Map, G vs. R: Hunt's Criterion Curves
Solidification Rate, R (cm/s)
ThermalGradient,G(K/cm)
Columnar Check Points
Equiaxed Check Points
Hunt's Columnar Criterion
Hunt's Equiaxed Criterion
Hunt’s Curve Re-creation for Ti64
43
G-R Map in Ti64 (Kobryn, Brown, 2003, Bontha, Gockel)
Kuntz (2015)
Model Verification (Const. CR, Ti64)
Recreation of High Power Plot Previously Published Plot
44
(Bontha, 2006)
Average Solidification Cooling Rate
• Based on FEA cooling rate extraction
45
-0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
-0.035
-0.03
-0.025
-0.02
-0.015
-0.01
-0.005
0
x-position (cm)
z-position(cm)
Depth vs Solidification Location: P=325W, v=8.47mm/s
Liquidus Isotherm
Solididus Isotherm
Liquidus 10 pts
Solidus 10 pts
Liquidus Depth
Solidus at Liquidus Depth
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
0
10
1
10
2
10
3
10
4
10
5
10
6
Solidification Rate, R (cm/s)ThermalGradient,G(K/cm)
Average Cooling Rate Verification: P=325W, v=8.47mm/s, ND=0.1512
Columnar Boundary
Equiaxed Boundary
Instantaneous Liquidus: All Depth Points
Instantaneous Liquidus: 10 pts
Approximated: 10 pts
Instantaneous Liquidus at Depth
Solidus at Liquidus Depth
Approximated at Liquidus Depth

More Related Content

Similar to Achieving Fully Equiaxed Microstructure in Additive Manufacturing of Ti-6Al-4V

Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...IRJET Journal
 
Recovery recrystallization grain_growth
Recovery recrystallization grain_growthRecovery recrystallization grain_growth
Recovery recrystallization grain_growthVikas Barnwal
 
Application of Thermal Piles and Energy Efficiency of Basements
Application of Thermal Piles and Energy Efficiency of BasementsApplication of Thermal Piles and Energy Efficiency of Basements
Application of Thermal Piles and Energy Efficiency of BasementsPooneh Maghoul, PhD, PEng
 
CFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerCFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerkailas53muke
 
Freezing curve, freezing system &amp; freezing time
Freezing curve, freezing system &amp; freezing timeFreezing curve, freezing system &amp; freezing time
Freezing curve, freezing system &amp; freezing timeMuneeb Vml
 
Analysis on thermal performance of Co3O4 Nanofluid in heat exchanger
Analysis on thermal performance of Co3O4 Nanofluid in heat exchangerAnalysis on thermal performance of Co3O4 Nanofluid in heat exchanger
Analysis on thermal performance of Co3O4 Nanofluid in heat exchangerHrishikesh725754
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...IRJET Journal
 
Design and Analysis of Fin-X Technology
Design and Analysis of Fin-X Technology Design and Analysis of Fin-X Technology
Design and Analysis of Fin-X Technology Nitish Sharma
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactorsArun kumar
 
Cold working and annealing lab
Cold working and annealing labCold working and annealing lab
Cold working and annealing labSaif al-din ali
 
Heat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHeat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHoughton International Inc.
 
Semiar 2 presetation
Semiar 2 presetationSemiar 2 presetation
Semiar 2 presetationOnkar Lathkar
 
IRJET- Numerical Analysis of Natural Convection of Nano Fluids on Square ...
IRJET-  	  Numerical Analysis of Natural Convection of Nano Fluids on Square ...IRJET-  	  Numerical Analysis of Natural Convection of Nano Fluids on Square ...
IRJET- Numerical Analysis of Natural Convection of Nano Fluids on Square ...IRJET Journal
 
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluidCritical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluideSAT Journals
 
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat PipeEnhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat PipeIRJET Journal
 
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...ijtsrd
 
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...Ramesh Mishra
 
Spe 102266-pa-p
Spe 102266-pa-pSpe 102266-pa-p
Spe 102266-pa-pLubov82
 
B. Tech Project PPT @ NIT Warangal
B. Tech Project PPT @ NIT WarangalB. Tech Project PPT @ NIT Warangal
B. Tech Project PPT @ NIT WarangalViral Naik
 

Similar to Achieving Fully Equiaxed Microstructure in Additive Manufacturing of Ti-6Al-4V (20)

Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...
 
Recovery recrystallization grain_growth
Recovery recrystallization grain_growthRecovery recrystallization grain_growth
Recovery recrystallization grain_growth
 
Application of Thermal Piles and Energy Efficiency of Basements
Application of Thermal Piles and Energy Efficiency of BasementsApplication of Thermal Piles and Energy Efficiency of Basements
Application of Thermal Piles and Energy Efficiency of Basements
 
CFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerCFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunker
 
Freezing curve, freezing system &amp; freezing time
Freezing curve, freezing system &amp; freezing timeFreezing curve, freezing system &amp; freezing time
Freezing curve, freezing system &amp; freezing time
 
Analysis on thermal performance of Co3O4 Nanofluid in heat exchanger
Analysis on thermal performance of Co3O4 Nanofluid in heat exchangerAnalysis on thermal performance of Co3O4 Nanofluid in heat exchanger
Analysis on thermal performance of Co3O4 Nanofluid in heat exchanger
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
 
Design and Analysis of Fin-X Technology
Design and Analysis of Fin-X Technology Design and Analysis of Fin-X Technology
Design and Analysis of Fin-X Technology
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactors
 
HEAT TREATMENT.pptx
HEAT TREATMENT.pptxHEAT TREATMENT.pptx
HEAT TREATMENT.pptx
 
Cold working and annealing lab
Cold working and annealing labCold working and annealing lab
Cold working and annealing lab
 
Heat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHeat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal Parts
 
Semiar 2 presetation
Semiar 2 presetationSemiar 2 presetation
Semiar 2 presetation
 
IRJET- Numerical Analysis of Natural Convection of Nano Fluids on Square ...
IRJET-  	  Numerical Analysis of Natural Convection of Nano Fluids on Square ...IRJET-  	  Numerical Analysis of Natural Convection of Nano Fluids on Square ...
IRJET- Numerical Analysis of Natural Convection of Nano Fluids on Square ...
 
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluidCritical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
 
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat PipeEnhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
 
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...
Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exch...
 
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...
Studyoftheeffectofagingconditiononstrengthhardnessof6063t5alloy 130117231644-...
 
Spe 102266-pa-p
Spe 102266-pa-pSpe 102266-pa-p
Spe 102266-pa-p
 
B. Tech Project PPT @ NIT Warangal
B. Tech Project PPT @ NIT WarangalB. Tech Project PPT @ NIT Warangal
B. Tech Project PPT @ NIT Warangal
 

Achieving Fully Equiaxed Microstructure in Additive Manufacturing of Ti-6Al-4V

  • 1. Feasibility of Attaining Fully Equiaxed Microstructure through Process Variable Control for Additive Manufacturing of Ti-6Al-4V Sarah Kuntz, B.S. Mechanical Engineering, WSU Advised by Dr. Nathan Klingbeil Wright State University Dayton, Ohio 45434 Supported by the National Science Foundation Grant No. CMMI-1131266 & CMMI-1335196
  • 2. Acknowledgements • Thesis Committee − Dr. Nathan Klingbeil − Dr. Joy Gockel − Dr. Raghu Srinivasan • Additive Manufacturing Research Group (AMRG) − Dr. Greg Loughnane − Luke Sheridan − Nate Levkulich − Laura Gliebe − Jason Beckman 2
  • 3. Outline • Background & Literature Review • Thesis Contributions • Modeling Approach • Results & Discussion • Summary & Future Work 3
  • 4. What is Additive Manufacturing? • 3-D Printing • An alternative manufacturing technique − Less weight − Less wasted material − Fewer pieces  increased strength / longer life − * Easy to customize • A challenge − Thermal history determines microstructure − Microstructure determines material properties 4 LENSTM Powder Fed Process (Hofmeister, 1999)
  • 5. Consistent & Desirable Microstructure Mixed β grains Gockel 2014, NASA Langley, EBF3 (modified Sciaky) 4 • Phase diagram − β grains (form at solidification) − α grains (from at β transus) • Morphologies of interest: β grains − Fully columnar − Fully equiaxed − Mixed  not desirable • Have achieved − Fully columnar & mixed Goal: Determine process variables for fully equiaxed microstructure
  • 6. Process Variable Control 6Inspired by Beuth et. al. 2013 • Process variables of interest − Beam power − Velocity − Preheat temperature • Commercial Processes Considered − LENS − Sciaky − EOS − Arcam • How do process variables relate to microstructure?
  • 7. Relating Process Variables to Thermal Conditions • 3-D Rosenthal Solution (1946) − Solves 3D Heat Transfer Equation − Assumptions: o Temperature independent material properties (c, ρ, k) o Constant point heat source (Q) o Constant, linear velocity (V) only in the x-direction o Solid & semi-infinite substrate − * Previous research suggests this is a good approximation (Bontha, 2003; Davis, etc.) − Solution is an equation for temperature as a function of distance from the heat source 7 (Rosenthal, 1946; Bontha, 2006) 𝑇 − 𝑇0 = 𝛼𝑄 2𝜋𝑘 𝑒−λ𝑉x0 𝑒−λ𝑉𝑟 𝑟 , 𝑟 = 𝑥0 2 + 𝑦0 2 + 𝑧0 2
  • 8. 8 (Kuntz’s Summary of Bontha 2006) - Working with dimensionless quantities  Will make it easier to switch material systems, size scale, etc. - Relationship between P-V and thermal conditions  Need relationship between thermal conditions and microstructure 𝑆𝑅 = 1 𝛻𝑇 𝜕𝑇 𝜕𝑡 Solidification Rate Dimensionless Rosenthal Solution
  • 9. Relating Thermal Conditions to Solidification Microstructure • Hunt’s Criterion Boundary Curves − Originally for welding − Divide thermal process space into microstructural regions… − By plotting microstructure morphology boundaries in terms of thermal conditions! 9 Original Curves (Hunt, 1984) G-R Map in Ti64, Casting Samples (Kobryn, 2003) 𝑮 𝑹 < 𝟎. 𝟔𝟏𝟕𝑵 𝑶 𝟏 𝟑 𝟏 − ∆𝑻 𝑵 𝟑 𝑹𝑪 𝒐 𝑨 −𝟑 𝟐 𝑹𝑪 𝒐 𝑨 𝟏 𝟐 Equiaxed Boundary 𝑮 𝑹 > 𝟎. 𝟔𝟏𝟕 𝟏𝟎𝟎𝑵 𝑶 𝟏 𝟑 𝟏 − ∆𝑻 𝑵 𝟑 𝑹𝑪 𝒐 𝑨 −𝟑 𝟐 𝑹𝑪 𝒐 𝑨 𝟏 𝟐 Columnar Boundary
  • 10. Relating Process Variables to Microstructure • Changing process variables  various thermal conditions 3-D Rosenthal Solution • Specific thermal conditions  solidification microstructure Hunt’s Criterion Curves 10Gockel 2014 Bontha 2006 *Power & Velocity  Microstructure: Select a specific location for thermal conditions
  • 11. Specific Location for Thermal Conditions 11 1 2 • Meet the melt pool − Heat source & direction of motion − Melt pool boundary / liquidus isotherm − Trailing edge / solidification front • Points of Interest 1: Top Surface  Top of trailing edge  Visible in-situ to co-axial cameras  Have achieved equiaxed grains 2: Deepest Point  Bottom of melt pool, aka “melt pool depth” & “deepest point”  Have not achieved equiaxed grains
  • 12. Importance of the Deepest Point… when adding a new layer Why the look at the bottom of the melt pool? −Because Additive Manufacturing adds layers! − The top of the melt pool gets re-melted… − But the bottom won’t be “overwritten” when the next layer is added! − If we have equiaxed at the top when we deposit the next layer… 12 Added Material Deposition Use this Point!
  • 13. If we have equiaxed at the top when we deposit the next layer… − Equiaxed at the top will be absorbed into long columnar grains UNLESS… − Equiaxed grains at the bottom get in the way − Also, if the bottom is equiaxed, the whole melt pool will likely be equiaxed… * Photos on next slide 13 Case 1: Equiaxed at top Columnar at bottom Case 2: Equiaxed at top Equiaxed at bottom Case 1: Columnar at bottom Case 2: Equiaxed at bottom Importance of the Deepest Point… when considering grain growth
  • 14. Loughnane 2015 450 W, Thin Wall, 1 Bead, 4 sec pause Gliebe 2015 14 • Grain propagation − Equiaxed grains necessary to prevent columnar expansion • Bontha’s work (2006) − If deepest point is equiaxed, entire melt pool is equiaxed Bloomin’ columnar grains! Bontha 2006 Importance of the Deepest Point… when finding thermal conditions
  • 15. Recap of Background & Literature Review • Answered the questions: − What is Additive Manufacturing? − What are Process Variables? − What is Fully Equiaxed Microstructure? • Introduced the approach: − Process Variables are related to Thermal Conditions (Rosenthal Solution) − Thermal Conditions are related to Microstructure (Hunt’s Curves) − To relate Process Variables directly to Microstructure, need to pick a location − This location should be the Deepest Point in the melt pool! 15
  • 16. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 16 1 2 3 4 5
  • 17. • 3-D Rosenthal provides equation for temperature  Location of melt pool • Take the derivative to find − Thermal gradient, G − Cooling rate  Solidification rate, R: • Problem: − At any instant in time:  Cooling rate equation equals zero Thermal Conditions at Deepest Point 17 Moving Point Source Solution Why is cooling rate zero?
  • 18. • Physical meaning: − At a given instant in time, bottom is transition between heating & cooling • Artifact of the mathematics: − Dimensionless cooling rate equals x-component of thermal gradient − At deepest point, x-component of thermal gradient equals zero * See next slide 18 Cooling Rate Equation Equals Zero at Depth
  • 19. Artifact of the Mathematics… At an instant in time, cooling rate might be zero… − But cooling isn’t instantaneous! 19
  • 20. T = TL T = TS Non-Instantaneous Cooling Rate • Approximate derivative as finite difference • Commonly done in FEA * Can now find cooling rate 20
  • 21. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 21 1 2 3 4 5
  • 22. 22 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at Surface of Melt Pool Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology G = 104.75 *R 50 W 100 W 500 W 1000 W 10000 W 50000 W 75000 W 100000 W 0.05 mm/s 0.5 mm/s 5 mm/s 10 mm/s 50 mm/s 100 mm/s 500 mm/s 1000 mm/s At Melt Pool Surface At Melt Pool Depth Changing Power and Velocity
  • 23. 23 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at Surface of Melt Pool Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology G = 104.75 *R 50 W 100 W 500 W 1000 W 10000 W 50000 W 75000 W 100000 W 0.05 mm/s 0.5 mm/s 5 mm/s 10 mm/s 50 mm/s 100 mm/s 500 mm/s 1000 mm/s At Surface At Depth Comparison with Prior Work Bontha 2006 * General behavior is consistent! However…
  • 24. • Powers: 50 W to 100 kW • Velocities: 0.05 mm/s to 1 m/s • Preheat: none • Prediction: Not Fully Equiaxed *Remember, one of the four commercial processes had a preheat temperature… 24 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology G = 104.75 *R 50 W 100 W 500 W 1000 W 10000 W 50000 W 75000 W 100000 W 0.05 mm/s 0.5 mm/s 5 mm/s 10 mm/s 50 mm/s 100 mm/s 500 mm/s 1000 mm/s At Melt Pool Depth Impact of Power and Velocity
  • 25. 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Pre-Heat & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology 25o C 100 o C 500o C 850o C 1000o C 1500o C 0.05 mm/s 0.5 mm/s 5 mm/s 10 mm/s 50 mm/s 100 mm/s 500 mm/s 1000 mm/s 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Pre-Heat & Velocity on Thermal Trends at Surface of Melt Pool Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology 25 At Melt Pool Surface At Melt Pool Depth _ Changing Preheat and Velocity
  • 26. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 26 1 2 3 4 5
  • 27. 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Arcam (750o C pre-heat) Arcam range (no pre-heat) EOS Sciaky LENS Morphology Prediction: Four Commercial Processes ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology Results for Four Commercial Processes • Prediction: Not Equiaxed • LENS, Sciaky & EOS − No preheat • Arcam − Preheat is too small * Sciaky gets closest − Very high powers − Low velocities 27 Sciaky: 1 – 40 kW, 0.04 – 42 mm/s LENS: 100 – 500 W, 0.04 – 42 mm/s EOS: 50 – 500 W, 42 – 1060 mm/s Arcam: 50 – 2000 W, 42 – 1060 mm/s Arcam: 50 – 2000 W, 42 – 1060 mm/s Closest to boundary
  • 28. -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 x-position (cm) z-position(cm) Melt Pool Contours for Representative Cases Arcam, 750o C Arcam, 25o C LENS EOS Sciaky Representative Melt Pool for Each Process 28 Representative Points 10 kW, 4.23 mm/s (Sciaky) 500 W, 4.23 mm/s (LENS) 100 W, 635 mm/s (EOS) 1000 W, 635 mm/s (Arcam) 1000 W, 635 mm/s (Arcam)-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 x-position (cm) z-position(cm) Melt Pool Contours for Representative Cases Arcam, 750o C Arcam, 25 o C LENS EOS Melt Pool Contours: Zoomed View * Prediction: Since Sciaky gets closest, fully equiaxed melt pool will be large (cm-size scale)
  • 29. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 29 1 2 3 4 5
  • 30. 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Impact of Changing Power & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Columnar Grains Equiaxed Grains Mixed Morphology 50 W 100 W 500 W 1000 W 10000 W 50000 W 75000 W 100000 W 0.05 mm/s 0.5 mm/s 5 mm/s 10 mm/s 50 mm/s 100 mm/s 500 mm/s 1000 mm/s 10 -2 10 -1 10 2 10 3 Impact of Changing Power & Velocity on Thermal Trends at 99% of Melt Pool Depth Solidification Rate (cm/s) ThermalGradient(K/cm) Process Variables for Equiaxed The Process • Consider a range of Powers & Velocities at various preheat temperatures: • 750oC, 850oC, 1000oC 1100oC, 1200oC, 1300oC • Consider more P-V combinations at and around 1300oC… 30
  • 31. • A high preheat temperature is necessary… but how high? − Depends on power & velocity • For a ~75% Melt Temp. preheat: − Power: 50 – 100 kW − Velocity: 4 – 8 mm/s • For a ~95% Melt Temp. preheat: − Power: 50 W – 100 kW − Velocity: 0.2 mm/s – 4 m/s 31 Process Variables for Equiaxed 0 10 1 10 2 1550 C 1500 C 1475 C 1450 C 1425 C 1400 C 1350 C 1300 C 1250 C 50 W 94% Tm 50 kW 76% Tm 0.2 mm/s 4 m/s
  • 32. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 32 1 2 3 4 5
  • 33. 33 Melt Pool Dimensions: Sciaky-Size? * Prediction: Since Sciaky gets closest, fully equiaxed melt pool will be large (cm-size scale)  FALSE
  • 34. • For a ~75% Melt Temp. preheat: − Power: 50 – 100 kW − Velocity: 4 – 8 mm/s − Trailing Edge Length: 35 – 71 cm • For a ~95% Melt Temp. preheat: − Power: 50 W – 100 kW − Velocity: 0.2 mm/s – 4 m/s − Trailing Edge Length: 1.5 mm to 2.80 m • Trailing Edge length depends on absorbed power & preheat 34 Melt Pool Length for Equiaxed 0 10 1 10 2 1550 C 1500 C 1475 C 1450 C 1425 C 1400 C 1350 C 1300 C 1250 C Constant Velocity Constant Power Increasing Velocity 2.8 m 35-70 cm 1.5 mm
  • 35. • For a ~75% Melt Temp. preheat: − Power: 50 – 100 kW − Velocity: 4 – 8 mm/s − Melt Pool Depth: 4.2 – 5.0 cm • For a ~95% Melt Temp. preheat: − Power: 50 W – 100 kW − Velocity: 0.2 mm/s – 4 m/s − Melt Pool Depth: 0.8 mm to 14 cm • Melt pool depth depends on power, velocity & preheat 35 Melt Pool Depth for Equiaxed 0 10 1 10 2 1550 C 1500 C 1475 C 1450 C 1425 C 1400 C 1350 C 1300 C 1250 C Constant Velocity Constant Power 0.8 mm 4.2-5 cm 14 cm
  • 36. • If all equiaxed melt pools were huge… − Equiaxed would not be attainable for small scale applications − Achieving equiaxed would essentially require melting the substrate (i.e. making a casting) • Melt pools with preheats between 75-95% of Melt Temp. Can be large… but don’t have to be! • Near melt temperature preheats − Do not correspond to melting the entire substrate − Allow for equiaxed grain growth at melt pool depth for a wide range of powers and velocities 36 Melt Pool Size for Equiaxed
  • 37. Contributions Analytic Model for thermal conditions at melt pool depth Process Variable impact on Thermal Conditions at melt pool surface & depth Evaluation of Four Commercial Processes Range of Process Variables for equiaxed grain growth at melt pool depth Examines impact of 4) on Melt Pool Dimensions 37 1 2 3 4 5
  • 38. Summary • Microstructure: − Want either fully columnar or fully equiaxed − Have not yet obtained fully equiaxed • Modeling: − Bontha’s analytic model accurately describes thermal trends − A time-dependent element is added to cooling rate to describe melt pool depth • Impact of Process Variables: − Thermal conditions respond differently at melt pool surface & depth − Equiaxed is not feasible at depth without an added preheat • Evaluation of Commercial Processes: − None are expected to produce fully equiaxed microstructure 38
  • 39. • Fully equiaxed microstructure is attainable through process variable control • A substrate preheat of at least 75% of the melt temperature is required for fully equiaxed microstructure • Melt pools created using near-melt-temperature preheats are not necessarily large (centimeter scale) • No commercially existing processes are capable of producing fully equiaxed microstructure because none have near-melt- temperature preheats 39 Conclusions
  • 40. • Finite Element Modeling − Take into account latent heat effects & temperature dependence of properties − Fine-tune numeric predictions − Impact of added material, more complex geometries, etc. • Feasibility of Implementing near-melt-temperature preheats (1250oC+) − Can this be done? If so, how? − Are other methods of obtaining fully equiaxed less difficult? • Explore relationship between thermal conditions at surface and depth of melt pool 40 Future Work
  • 42. Dimensionless Relationships: Melt Pool Surface & Depth 42 -8 -6 -4 -2 0 2 4 6 8 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Ln(Tmbar) SolidificationRateRatio(SR depth /SR surf ) Relationship Between Solidifcation Rate Ratio & Dimensionless Temperature Rosenthal Values Initial Curve Fit Curve Fit Equation r2 is 0.9953 -8 -6 -4 -2 0 2 4 6 8 0 5 10 15 20 25 30 35 40 45 50 Ln(Tmbar) ThermalGradientRatio(Gdepth /Gsurf ) Relationship Between Thermal Gradient Ratio & Dimensionless Temperature Rosenthal Values Exponential Curve Fit Curve Fit Equation r2 is 0.9981
  • 43. 10 -3 10 -2 10 -1 10 0 10 1 10 0 10 1 10 2 10 3 10 4 10 5 Fully Columnar Fully Equiaxed Mixed Solidification Map, G vs. R: Hunt's Criterion Curves Solidification Rate, R (cm/s) ThermalGradient,G(K/cm) Columnar Check Points Equiaxed Check Points Hunt's Columnar Criterion Hunt's Equiaxed Criterion Hunt’s Curve Re-creation for Ti64 43 G-R Map in Ti64 (Kobryn, Brown, 2003, Bontha, Gockel) Kuntz (2015)
  • 44. Model Verification (Const. CR, Ti64) Recreation of High Power Plot Previously Published Plot 44 (Bontha, 2006)
  • 45. Average Solidification Cooling Rate • Based on FEA cooling rate extraction 45 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 x-position (cm) z-position(cm) Depth vs Solidification Location: P=325W, v=8.47mm/s Liquidus Isotherm Solididus Isotherm Liquidus 10 pts Solidus 10 pts Liquidus Depth Solidus at Liquidus Depth 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 10 5 10 6 Solidification Rate, R (cm/s)ThermalGradient,G(K/cm) Average Cooling Rate Verification: P=325W, v=8.47mm/s, ND=0.1512 Columnar Boundary Equiaxed Boundary Instantaneous Liquidus: All Depth Points Instantaneous Liquidus: 10 pts Approximated: 10 pts Instantaneous Liquidus at Depth Solidus at Liquidus Depth Approximated at Liquidus Depth